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Standard machine-learning approaches involve the centralization of training data in a data center, where
centralized machine-learning algorithms can be applied for data analysis and inference. However, due to
privacy restrictions and limited communication resources in wireless networks, it is often undesirable or
impractical for the devices to transmit data to parameter sever. One approach to mitigate these problems
is federated learning (FL), which enables the devices to train a common machine learning model without
data sharing and transmission. This paper provides a comprehensive overview of FL applications for envi-
sioned sixth generation (6G) wireless networks. In particular, the essential requirements for applying FL
to wireless communications are first described. Then potential FL applications in wireless communica-
tions are detailed. The main problems and challenges associated with such applications are discussed.
Finally, a comprehensive FL implementation for wireless communications is described.
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1. Introduction

1.1. Motivation

Owing to the significant growth in data traffic, machine learning
has gained a considerable amount of attention and are anticipated
to be vital in the development of sixth generation (6G) wireless net-
works [1]. Centralized machine learning methods require the col-
lection of training samples at a centralized parameter server.
Hence, transmitting a large amount of data samples can cause sig-
nificant transmission delay. Meanwhile, user privacy is not guaran-
teed in standard centralized machine learning approaches.
However, low latency and privacy requirements are important in
many newly emerging applications, such as unmanned aerial vehi-
cles, extended reality (XR) services, and autonomous driving.
Therefore, using centralized machine-learning approaches to opti-
mize these emerging applications is inappropriate. Meanwhile,
due to limited communication resources, it is often impossible for
all edge devices to upload their data to a parameter server for cen-
tralized machine learning.
For these reasons, it is desirable to introduce distributed learn-
ing algorithms which enables devices to cooperatively build a uni-
fied learning model with local training. One of the most promising
distributed machine-learning frameworks is federated learning
(FL) [2–19]. In FL, edge devices collaboratively build a learning
model by transmitting only locally learned models to a base station
(BS) while keeping the local training data, as illustrated in Fig. 1
[20]. Note that FL can also be performed without a parameter ser-
ver, where each device can communicate with neighboring devices
[21]. Since the data center cannot access the local data sets at the
user level, FL can improve the data privacy of the users.

In wireless communications, implementation of FL has the fol-
lowing advantages [15,22]: ① Exchanging local machine learning
model parameters instead of voluminous training data can save
energy and consume less wireless resources; ② training machine
learning model parameters locally can effectively reduce transmis-
sion latency;③ FL can help improve data privacy since the training
data remains at end-user devices and only the local learning model
parameters are uploaded; and④ using different learning processes
to train multiple classifiers from edge datasets increases the possi-
bility of achieving higher learning performance.

FL can be utilized to solve complex convex and nonconvex
problems in various use cases, such as interference cancelation,
network control, resource allocation, and user grouping. In
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Fig. 1. FL over a wireless communication network.
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addition, FL enables users to cooperatively learn unified prediction
models while storing the collected data on their devices for wire-
less environment analysis, user movement prediction, and user
identification. Based on the predicted results, the BS can efficiently
allocate wireless resources to the devices.
Table 1
Overview of some studied about FL in wireless communications.

Subject Contributions Reference

FL Introductory tutorial on characteristics
and challenges of FL

[25]

FL Challenges of FL implementation [26]
Edge machine

learning
Challenges of machine learning systems
at the edge networks

[27]

FL FL and RL for optimizing mobile edge
computing and caching

[28]

Edge machine
learning

Edge machine learning architectures [29]

FL FL applications and use-cases [30]
1.2. Types of FL

There are certain common types of FL: federated reinforcement
learning (FRL), federated supervised learning (FSL), FL for genera-
tive adversarial networks (GANs) (unsupervised learning), and FL
for contrastive learning (self-supervised learning). In Refs.
[23,24], the goal of FRL is to enable wireless devices to remember
what they and the other wireless devices have learned. FRL can be
used in cases where multiple wireless devices make decisions in
different environments. In FRL, each wireless device builds a learn-
ing network with the help of other wireless devices.

(1) Initially, one edge device obtains its private model through
reinforcement learning (RL) in its own environment. The edge
device uploads its private model to the BS as a shared model.

(2) Then, the wireless devices download the common
shared strategy model from the BS as the initial model for RL.
Wireless devices obtain their own private learning networks
through RL in new environments. When the training is completed,
the wireless devices upload their private learning networks to
the BS.

(3) At the BS, the private learning networks are integrated into
the shared model, which produces a new shared model. The new
shared model will be utilized by any other wireless device. The
wireless devices will also transmit private learning networks to
the data center to calculate the shared model.

The FSL technique builds a uniform learning model by itera-
tively updating information between the BS and wireless devices,
where the local private data are fully labeled. In FSL, the devices
can remember what they have learned via local learning model
parameters, and the local learning model is built with the help of
other devices via global model aggregation. The FSL scheme con-
tains three procedures for each iteration: local computation at
the wireless device, local FSL model parameter transmission from
each wireless device, and global model generation and broadcast-
ing at the BS.

� Every wireless device needs to compute the result by using
its fully labeled dataset locally.

� All wireless devices transmit local prediction results to the
center through wireless channels in the uplink.

� The BS obtains the prediction model parameters and trans-
mits the unified prediction learning model coefficients to
all wireless devices.
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1.3. Relevant surveys and contributions

There are some interesting surveys on the use of FL in networks,
such as those in Refs. [25–30]. The unique characteristics and chal-
lenges of FL are discussed in Ref. [25], which also provices a sum-
mary of the current approaches and outlined multiple directions
for future research. Ref. [26] introduces the FL implementation
challenges and reviews the current approaches to these challenges.
In Ref. [27], the authors describe the challenges of machine learn-
ing systems configured on edge computer networks. For RL, the
authors in Ref. [28] propose the integration of deep RL techniques
and FL schemes with emerging edge systems for unified optimiza-
tion of wireless communication, edge computing, and cached
resources. Ref. [29] explores the key parameters of edge machine
learning and various wireless architectural splits for wireless com-
munications. Practical aspects of FL are surveyed in Ref. [30],
including applications, usage scenarios, and hardware platforms.
The overview of some studied about FL in wireless communica-
tions is given in Table 1 [25–30].

We aim to gather the contributions that highlight the key chal-
lenges of applying FL techniques to wireless networks. Particularly,
our objectives are threefold: to provide a comprehensive descrip-
tion of the FL algorithm, to identify the key problems in wireless
communication systems that can be solved using FL methods,
and to point out the emerging FL applications in wireless
communication.
2. Performance and requirements for FL

2.1. Performance metrics

Fig. 2 shows a procedure for implementing FL in a wireless com-
munication network. The FL scheme contains three procedures at
each step: local iteration at every device (with multiple local
times), uploading of locally computed FL model parameters, and
global model aggregation and re-broadcasting at the center. The
local iteration procedure signifies that every device computes its
local FL parameters by using its local data and the received global
FL parameters. There are four main performance metrics for FL:
delay, energy, reliability, and massive connectivity.

(1) Delay. According to Fig. 3, the delay of FL includes the local
iteration delay of edge devices, uplink communication delay, BS
aggregation delay, and downlink transmission delay. The delay of
FL is also determined by the number of iterations FL needs for con-
vergence [31]. Considering the tradeoff between the local compu-
tation delay and communication delay, it is crucial to minimize
the delay for implementing FL via joint transmission and computa-
tion optimization.

(2) Energy. Because the total energy of each wireless device is
limited both the transmission energy and local computation
energy affect the FL procedure. The local computation energy of a



Fig. 2. FL procedures over wireless networks.

Fig. 3. Time performance of FL over wireless networks. K: the total number of all
devices.
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device depends on the number of iterations needed for the local
computation procedure at that device, while the transmission
energy is related to the number of iterations during the implemen-
tation of FL.

(3) Reliability. End-user devices must transmit their training
parameters through wireless links to the aggregating device.
Owing to the limited wireless resources (such as bandwidth) and
inherent unreliability of wireless links, training errors may be
introduced. In particular, symbol errors caused by the unreliable
characteristics of wireless channels and limited resources will
affect the performance and success rate of FL iterations [32,33].
The overall performance of the FL algorithms and convergence
speed are affected by these factors.

(4) Massive connectivity. To satisfy the low latency require-
ment of FL, we must obtain the data from numerous edge devices
efficiently and rapidly using wireless communications. However,
owing to the large number of devices, traditional interference
avoidance channel access schemes are infeasible because they usu-
ally cause excessive delays. To overcome this challenge, an emerg-
ing approach is over-the-air computation, which can gather
wireless data quickly by using the superposition nature of wireless
transmission [34,35]. Although over-the-air computation has some
attractive advantages, it is not compatible with existing digital
wireless communication systems. In addition, scheduling only a
fraction of all devices at each round of FL uploading is a promising
alternative [36,37].
2.2. Potential to meet 6G requirements

It is envisioned that 6G networks will need to accommodate
125 billion wireless devices by 2030. As a result, it is crucial to
design an intelligent signal and data processing system to allow
edge learning to occur. As a key technology, FL has the potential
to meet the following anticipated 6G requirements [1].
35
(1) Massive ultra-reliable low latency communications
(mURLLCs). Because of the expected growth in the number of 6G
wireless end-user devices, the fifth generation (5G) ultra-reliable
low latency communication (URLLC) metrics must be updated to
mURLLC. With FL, multiple edge computing units can be used to
cooperatively learn a shared network model, which can decrease
service delay and provide high reliability [38,39].

(2) Scalable architecture. Unlike centralized intelligence, edge
intelligence, such as FL, is built in a distributed manner, which
includes many edge servers with computing and communication
capabilities. To serve a large number of end-user devices in future
6G communications, it is important to provide a decomposable and
scalable architecture to allow simultaneous computing among
multiple edge servers. Such architectures are expected to play an
important role in the emerging wireless communication services
and applications.

(3) Human-centric services. Unlike the rate-reliability-latency
metrics in 5G, 6G is anticipated to involve human-centric services,
which will require quality of experience levels related to the phys-
ical movement of the users. FL can be used to predict the move-
ments and gestures of users, and the BS can use the predicted
results to improve the quality of user experience.

3. FL for wireless communications: Motivation behind
applications

Machine learning approaches can use data analytics to estimate
the state of wireless networks and find connections between opti-
mized variables and objective functions online, which reduces the
computational complexity of solving nonconvex optimization
problems in wireless systems. In addition, machine learning is
powerful because it can optimize problems in which the problem
description is unknown. However, given that multicell networks
require global channel state information (CSI), centralized learning
algorithms may require BSs to continuously upload their obtained
data to a centralized processing server, which leads to high net-
work overhead and significant delays. Consequently, using a cen-
tralized learning algorithm for resource management or network
control may require many iterations to converge. As a result, tradi-
tional machine learning algorithms with centralized training may
not be able to handle resource allocation, signal detection, and user
behavior prediction problems in future 6G networks. As a more
practical alternative, FL can enable users or BSs to manage the
resources in a distributed manner and locally analyze collected
data. Section 3.1 reports a summary of driving FL applications for
wireless problems, and Sections 3.2–3.5 describe four applications
where FL can be used to solve various wireless network problems.

3.1. Driving FL applications for wireless problems

(1) Resourcemanagement. Spectral efficiency and connectivity
optimization of multicell networks typically leads to nonconvex
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resource allocation problems. Conventional algorithms, such as
matching theory can be used to solve such nonconvex resource
allocation problems. However, the complexity is high. Therefore,
there is a need to introduce new FL algorithms that can be used
to address a variety of resource management problems, such as
distributed power control for multi-cell networks, joint user asso-
ciation and beamforming design, as well as dynamic user
clustering.

For multi-cell power control, as depicted in Fig. 4, FRL enables
each BS to settle the connection between the power control
schemes and utility values to find the globally optimal resource
allocation scheme. In FRL, the BSs on a connected network process
data locally by minimizing small optimization problems and
exchange the local results among their neighbors to arrive at a glo-
bal solution.

Furthermore, FRL can be used for dynamic user clustering,
where end-users individually learn the clustering parameters by
RL, and the BS builds unified clustering parameters based on the
received clustering parameters from all end-users.

(2) User behavior prediction. Due to the various quality-of-
service requirements of users, user behavior prediction is crucial
for the optimization of wireless network performance.

User behaviors, such as mobility patterns, can be predicted
using FL, where each user performs a local FL algorithm to compute
its local model using private user behavior data and uploads the
obtained model to the center. The center then generates and
broadcasts aggregated FL parameter coefficients to all users. Based
on the mobility predictions, in the uplink, the users can dynami-
cally choose a subchannel and the users that occupy the same sub-
channel can perform non-orthogonal multiple access (NOMA) or
full duplex to upload their models. In contrast, in the downlink,
the BS can dynamically allocate multiple subchannels to several
users.

The quality-of-service of users can be predicted using FL, where
each BS uses the FL algorithm based on stored information such as
requested data, device type, and so forth, and all BSs transmit the
FL model results to a server to obtain a unified FL model.

(3) Channel estimation and signal detection. Channel estima-
tion and signal detection are major challenges because of the ran-
dom features of wireless channels in wireless communication
networks. For downlink systems, FL algorithms are used for chan-
Fig. 4. Multi-cell power control scheme. M: the total n
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nel estimation and multi-user detection, where each user performs
an FL scheme for channel estimation and signal detection and
sends the locally obtained FL parameters to the center which com-
putes the unified FL model. To enable channel detection via FL,
each user can perform the same channel detection task; for exam-
ple, obtaining CSI from the BS to a passive relay. The training con-
vergence time scale and required number of datasets are suitable
for fitting within the coherence duration, as only one common
channel needs to be predicted. For multicell uplink systems,
multi-user signals can be detected by iteratively transmitting indi-
vidual FL model parameters from all BSs to a server and broadcast-
ing the unified FL model parameters from the server back to all BSs.
Furthermore, FL algorithms can be utilized to automatically design
the BS codebooks and decoding strategy of users to minimize the
bit error rate, where users upload the learned result to the corre-
sponding BSs and the BSs forward their unified learned result to
a server.
3.2. Reconfigurable intelligent surfaces

Reconfigurable intelligent surface (RIS) based wireless commu-
nication systems are regarded as a potential technology for
improving the energy efficiency of communication networks [40–
51], as shown in Fig. 5. An RIS is mainly composed of numerous
high-efficiency hardware components, which can change the phase
of the input signal. In RIS-based wireless communication systems,
the RIS is usually managed by the BS via a backhaul link between
the BS and RIS to determine the properties of the incident waves.
Thus, the wireless environment can be controlled for various
design objectives using the RIS. The RIS serves as a mirror that will
not require any digital operations. Therefore, if deployed properly,
RISs are expected to reduce energy consumption compared to
existing amplify-and-forward (AF) relays [52–54]. However, it is
challenging to jointly optimize the active beamforming at the BS
and passive phase beamforming at and RIS owing to the unique
constraints on the RIS coefficient matrix phases. To deal with com-
plicated and varying electromagnetic (EM) environments and non-
linear problems of communication systems that are difficult to
solve mathematically, an FL algorithm can be used as a practical
alternative.
umber of all users; N: the total number of all BSs.



Fig. 5. Example of an RIS-enhanced communication network.
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(1) CSI detection. In an RIS-based system, to fully exploit the
advantages of the architecture, multiple high-efficiency technolo-
gies, such as energy-saving designs, resource allocation, and active
and passive joint beamforming, are required. Note that all the
above designs depend on perfect knowledge of CSI between the
RIS and BS, and between the user and RIS. However, when the
RIS is not built on a radio frequency (RF) chain or sensor, the RIS
enhanced system cannot accurately estimate the CSI. To this end,
it is meaningful to use FL for CSI detection in RIS-assisted wireless
communications.

The FL-based model training approach can be used in RIS-
assisted massive multiple-input multiple-output (MIMO) systems
[55]. The FL approach mainly includes three steps: data gathering,
sample training, and task prediction. In the first step, every user
collects its local training dataset, where the pilot sequence is the
input, and the received signal is the output. Then, each user com-
putes the updated model by utilizing its own local data samples,
and the BS generates a global model after receiving the updated
models from all users. In the last step, each user estimates its
own channel by inputting the received pilot data into the training
model.

(2) Distributed joint passive and active beamforming. In an
RIS-assisted wireless communication system, the phase of each
element in the RIS can be controlled to improve the performance
of RIS-assisted wireless communication systems. In contrast to
conventional communications, it is important to optimize both
passive beamforming (phase shift matrices at the RIS) and active
beamforming (beamforming at the multi-antenna transmitter)
[56,57]. Deep learning (DL) has been applied to solve complicated
joint passive and active beamforming to optimize the reflection
matrix of RIS components [58]. In practice, multiple RISs can be
utilized to overcome severe signal congestion between a user
and the BS, thereby achieving better service coverage, which is
similar to a multi-hop relay system. A multi-hop RIS auxiliary com-
munication scheme was proposed in Ref. [59] to deal with the
increase in coverage and severe pathloss in the terahertz frequency
band, where a hybrid optimization of phase shift matrices and
transmitted beamforming at the BS is obtained by an advanced
RL. Owing to the high complexity of using a centralized RL, FRL
can be utilized to solve the joint passive and active beamforming
problem, where all users can individually optimize their phase
shift matrices and transmit beamforming via RL, and the BS trans-
mits the unified learning model back to all users.

(3) Phase shift prediction. Owing to the randomness of wire-
less communication channels, the RIS phase-shift matrices must
be determined as the wireless channel changes. By exploiting the
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time-correlated property of channel fading, the phase-shift matri-
ces of the RIS can be predicted via FL. To predict the phase shift,
each user uses a long short-term memory (LSTM) network for
the prediction of future CSI and phase shift matrices using a local
data set, while the BS aggregates the received results from all
users.

3.3. Semantic communication

Semantic communication is similar to the communication that
takes place in the human brain, where the difference between
the meaning of transmitted symbols and that of recovered ones
is correlated [60]. This correlation can be useful for joint encoding
and decoding when the bandwidth of the system is limited, or the
bit error rate is high for some typical communication systems.

(1) Channel encoder and decoder design. Using a semantic
communication technique that enables the devices to transmit
semantic information to the server, rather than traditional bits or
symbols, can effectively improve the network bandwidth utility.
However, the semantic communication model requires training
data from multiple distributed devices, which incurs very substan-
tial communication costs for data transmission. To solve this prob-
lem, an FL-based DL-enabled semantic communication can be used
for channel encoder and decoder design. First, a DL model can be
used to extract semantic information from text or audio with
robustness against noise. Then, in an FL approach, the end-user
devices and server obtain practicable DL models with the server
aggregating the locally trained models and sending back the uni-
fied model to the devices.

(2) Distributed semantic communication for Internet of
Things (IoT). Emerging technologies, such as smart connectivity,
IoT, and machine-to-machine (M2M) networks, require intelligent
communication between different ends, such as humans and
machines. For these applications, intelligent communication
depends on the background and interface language models [61].
In addition, there are always numerous devices in IoT networks.
These factors motivate the design of a distributed semantic com-
munication for IoT networks with FL. The distributed semantic
communication with FL includes three steps. In the first step, the
center computes the semantic communication model using DL. In
the second step, the center transmits the trained DL model to each
device. In the third step, each user obtains the semantic features
through received broadcast information. Then, each user uploads
the semantic features to the BS, then, the BS calculates the seman-
tic communication model accordingly.

3.4. Extended reality

XR refers to all computer-generated graphics in real and virtual
environments that consist of mixed reality (MR), augmented real-
ity (AR), and virtual reality (VR). Deploying XR over wireless com-
munication networks is an essential step for realizing XR
applications [1]. Owing to the seamless and immersible require-
ments, it is important to introduce wireless communication tech-
nologies that can meet the stringent quality-of-service
requirements, such as high data rate and ultra-low latency. For
XR allocation over wireless communications, the location and ori-
entation information need to be sent to the BS, which constructs
360� images for users based on the received information.

(1) User movement prediction. In a wireless XR network, user
body movements can heavily influence wireless resource alloca-
tion and network management [62]. FL is effective in predicting
user actions and movements, which are used to deal with user
movement challenges. Based on the predicted movements and
actions, the BS can improve the generated XR image and optimize
the wireless resource allocation of XR users.
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(2) Resource allocation. FL can be used to design self-
organizing schemes for solving dynamic resource management
problems for XR networks [63]. Specifically, FL can be used to
dynamically optimize wireless resources and construct the struc-
ture of XR images based on the wireless environment.

3.5. Non-orthogonal multiple access

NOMA is envisioned as a promising technique for next-
generation wireless communication networks [64]. By serving sev-
eral users on the same time and frequency resource, compared to
the alternative orthogonal multiple access (OMA) technology,
NOMA can expand the number of connected users, improve user
fairness, and improve spectral efficiency. Recently, significant
research effort has been focused on various challenges of NOMA
implementations [65–67], including modeling, performance analy-
sis, signal processing, and emerging NOMA applications, such as
heterogeneous networks (HetNets), cognitive radio networks, and
millimeter wave (mmWave) communications. The non-
orthogonal resource allocation nature of NOMA necessitates the
introduction of novel models and algorithms to address several
challenges, including joint user clustering and resource allocation
for devising a scalable multicell NOMA design, advanced channel
estimation and signal detection for large-scale NOMA networks,
and dynamic user behavior prediction in NOMA-based mobile
networks.

Owing to the non-orthogonal resource allocation property,
intra-cell interference always exists in NOMA networks, which
usually leads to nonconvex resource allocation problems. Tradi-
tional optimization methods, which are used to solve the noncon-
vex problems for optimizing the performance of NOMA networks,
mostly operate offline with extremely high computational com-
plexity and depend on precise CSI [68–71]. Big data analysis can
be used to estimate the state of the wireless network and find
the relationship between the optimized variable and the objective
function online via machine learning schemes [72–75] which mini-
mize the computational complexity for solving the nonconvex
problems in NOMA. However, given that multicell NOMA needs
global CSI, a centralized learning algorithm may require the BSs
to continuously upload their obtained data to a centralized pro-
cessing server, which leads to a high network overhead and signifi-
cant delays. In addition, in NOMA, each subcarrier can be occupied
by multiple users. Consequently, using a centralized learning algo-
rithm for resource management or network control may require
many iterations to converge. Therefore, the conventional central
machine learning methods described in Refs. [76–79] cannot han-
dle resource allocation, signal detection, and user behavior predic-
tion problems in NOMA. For NOMA, FL has two important
applications: ① the complex convex and nonconvex optimization
problems that can be solved by FRL, which include resource alloca-
tion, interference mitigation, user grouping, and network control,
and ② FSL which can enable edge users to cooperatively obtain a
unified learning parameter while protecting their obtained data
on their devices for CSI prediction and user detection.

(1) Resource management in NOMA. With the superposition
coding technique at the transmitter and successive interference
cancellation (SIC) at the receiver, NOMA can yield higher spectral
efficiency compared to OMA [80,81]. Moreover, NOMA can take
advantage of user differences in the power domain to provide ser-
vices for multiple users connected to the same resource. The power
domain characteristics of NOMA can help support massive NOMA
connections and meet a range of quality services.

The spectral efficiency and connectivity optimization of NOMA
typically leads to nonconvex resource allocation problems, which
are optimized using conventional algorithms [65]. Therefore, there
is a need to introduce new distributed learning techniques that can
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be used to address many resource management challenges, such as
distributed power control for multicell NOMA [70], joint user asso-
ciation and beamforming design [67], and dynamic user clustering
[82]. For multi-cell power control, FRL enables each BS to build a
connection between the power control schemes and utility func-
tions to find an optimal power control scheme. FRL can also be
used to study user association and beamforming of a multi-
antenna NOMA network [83]. Furthermore, FRL is used for
dynamic user clustering in NOMA, where users individually learn
the clustering parameters by RL, and the BS builds unified cluster-
ing parameters based on the received clustering parameters from
all users.

(2) Signal detection and channel estimation in NOMA. Signal
detection and channel estimation in NOMA are major challenges
owing to error propagation in SIC for NOMA networks. FSL algo-
rithms can be utilized for channel estimation and multi-user detec-
tion in downlink NOMA networks, where each user executes a
supervised learning (SL) algorithm for signal detection and channel
estimation of multiple users and sends its local FL model coeffi-
cients to the BS that will generate the global FL model. As reported
in Ref. [84], FSL can detect multi-user signals in multi-cell uplink
NOMA networks by iteratively transmitting individually learned
model parameters from all BSs to a server and broadcasting the
unified learning model parameters from the server back to all
BSs. Furthermore, FSL can be used to automatically design the
codebook of BSs and decoding strategy of users in code-domain
NOMA networks to minimize the bit error rate [85], where users
upload the learned result to the corresponding BS, which forwards
their unified learned result to a server.

(3) User behavior prediction in NOMA. Owing to the heteroge-
neous quality-of-service requirements of users in NOMA, where
devices in the same group may have diversified channel values
and quality-of-service requirements, user behavior prediction is
crucial for the implementation of NOMA networks. To predict cer-
tain user behaviors, such as mobility information, each user in the
FSL scheme executes an SL algorithm to train the learning model,
utilizing its own user behavior data, and uploads the obtained local
model to the BS via NOMA. Then, the BS generates and broadcasts
the unified learning model coefficients to all users using NOMA.
Based on the mobility pattern predictions, the users can dynami-
cally choose subchannels to upload data in the uplink, the BS
dynamically allocates multiple subchannels to multiple users in
the downlink, and multiple users that occupy the same subchannel
can perform NOMA. For multiple BSs to predict the quality-of-
service of users [86] in FSL, each BS uses an SL algorithm based
on its stored data set, and device type. All BSs transmit the learning
model results to a server via NOMA to obtain a unified FL model.
4. Research directions and open problems

4.1. Research directions and challenges

FL ensures that the resource allocation or behavior prediction
problem can be solved in a distributed manner for wireless net-
works. The utilization of FL for wireless networks has the following
five main directions and challenges:

(1) Scalability. FL should be scalable because an increased num-
ber of computers or processors may offset the increased amount of
data and provide a solution to the complexity and memory issues
in large-scale learning networks. For a large-scale learning net-
work, it is important to investigate issues related to distributed
training.

(2) Privacy and security. In FL, the raw data set for each user
can be protected because only the locally obtained FL model is
transmitted to the center. However, it is also possible for an
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eavesdropper to conduct approximate reconstruction of the origi-
nal data, particularly when the local and global model coefficients
cannot be protected [87]. In addition, the local FL model may leak
private information. In FL, privacy can be categorized into two
types: global and local. The model generation at each iteration is
invisible to all unknown devices except the BS in global privacy,
and the model aggregation at each iteration is confidential to all
unknown third parties and the BS in local privacy.

(3) Asynchronous communication. FL involves information
exchange between the wireless devices and BS. Synchronous com-
munication methods are simple, but they can introduce stragglers
among devices. An attractive way to alleviate laggards in a hetero-
geneous environment is an asynchronous solution. Although asyn-
chronous server parameters in the distributed data center are
successful in dealing with stragglers, assumptions of bounded
delay may be impractical in federated schemes.

(4) Non-independent identically distribution (Non-IID)
devices. When training a joint model from differently distributed
data across devices, challenges arise both in terms of data model-
ing and analyzing the convergence trend of the relevant training
process [88]. One key aspect of FL is coping with heterogeneous
settings and competing and distributed decision-making
environments.

(5) Joint communication and computation design. To deploy
FL in a wireless communication network, each device needs to
transmit its multimedia data or local training results through an
unreliable wireless link. It is important to consider the multicell
and multi-hop FL implementations for real scenarios [89]. In addi-
tion, the performance of FL learning schemes is degraded by lim-
ited radio resources. Thus, it is important to consider the joint
management of communications and computing resources to
achieve efficient and effective FL.
4.2. Open problems and future directions

This section presents several open problems based on the above
issues to reveal future research opportunities. Although FL has
been extensively researched, there are still several key issues to
be studied regarding wireless communication and FL.

(1) Convergence. Because of the limited wireless resources in
communication networks, only a fraction of users can be activated
in each learning step to upload their local model parameters to the
center. However, owing to the diversity of training data samples of
different users, the center would like to involve the local FL models
of all users to determine the best overall global FL model. So, user
upload scheduling is a key issue and affects the FL performance and
convergence time. Many studies of FL convergence are based on
the assumption of a convex loss function [90,91]. However, the loss
functions for many learning problems are non-convex, and there
are challenges associated with investigating the convergence rate
of FL with non-convex loss functions [92]. Moreover, there are still
some key problems for the FL convergence rate as well, even for
convex loss. For example, there is a need for an exact/more accu-
rate convergence formulation with fewer assumptions and approxi-
mations [90] in order to be consistent with real FL experiment
data. Although there are some studies in this area, most of them
are based on convex loss functions. Furthermore, owing to the
heterogeneous property of the quality-of-service, it is necessary
to simultaneously conduct multi-task FL. In addition, for large-
scale systems, multicell and multi-hop FL should be considered,
which both require greater insights into the FL convergence analy-
sis. Moreover, a particular challenge is to study the mobility of
wireless devices for FL convergence. Owing to such mobility, the
channel gains between the devices and BS are dynamically chang-
ing; thus, it is possible that some devices will exit the FL process
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owing to serious CSI, which affects the convergence of the entire
FL process.

(2) Privacy and security. There are a number of open problems
associated with privacy and security in FL: privacy protection for
each user, privacy preservation of the BS, and security for the entire
FL algorithm. Regarding the privacy protection for each user and
the BS, a promising approach is to use differential privacy, which
introduces a tradeoff between privacy and FL performance [93].

To ensure the security of the entire FL algorithm, traditional
methods such as encryption can be considered, as well as more
recent developments such as secure multi-party computation
and physical layer security, which can provide security in situations
(such as massively deployed IoT) where more conventional meth-
ods cannot be applied.

(3) Performance evaluation. One of the main challenges is to
investigate the effects of communication bandwidth on FL delay
performance. Although the computing resources of mobile phones
are becoming increasingly powerful, the bandwidth of wireless
communication has not increased significantly. Consequently, the
bottleneck has shifted from computing to communication capabil-
ities. Therefore, the limited communication bandwidth may cause
a longer communication delay, which can result in long conver-
gence times for FL. Communication-efficient FL is thus an impor-
tant area of current and future study [94–96].

(4) FL for emerging technologies. The interplay between FL
and emerging technologies introduces new challenges. For
instance, a very high propagation attenuation in the terahertz band
can affect the convergence analysis. Moreover, in satellite commu-
nications, FL can be used to optimize the beam and location of the
satellite [97–99]. Another example is in quantum communication,
where there is a need to use FL to optimize parameters (such as
base probability) for quantum key distribution.

5. Conclusions

In this study, we have considered FL applications for wireless
communications. Two main classifications of FL are have been
introduced, namely, FRL and FSL. In addition, we have discussed
the motivations behind using FL for wireless communication appli-
cations. Furthermore, we have identified some of the techniques
required to meet the challenges of using FL in practical wireless
communications situations. Therefore, it is hoped that this study
on FL for wireless communications will provide insights useful
for the operation, design, and optimization of FL-based wireless
networks.
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