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1. Introduction

Although androgen receptor biosynthesis and signaling inhibi-
tors have significantly improved outcomes in patients with castra-
tion-resistant prostate cancer (CRPC), there is still a dearth of
effective treatment options for men with advanced prostate cancer.
Recent studies have shown that DNA damage and altered DNA
damage response (DDR) pathways may contribute to the progres-
sion of prostate cancer to CRPC. More than 25% of men with meta-
static CRPC (mCRPC) are enriched for germline or somatic
alterations in DDR genes [1,2]. Based on previous work, which
established one of the first clinically implemented examples of a
synthetically lethal approach for cancer therapy, initial clinical tri-
als demonstrated significant responses to poly(adenosine diphos-
phate-ribose) polymerase (PARP) inhibition in CRPC patients with
deleterious defects in DDR signaling and DNA repair genes that
are prevalent in mCRPC (mainly breast cancer susceptibility gene
2 (BRCA2) variants) [3,4]. This work led to intensive focus on PARP
inhibitors (PARPis) as the first targeted therapy for CRPC and
resulted in breakthrough therapy designations from the US Food
and Drug Administration (FDA) for three PARPis, olaparib, ruca-
parib, and niraparib, for the treatment of CRPC patients with speci-
fic BRCA2-mutant mCRPC [5–8]. DDR inhibitors (DDRis) have
rapidly expanded to include inhibitors of other pathways, includ-
ing ataxia telangiectasia and Rad3-related (ATR) kinase, which,
together with ataxia-telangiectasia mutated (ATM), serves as a
key regulator of replication stress response (RSR) signaling [9–11].
2. DDR-targeted therapies induce intrinsic immune signaling in
prostate cancer cells

Recent preclinical studies of PARPis in combination with
immune checkpoint therapy (ICT) have shown the potential for
additive benefits in BRCA-mutant and BRCA1/2 wild-type cancer
cells. These studies showed that PARPis can induce immune activa-
tion through a variety of mechanisms, including the activation of
the tumor cell innate immune pathway cyclic guanosine
monophosphate–adenosine monophosphate synthase (cGAS)–
stimulator of interferon genes (STING) signaling and expression
of immune checkpoint protein programmed cell death ligand 1
(PD-L1) through induction of type I interferon (IFN) expression
and IFN regulatory factor 3 activity [12–17], and through inactiva-
tion of glycogen synthase kinase 3b to stabilize the PD-L1 protein
[18]. A recent study has shown activation of the cGAS–STING sig-
naling pathway by ATR inhibitors (ATRis) in CRPC preclinical mod-
els and demonstrated synergistic suppression of prostate cancer
growth by combining ATRi treatment with anti-PD-L1 antibody
ICT in vivo [19]. While parallels between the known mechanism
(s) of immune activation can be drawn between PARPis and ATRis,
analysis of specific mechanisms of action between these agents
revealed potentially pivotal roles for tumor cell-expressed immune
checkpoint proteins, such as PD-L1 in the regulation of type I IFN,
tumor cell-intrinsic, and autocrine signaling pathways in response
to DDRis as important modulators of therapy outcome [19]. For
example, in contrast to PARP inhibition, ATRis induced PD-L1 pro-
tein downregulation through the activation of checkpoint kinase
1—cell division cycle 25C–cyclin-dependent kinase 1—speckle-
type pox virus and zinc finger protein E3 ligase complex signaling
axis, which resulted in an autocrine, IFN-b–IFN-a receptor 1-medi-
ated apoptotic response in CRPC models [19]. The results of this
and other studies raise the question of whether, in addition to
PD-L1, the expression of other immune checkpoint protein B7
family members, which are functionally regulated by IFNs and
interferon regulatory factors (IRFs), play an important role in DDRi
and ICT combination therapy responses in prostate cancer and
other malignancies.
3. Expression of B7 immune checkpoint protein family
members in cancer

As summarized in Table 1, the B7 immune checkpoint protein
family contains at least ten transmembrane or glycosylphos-
phatidylinositol (GPI)-linked to cell membrane (B7-H4) protein
members. All B7 protein family members are structurally related
and feature extracellular immunoglobulin V (IgV)–IgC domains
that bind to their respective receptors on lymphocytes, which reg-
ulate T cell immune responses through signaling activities.
Although early studies characterized the expression of B7 protein
family members in immune cells, recent investigations have
expanded the expression pattern of B7 protein family members
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Table 1
B7 immune checkpoint protein family.

B7 checkpoint protein
family ligand

Ligand alias Extracelluar domian
structure

Expression in immune
cells

Tumor
expression

Receptors Regulating response
of T-cell

B7-H1 CD274, PD-L1 IgV–IgC T cells, B cells, DCs,
monocytes

+ PD-1 Inhibition

B7-H2 ICOS-L, GL-50, B7h, B7RP-1 IgV–IgC T cells, B cells, DCs,
macrophages

+ ICOS Inhibition

B7-H3 CD276 IgV–IgC–IgV–IgC
(human)
IgV–IgC (mouse)

T cells, B cells, DCs,
monocytes

+ TREML2?
TLT-2?

Activation/
inhibition

B7-H4 B7S1, B7x, Vtcn1 IgV–IgC T cells, B cells, NK cells,
DCs, monocytes

+ Unknown Inhibition

B7-H5 VISTA, platelet receptor GI24,
Dies1, PD-1H

IgV–IgC T cells, DCs, macrophage,
neutrophils

� CD28H Inhibition

B7-H6 NCR3LG1 IgV–IgC Unknown + NKp30 Activation
B7-H7 HHLA2 IgV–IgC–IgV T cells, B cells, DCs,

monocytes
+ CD28H Activation/

inhibition
B7-1 CD80 IgV–IgC T cells, B cells, DCs,

monocytes
+ CD28,

CTLA-4
Inhibition

B7-2 CD86 IgV–IgC T cells, B cells, DCs,
monocytes

+ CD28,
CTLA-4

Inhibition

B7-DC CD273, PD-L2 IgV–IgC DCs, monocytes + PD-1 Inhibition

CD: cluster of differentiation; ICOS-L, B7h: inducible costimulatory ligand; B7RP-1: B7-related protein 1; B7S1: B7 superfamily member 1; B7x: B7 homolog x; Vtcn1: V-set
domain containing T cell activation inhibitor 1; VISTA: V-domain immunoglobulin-containing suppressor of T cell activation; Dies1: differentiation of embryonic stem cells 1;
PD-1H: PD-1 homolog; NCR3LG1: natural killer cell cytotoxicity receptor 3 ligand 1; HHLA2: human endogenous retrovirus subfamily H long terminal repeat associating
protein 2; CTLA-4: cytotoxic T lymphocyte-associated antigen 4; TREML2, TLT-2: triggering receptor expressed on myeloid cells like transcript 2; CD28H: CD28 homolog;
NKp30: natural killer-activating receptor; DCs: dendritic cells.
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to a wide variety of cell types in various tissues, especially in
malignant tumors
[20–34]. Importantly, B7 immune checkpoint proteins are
extensively modified posttranslationally, and like many other
membrane and secreted proteins, are glycosylated at their extra-
cellular IgV–IgC domains, which are required for their functional
activities. Interestingly, while glycosylation and glycan structure
alteration of cell surface proteins are universal features of many
cancer cells, altered glycosylation in cancer cell-expressed B7
protein family members reportedly block their interactive immune
cell recognition functions, which can be restored by de-glycosyla-
tion [35–39]. Recent studies have revealed that, to metastasize,
tumor cells utilize mechanistically diverse pathways involving
inhibitory immune checkpoints to escape immune responses.
Targeting the function of these immune checkpoint proteins has
emerged as a new treatment that may effectively prevent cancer
progression [40]. Among the pathways of inhibitory immune
checkpoints, the PD-L1/programmed cell death 1 (PD-1) immune
checkpoint pathway has emerged as a key regulator of adaptive
immune response and has been shown to promote evasion of the
immune system during metastatic progression of many cancers
[41–43]. For this purpose, inhibitors that block the interaction of
PD-L1/PD-1 have been developed as therapeutic anticancer drugs
and are combined with other drugs to maximize the efficacy of
cancer treatment [44].

4. Tumor cell-expressed PD-L1 as a therapeutic target and
predictive biomarker for ICT

PD-L1 (B7-H1, CD274) belongs to the B7 immune checkpoint
protein family. PD-L1 is expressed on the cell membrane surface
Table 2
Compartment localization of PD-L1 protein.

Cellular compartment Source

Membrane and extracelluar vescle PD-L1 mRNA translated full length protein
Cytoplasma and nucleus PD-L1 mRNA translated full length protein
Extracellular space and serum Alternative spliced PD-L1 mRNA translate

extracellar domain (peptides fragment) of
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of many types of cells, including T cells, B cells, dendritic cells,
macrophages, and non-lymphoid cells, such as mesenchymal stem
cells, epithelial cells, endothelial cells, and brown adipocytes. PD-
L1 was also reported to be expressed in tumor cells of various ori-
gins. PD-L1 is the ligand for its receptor PD-1, an immune cell inhi-
bitory receptor expressed on the surface of activated T and B cells
[41,45]. PD-1 is activated through PD-L1 binding and suppresses
effector T cell activity within tissues and tumors, which promotes
the survival and metastasis of PD-L1-expressing tumor cells. Inter-
estingly, in addition to the cell membrane presentation of PD-L1
protein (membrane PD-L1, mPD-L1), it has been reported that
PD-L1 can be secreted into the extracellular space or serum and
that the secreted form of PD-L1 (sPD-L1) contains a C-terminal,
which is distinct from mPD-L1. sPD-L1 is generated from alterna-
tively spliced PD-L1 mRNA or as an extracellular peptide fragment
domain from the membrane-bound PD-L1, which is shed through
the activities of matrix metalloproteinases (MMPs) or a disintegrin
and metalloproteinases (ADAMs) [46–49]. More recently, studies
have revealed that PD-L1 can be present in the cytoplasm (cyto-
plasmic PD-L1, cPD-L1) and, by acetylation at K263, can be translo-
cated into the nucleus (nuclear PD-L1, nPD-L1) and recruited to
chromatin to functionally regulate mRNA transcription of a range
of genes including oncogenic/stemness genes. In particular, PD-
L1 can regulate the message RNA (mRNA) transcription of a net-
work of genes critically involved in regulating immune responses,
such as other checkpoint protein members of the B7 family and
cytotoxic T lymphocyte-associated antigen 4 (CTLA-4) [50,51]. As
summarized in Table 2 [46–53], like ‘‘classic” mPD-L1, these non-
membrane bound PD-L1s were detected using immunoblotting
(IB), immunohistochemistry (IHC), and enzyme-linked
immunosorbent assay (ELISA) in immune and cancer/tumor cells
Detection References

IB, IHC [52,53]
IB, IHC [50,51]

d full length protein;
mPD-L1 shed by MMP13, ADAM10, or ADAM17

ELISA [46–49]
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with specific anti-PD-L1 antibodies. Importantly, detection of PD-
L1 through these methods can substantially affect therapy deci-
sions with regard to the selective clinical use of anti-PD-L1/anti-
PD-1 and the interpretation of the results of PD-L1 detection
post-therapy. Taken together, the results of these studies suggest
a crucial role for tumor cell- and immune cell-expressed PD-L1
in tumor immune evasion and tumorigenesis and potentially as
an early predictive biomarker of response to ICT.

Numerous FDA-approved clinical trials have tested immunohis-
tochemically detected tumor cell- and tumor microenvironment
(TME) cell-expressed PD-L1 as a predictive marker for ICT response
in patients with certain cancers, including melanoma, triple-nega-
tive breast cancer, and non-small cell lung cancer [54–58]. These
studies showed the value of anti-PD-L1 immunostaining as a pre-
dictive biomarker for response to immunotherapy agents. How-
ever, as an increasing number of preclinical and clinical studies
have tested PD-L1 expression as a predictive biomarker, important
questions have arisen regarding the biological and clinical signifi-
cance and utility of this marker. Questions regarding the overall
efficacy and use of anti-PD-L1 ICT in prostate cancer and the rela-
tively low level of detection of PD-L1 in prostate cancer tissues pre-
sent a challenging scenario. However, efforts to understand and
use anti-PD-L1 ICT for the treatment of CRPC, as well as recent pre-
clinical studies and clinical trials that have tested anti-PD-L1 as a
single agent and in novel combinations, have yielded increasingly
promising results [19,59,60]. Overall, substantial challenges
remain for the development of PD-L1 as a predictive biomarker
for anti-PD-L1-based ICT in many cancers. Much work needs to
be done to overcome these barriers, especially for CRPC.
5. Development of tumor cell-expressed PD-L1 as a therapeutic
target and predictive biomarker for ICT in prostate cancer—The
challenges

First, due to the extreme heterogeneity of prostate cancer, sam-
pling bias can be one of the greatest obstacles to the accurate
assessment of PD-L1 expression in prostate cancer biopsies. As
tumor biopsies often contain a limited number of evaluable tumor
cells and sample handling is variable, immunostaining analysis can
be suboptimal and not representative of prostate cancer lesions.
Thus, in addition to immunohistochemical detection, other detec-
tion protocols and methods, such as reverse transcription quantita-
tive real-time DNA polymerase chain reaction, IB, or ELISA, should
be evaluated and considered for PD-L1 analysis. Second, as we dis-
cussed earlier, tumor-expressed PD-L1 can be located in the serum,
extracellular matrix, cell membrane surface, cytoplasm, or nucleus.
Importantly, different posttranslational modifications of PD-L1
have been identified in association with these different compart-
ments. While glycosylation of PD-L1 is required for membrane
and extracellular matrix localization, secretion, and ligand func-
tionalities, these modifications may block or reduce the exposure
of PD-L1 peptide antigens recognized by PD-L1 antibodies. Addi-
tionally, PD-L1 glycosylation can potentially be altered in cancer
cells, which may further compromise the detection of cancer
cell-expressed PD-L1 via specific PD-L1 antibodies. A recent report
has shown that in vitro enzymatic removal of N-linked glycosyla-
tion significantly enhances PD-L1 detection by a several methods,
including IB, immunofluorescence, ELISA, and IHC [61]. However,
as alterations in glycosylation of proteins are a universal observa-
tion in cancer cells, the applicability and utility of this approach
require intensive validation in clinical samples, especially in extre-
mely heterogeneous tumors, such as prostate cancer. The develop-
ment of antibodies that recognize different posttranslationally
modified forms of PD-L1 and their extensive characterization
(including cellular distribution) are needed. Third, cell-type-
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specific functional analysis of various forms of PD-L1 should be
prioritized for future translational research. Although tumor and
immune cells (including macrophages and lymphocytes) are often
scored independently for PD-L1 expression using IHC, there is only
minimal information regarding the functional significance of PD-L1
in these discrete cell types in cancer, including tumor response to
anti-PD-L1 therapy. In addition, the development and application
of better quantitative analysis and computational biology
approaches would likely improve the utility of these clinical
biomarker studies in the short term.

In summary, the expression patterns of tumor cell- and immune
cell-expressed PD-L1 inmultiple cancers, including prostate cancer,
are complex. In addition, various PD-L1 posttranslational modifica-
tions in tumors are difficult to detect via immunohistochemical
methods and may confound the interpretation of PD-L1 protein
expression in highly heterogeneous prostate cancer tumor samples.
Thus, the development of PD-L1 antibodies that recognize different
post-translationally modified PD-L1 molecules and their extensive
characterization (including cellular distribution) are needed.
Furthermore, basic and translational research into the potentially
different, compartmentalized functions of PD-L1 in prostate cancer
cells and tumor-associated macrophages and lymphocytes must be
prioritized to address the knowledge gaps that exist regarding the
clinical significance of PD-L1 IHC. These research efforts will likely
require the development of more quantitative analytical
approaches using computational biology, as well as specific
biochemical and protein engineering methods. Overall, increased
research in these areas could lead to more accurate identification
and management of prostate cancer patients who could benefit
from anti-PD-L1 ICT.
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