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Regular coronavirus disease 2019 (COVID-19) epidemic prevention and control have raised new require-
ments that necessitate operation-strategy innovation in urban rail transit. To alleviate increasingly seri-
ous congestion and further reduce the risk of cross-infection, a novel two-stage distributionally robust
optimization (DRO) model is explicitly constructed, in which the probability distribution of stochastic
scenarios is only partially known in advance. In the proposed model, the mean-conditional value-at-
risk (CVaR) criterion is employed to obtain a tradeoff between the expected number of waiting passen-
gers and the risk of congestion on an urban rail transit line. The relationship between the proposed DRO
model and the traditional two-stage stochastic programming (SP) model is also depicted. Furthermore, to
overcome the obstacle of model solvability resulting from imprecise probability distributions, a
discrepancy-based ambiguity set is used to transform the robust counterpart into its computationally
tractable form. A hybrid algorithm that combines a local search algorithm with a mixed-integer linear
programming (MILP) solver is developed to improve the computational efficiency of large-scale instances.
Finally, a series of numerical examples with real-world operation data are executed to validate the pro-
posed approaches.

� 2021 THE AUTHORS. Published by Elsevier LTD on behalf of Chinese Academy of Engineering and
Higher Education Press Limited Company. This is an open access article under the CC BY-NC-ND license

(http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

The coronavirus disease 2019 (COVID-19) has been greatly
affecting people’s daily travel patterns, resulting in significant
uncertainty regarding passenger demand in urban public transit.
As the main artery of public transit, the urban rail transit system
transports a large number of passengers shuttling between differ-
ent lines and stations every day. In some megacities, the passenger
demand in peak hours far exceeds the transport capacity at busy
stations (especially at some transfer stations), and a great many
passengers must wait on the platforms and are even stranded,
resulting in a serious crowdedness issue [1]. According to the
World Health Organization, people who leave their home during
an epidemic period should refrain from crowding to avoid cross-
infection. In other words, passenger congestion in the confined
environment of stations necessarily increases the chance of
cross-infection and decreases travel comfort. Thus, practical and
effective measures—such as limiting the vehicle loading capacity,
keeping a safe distance between passengers, and so forth—are
needed to ensure safe operation of rail transit with the gradual
restoration of social order and the increase in traffic volume
brought by the resumption of work and schools.

At present, two types of measures have been applied in China’s
urban rail transit systems, which do indeed mitigate the risk of
congestion at stations with large passenger demand: ① The first
measure involves passenger flow control. To cope with large pas-
senger demand, the best choice is to impose passenger flow con-
trol; that is, to limit the speed of passenger flow entering the
platform and make passengers queue in an orderly manner in sta-
tion halls, so as to avoid passengers gathering on the platforms and
thus reduce the risk of cross-infection while improving operation
safety. For example, so far, up to 96 stations in the Beijing rail tran-
sit system have imposed routine passenger control strategies.
② Another practical method is demand-oriented train scheduling;
this is a traditional approach used to deal with heavily congested
passenger flow in peak hours, which has been studied deeply in
the past years [2–4]. More precisely, based on detailed information
on dynamic passenger demand, this method aims to shorten the
train headway to enhance the capacity of the urban rail transit
line/system and optimize train schedules so as to minimize the
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passenger waiting time at stations. However, the phenomenon of
huge passenger flow during peak hours has become normative in
some megacities, such that even the maximum departure fre-
quency is insufficient to significantly ease the heavy congestion
[5]. In addition, as far as most transfer stations are concerned,
the number of transfer passengers in practical operations has far
exceeded the volume of outside arrival passengers. Xizhimen Sta-
tion in Beijing can be taken as an illustration. As shown in Fig. 1,
the transfer passenger demand at this station is always greater
than the outside arrival passenger demand, which is particularly
obvious during peak periods. Although some studies [5–9] have
paid a great deal of attention to this problem, most still neglect
to control transfer passengers simultaneously with outside arrival
passengers. To relieve crowding and enhance efficiency as much as
possible on an overall line, there is an urgent need to study passen-
ger flow control strategies combined with train scheduling under
the influence of transfer passengers—a need that is not addressed
in the existing literature.

In reality, some important information on the urban rail transit
system, such as passenger demand, is usually uncertain. To capture
this uncertainty, studies [10,11] have used stochastic scenarios
with deterministic probability distributions to characterize the
randomness of passenger demand, and the scenario-based time-
dependent passenger demand can be recorded by the automatic
fare collection (AFC) system. However, it is difficult to obtain the
accurate probability distribution of the involved scenarios in
advance, especially in real-world applications [12]. Based on par-
tial known probability information, the modeling methodology
corresponds to the distributionally robust optimization (DRO)
approach, which has recently been applied to the field of trans-
portation planning and management. Enlightened by this method,
the present study aims to find a robust passenger flow control
strategy that works in all passenger demand scenarios with par-
tially known probability. For clarity, Fig. 2 shows the passenger
control process, in which the time-dependent passenger demand
of two scenarios is represented by blue and red curves, respec-
tively, and a robust passenger flow control strategy (represented
by the purple line) is generated to control the passenger entering
speed and thereby reduce platform congestion. This decision-
making process is associated with the following potential risks
incurred by the two-fold uncertainty: ① Dynamic outside arrival
passengers and transfer passengers are both highly uncertain,
and are described by stochastic scenario sets; and ② in practice,
operators might only know the support of the probability distribu-
tion information of the scenarios, while precise distribution
Fig. 1. Illustration of inbound and trans
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information is out of reach. Under these uncertain conditions, risk
management [13] has not been sufficiently studied in the existing
literature related to the passenger flow control problem, to the best
of our knowledge, so it will also be explicitly addressed in our
study.

1.1. Literature review

Imbalance of supply and demand is the main cause of conges-
tion on an urban rail transit line. Based on this fact, the existing lit-
erature has focused on regulating capacity and demand from the
supply and demand sides, respectively, in order to alleviate
congestion. On the supply side, the literature mainly optimizes
the train schedule to meet the dynamic passenger demand with
uneven temporal and spatial distribution, so as to avoid a
deficiency or insufficiency of transport capacity; on the demand
side, a passenger flow strategy, differential pricing, and other mea-
sures are mainly used to guide and limit the passenger flow. In
addition, the existing studies that focus on dealing with uncer-
tainty in the field of transportation tend to adopt different method-
ologies, including stochastic programming (SP), robust
optimization (RO), and DRO. The following discussion provides a
detailed overview of the state of art in the literature.

1.1.1. Passenger flow control
Due to the increasing gap between the limited transport capac-

ity and the continuous growth of passenger demand, many urban
rail transit lines in China are suffering from overcrowding. The
question of how to deal with this problem is thus the focus of
operation management departments and many researchers. As a
substantial increase in transport capacity is almost impossible in
the near future, implementing passenger flow control at congested
stations or lines is the best choice to reduce crowdedness. Many
researchers have devoted time and effort to this problem, and
the related studies can be summarized into the following two
categories: The first category is based on the mathematical pro-
gramming approach and the other one is based on the computer
simulation method.
� Passenger flow control based on the mathematical pro-
gramming approach. In recent years, an increasing number
of researchers have employed the mathematical program-
ming approach to study the passenger flow control problem,
which includes three stratification levels: the station level,
line level, and network level. Considering the fixed train
schedules and the time-dependent passenger demand,
fer passengers at Xizhimen Station.



Fig. 2. Illustration of the robust passenger flow control process.
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existing studies generally aim to minimize the delay time or
the waiting time of passengers. For example, Xu et al. [6] pro-
posed a multi-objective optimization model for an urban rail
transit station under uncertain demand in order to calculate
the number of passengers that should be controlled through
the genetic algorithm. In addition, Xu et al. [8] addressed
the problem of passenger flow control in an urban rail transit
network during peak hours. Their problem was formulated as
a mixed-integer programming model to simultaneously
adjust the number of inbound and transfer passengers, which
could be solved by the genetic algorithm. Shi et al. [9] devel-
oped an integer linear programming (ILP) model to generate
an optimal passenger flow control strategy for an urban rail
transit system. Based on analyses of the alighting and board-
ing processes, Wang et al. [14] formulated an integer pro-
gramming model to achieve the optimal state for the entire
urban rail transit line, with a focus on minimizing the average
passenger delay. Yuan et al. [15] established a mixed-ILP
(MILP) model in order to minimize the total passenger wait-
ing time in an urban rail transit network and solved it by
CPLEX software. By introducing a timetable-oriented space–
time network representation, Meng et al. [16] proposed an
ILP model to produce high-quality passenger flow control
strategies for an urban rail transit line.
� Passenger flow control based on the computer simulation
method. In view of the complex dynamic characteristics of
the operation state in an urban rail transit system, computer
simulation modeling can reveal the occurrence and evolution
of passenger flow congestion, and thus give full play to the
advantages of simulation modeling in this problem. Numer-
ous published studies use the simulation method to investi-
gate the passenger flow control at stations. Hoogendoorn
and Daamen [17] established microscopic pedestrian dynam-
ics models to assess the design safety in large passenger flow
scenarios in Lisbon metro stations. To simulate passenger flow
at the Xuanwumen Station (a transfer station) in the Beijing
rail transit system during peak hours, Zhang et al. [18] used
Vissim software, which achieved good performance. Seriani
and Fernandez [19] studied the effects of pedestrian traffic
management on passengers’ boarding and alighting time,
and used experimental means to obtain the standards for
pedestrian traffic management at the platform and doors of
metro vehicles. Fei and Liu [20] used Anylogic software to for-
mulate a simulation model of passenger flow organization
and accurately identified the congestion points according to
the simulation results. Jiang et al. [21] proposed a coordina-
tion model of passenger flow control and train jumping based
on the Q-learning approach, which could be efficiently solved
by simulation methods.
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1.1.2. Train scheduling in urban rail transit
Over the past several decades, a large and growing body of lit-

erature has proposed different mathematical models and solution
algorithms for train scheduling problem in urban rail transit. For
example, to minimize passenger waiting time, Niu and Zhou [4]
developed a nonlinear programming model to optimize the train
schedule for the whole line, which could be optimized by the
genetic algorithm. They then took oversaturated situations into
consideration and formulated a mixed-integer nonlinear program-
ming model [22]. Li et al. [23] studied the fairness issue in the train
scheduling process. To optimize train schedules by considering
min–max fairness and a fairness, they established a mixed-
integer programming model that could be solved by a simulated
annealing-based adaptive large neighborhood search algorithm.
Yin et al. [24] proposed an MILP model to fix the coordinated train
scheduling problem with unlimited train boarding capacity. Yang
et al. [25] developed a 0–1 ILP model for the last train timetable
in an urban rail transit network, which could be effectively solved
by a heuristic algorithm based on Lagrangean relaxation. Liu et al.
[26] formulated a mathematical optimization model to determine
a robust train schedule for maximizing robustness and minimizing
total energy consumption, so as to avoid delay propagation as
much as possible. Huang et al. [27] considered the rescheduling
problem in urban rail transit systems. Two mixed-integer nonlin-
ear programming models with different recovery strategies were
formulated to reschedule trains during track disruption, which
could be linearized by a hybrid approach combining big-M and
time-indexed formulations. Tian and Niu [28] addressed the
demand-oriented train scheduling problem under overtaking
operations. Their problem was formulated into an ILP model, and
a corresponding novel surrogate-dual-variable column generation
algorithm was proposed to generate approximate optimal solu-
tions. Mo et al. [29] proposed a mixed-integer nonlinear program-
ming model to generate an optimized train timetable with suitable
train speed profiles, as well as an efficient rolling stock plan, aim-
ing to minimize both passenger waiting and travel times. Qi et al.
[30] formulated an ILP model for the integrated stop planning and
timetabling problem, with the aim of minimizing the total travel
time of trains.

Overall, the above studies address the passenger flow control
problem and the train scheduling problem separately, thus failing
to achieve an optimal system effect or reduce the pressure on
urban rail transit operation to the greatest extent. It should be
noted that integrated optimization of the above two aspects is
much more challenging than dealing with them separately because
of the complex coupling relationship between trains and passenger
flow. To date, only three papers can be found in the literature that
use a mathematical programming approach to carry out an inte-
grated study of these two aspects: Xu [31] formulated a quadratic
programming model to generate a multi-station collaborative pas-
senger flow control strategy and a corresponding train schedule; in
this model, the decision variables include the number of inbound
passengers and the dwell time of trains at certain key stations.
Shi et al. [5] established an ILP model to obtain an optimal passen-
ger flow control strategy for the whole line and a corresponding
train schedule to improve the service quality, in which the passen-
ger flow control strategy was implemented on each timestamp.
Gong et al. [32] implemented the passenger flow control based
on the train status. However, none of these studies consider the
influence of transfer passengers.

1.1.3. Approaches for dealing with uncertainty
It is well known that transportation activities usually faces a lot

of dynamics and uncertainties due to system complexity
[1,11,33,34]. With the development of optimization theory and
the improvement of computing technologies, an increasing
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amount of attention has been paid to how to deal with uncertain
parameters. Thus far, three major kinds of approaches—namely,
SP, RO, and DRO—have been developed to handle uncertainty.
More specifically, the SP method assumes that the probability dis-
tribution of uncertain parameters is known in advance. For exam-
ple, Gong et al. [35] considered the stochastic environment in an
urban rail transit system and developed an integer nonlinear pro-
gramming model to simultaneously optimize the number of train
services, the headway settings, and the speed profile selection
decisions. Errico et al. [36] constructed a two-stage SP model for
the vehicle routing problem with hard time windows, which could
be solved by exact branch-cut-and-price algorithms. It is widely
recognized that the SP method is based on a given probability dis-
tribution. However, the real value of probability distribution is dif-
ficult to obtain in practice and usually needs to be estimated
through historical data. Due to the existence of estimated errors,
major deviations may occur in practical applications, which is a
great weakness of this method. The RO approach considers that
uncertain parameters are all based on uncertainty sets without
any distribution assumption. The aim of the RO approach is to
overcome the uncertainty and find the best possible solutions that
satisfy all constraints. For example, to handle the uncertainty of
passenger demand, Yang et al. [10] proposed an MILP model with
the max–min reliability criterion, aiming to increase the number
of last-train successful transfer passengers and reduce the total
running time. Qi et al. [37] studied the train timetabling and
stop-planning problem with uncertain passenger demand. An ILP
model was formulated and solved by CPLEX software. Based on
the technique of Light Robustness, Cacchiani et al. [38] proposed
three MILP models to derive robust train-stop plans and timeta-
bles, in order to reduce passengers’ inconvenience. Here, we note
that a serious drawback of the RO approach is that it is too rigid
and conservative; however, it does not require the distribution
information to be known in advance, unlike the SP method.

The rapid development of the DRO approach has overcome the
aforementioned shortcomings of the SP and RO methods. The DRO
approach combines the statistical learning technique with opti-
mization theory; it can obtain a good enough solution by assuming
that the parameters obey some possible distributions. The theories
underpinning the DRO approach have been well studied over the
last decades [39,40]. For example, Delage and Ye [39] produced
one of the first studies on this approach, in which the DRO models
were formulated under the first-order and second-order moment
inequalities, respectively. Esfahani and Kuhn [40] proved that the
dual form of a Wasserstein-metric DRO model could be decom-
posed into finitely convex optimization problems with tractable
computational complexity. Recently, this approach has also
attracted much attention from certain engineering fields [41–47].
For example, focusing on the planning and scheduling problem
under uncertain demand, Shang and You [41] formulated a two-
stage DRO model to produce less conservative solutions. For finite
and infinite horizon optimal control problems, Van et al. [42] pro-
posed distributionally robust constrained formulations to provide
frameworks that could generate robust control policies. Consider-
ing the integration of urban and rural public transport systems,
Shang et al. [43] developed a DRO model with ambiguous chance
constraints regarding the travel time requirement, with the aim
of minimizing the total construction cost. For a disaster relief man-
agement problem under demand uncertainty, Wang et al. [44] pro-
posed a DRO model to simultaneously optimize the integrated
facility location, inventory pre-positioning, and delivery decisions.
Yang et al. [45] presented a distributionally robust chance-
constrained program to model the last-train coordination planning
problem in an urban rail transit system, in which uncertain passen-
ger demand was captured by an ambiguous set. Wang et al. [46]
focused on the hub location problem with multiple commodities
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under uncertain demand and cost. This problem was modeled as
a DRO model, which was further reformulated as a moderate-
sized MILP for ease of calculation. Zhang et al. [47] established a
DRO model with the Wasserstein distance-based ambiguity set
for the vehicle routing problem with time windows, aiming to
minimize the risk of late customer arrivals.

Thus far, situations with uncertain passenger demand have
received less attention in the area of passenger flow control. As
far as we know, there is only one relevant reference in this field
that addresses uncertain demand: Meng et al. [11] proposed an
ILP model on an urban rail transit line by applying the SP method;
in this model, uncertain passenger demand was described using a
stochastic scenario set with completely pre-given distribution
information. Moreover, there is no relevant theoretical achieve-
ment employing the DRO approach in the field of passenger flow
control combined with train scheduling.

In summary, the passenger flow control problem has been a hot
research topic in recent years, and some mathematical models and
simulation methods to address this problem have been well stud-
ied. Nevertheless, most of these approaches still separately con-
sider or partially integrate the three aspects of passenger flow
control, train scheduling, and SP method. Moreover, no existing
study simultaneously deals with the two-fold uncertainty with
respect to the passenger demand and scenario probability, even
though it is a significant and challenging issue for real-world appli-
cations, as it is difficult to predict passenger demand accurately.
With this concern, this paper is particularly interested in develop-
ing a DRO method for the passenger flow control strategy and train
scheduling on an urban rail transit line, as well as a powerful algo-
rithm with fast computing speed.

1.2. The contributions of this study

To fill the abovementioned gaps, this paper aims to make the
following contributions to the study of passenger flow control
and train scheduling problem on an urban rail transit line:

(1) A DRO model, which focuses not only on both outside arrival
passengers and transfer passengers, but also on train schedules, is
rigorously formulated. Compared with the existing literature, this
model has two significant improvements: ① The proposed model
considers the inherent uncertainty of passenger demand. Since
passenger demand in the real world is usually uncertain and
dynamic, a series of stochastic scenarios are developed to depict
this uncertain parameter in this paper. ② The precise probability
distribution information of each stochastic scenario does not need
to be known completely in advance—that is, only the partial distri-
bution information is needed, which is the main reason why this
approach is employed in this paper. Since very few existing studies
consider the inherent uncertainty of passenger demand and the
characteristics of scenario probability cannot be predicted in
advance, this is a novel idea.

(2) Our distributionally robust formulation is a semidefinite
programming model, which is a notoriously difficult problem to
solve. To convert this model into a computationally tractable form,
a discrepancy-based ambiguity set is employed. Furthermore, the
equivalent MILP model can be obtained through the strict
theoretical proofs. Based on an analysis of the complexity of our
formulation, we propose an efficient hybrid algorithm by
combining a local search algorithm (LS) with a suitable MILP solver
to generate high-quality solutions in an acceptable computation
time, especially for large-scale instances.

(3) Finally, to demonstrate the effectiveness and practicability
of our proposed approaches, a series of numerical experiments
are implemented based on operating data from Line 15 in the
Beijing rail transit system. We compare the experimental results
of our DRO model with those of the traditional SP model and the
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classic ROmodel. These experiments demonstrate the performance
and advantages of the proposed optimization model and solution
approaches.

The remainder of this paper is organized as follows. In Section 2,
we give a detailed description of the passenger flow control and
train scheduling problem on an urban rail transit line. In Section 3,
we formulate the problem into a two-stage SP model and a DRO
method, respectively. Then, Section 4 proposes a hybrid algorithm
based on the LS and a suitable MILP solver. In Section 5, we imple-
ment a case study, that is, a large-scale case based on the operating
data of Line 15 in the Beijing rail transit system, to show the supe-
riority of our proposed approaches. Finally, Section 6 gives some
conclusions and future research.
2. Problem description

Consider an oversaturated urban rail transit line, which consists
of a series of common and transfer stations (Sor and Str are used to
denote the sets of common and transfer stations, respectively), and
a set of physical segments between stations (the kth segment is
defined as the connection from stations k to (k + 1)). Denote the
set of stations on this line as S, then S ¼ Sor [ Str ¼ 1;2; :::; Sj jf g. In
operations, the transfer between different lines is a common pas-
senger behavior at each transfer station. In order to ease conges-
tion, we aim to collaboratively optimize the train schedule and
passenger flow control strategy on this oversaturated line by tak-
ing the transfer passenger flow into account. For descriptive clarity,
an illustrative urban rail transit system is depicted in Fig. 3, where
Line 1 is the focus line, and Lines 2 and 3 are the adjacent lines.
Typically, Stations 2;3;5 2 Sor, and Stations 1;4 2 Str. Passengers
on Lines 2 and 3 are allowed to transfer to Line 1 at Stations 1
and 4, respectively. At Stations 2, 3, and 5, the inbound passengers
are mainly from the outside of the transit system. At Stations 1 and
4, both outside arrival passengers and transfer passengers from
Lines 2 and 3 should be taken into consideration, in the process
of optimizing the passenger flow control strategies.

It is widely recognized that passenger demand in an urban rail
transit system is time-dependent and varies at different time peri-
ods, during which outside arrival passengers continuously come,
while transfer passengers are intermittently centralized due to
the arrival of trains from adjacent lines at certain intervals. In addi-
tion, passenger demand is often uncertain in practical operations
due to the influence of various factors. Thus, to describe the
dynamic and stochastic passenger demand more realistically, the
time horizon is discretized into a series of timestamps with
Fig. 3. An illustrative urba
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discretized time granularity tunit in this study, denoted by
T ¼ 1;2; . . . ; Tj jf g, and a stochastic scenario set—that is,
W ¼ x1;x2; :::;xWj j

� �
—is employed to characterize the uncer-

tainty. Note that, since it is difficult to know the probability of each
scenario precisely in advance, in order to be more realistic, we
characterize this parameter by imprecise discrete probability dis-
tributions. Similar to the existing literature [11], the dynamic
and stochastic passenger demand is depicted by Pcome;out

k t;xð Þ
and Pcome;tr

k t;xð Þ, which represent the number of outside arrival
passengers and the number of transfer passengers from adjacent
lines at station k and timestamp t in scenario x, respectively. It
should be noted that the aforementioned passenger demand can
be obtained from historical AFC data through travel demand
assignment approaches [48].

For an urban rail transit line with uncertain passenger demand,
congestion is directly related to the following four factors: outside
arrival passengers, transfer passengers from adjacent lines, the
schedules of involved trains, and the train capacity. Due to the lim-
ited improvement of train capacity in real-world operations, the
most effective method to alleviate congestion is to consider the
effects of the other three factors from the system perspective,
and to carry out collaborative optimization of the train schedules
and passenger flow control strategies. In the process of passenger
flow control, outside arrival passengers are first required to queue
in station halls, and they are then released to the platform to board
train i under the robust passenger flow control strategy at station k

in scenario x (denoted by Pinc;out
i;k xð Þ). Nevertheless, the transfer

passengers from adjacent lines (i.e., Pcome;tr
k t;xð Þ) are allowed to

go to the platform freely and wait for the next train arrivals, as
shown in Fig. 4. Once the number of outside arrival and transfer
passengers exceed the capacity of the trains, outside arrival pas-
sengers who come later than this time must be detained in the sta-
tion hall; they then gradually enter the platform according to the
robust passenger flow control strategy. In this paper, the control
strategy is only imposed on outside arrival passengers, while trans-
fer passengers are released to the platform and can take trains
freely. In addition, all the passengers on the platform are required
to take the train that arrives earliest, without waiting for the next
train, in order to guarantee the operation safety.

In summary, the focus of this paper is to develop a multi-
scenario mathematical formulation for the robust passenger flow
control problem combined with train scheduling on an urban rail
transit line, with the goal of minimizing the sum of operating time,
the expected number of waiting passengers, and the conditional
value-at-risk (CVaR) of congestion. Our formulation also explicitly
n rail transit system.



Fig. 4. Robust passenger flow control at common and transfer stations. (a) Robust passenger flow control at a common station; (b) robust passenger flow control at a transfer
station.
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captures the time-dependent and stochastic passenger demand—
that is, the outside arrival passengers and the transfer passen-
gers—and the train capacity, aiming to achieve the optimization
of system performance. The proposed mathematical formulation
is based on the following three assumptions.

Assumption 1: The outside arrival and transfer passenger
demand is known in advance by processing the historical AFC data.
A similar assumption has been widely adopted in previous studies
[1,8,11].

Assumption 2: The section running time and station dwell time
of trains are pre-given by rail managers according to the actual
operating data. That is, these parameters are not affected by the
numbers of boarding or alighting passengers.

Assumption 3:We only consider the direction from station 1 to
station Sj j as the operation direction, while the other direction can
be operated according to the same optimization method. In addi-
tion, the inbound and transfer passengers, who are released to
platforms under the robust passenger flow control strategy, can
all be taken away by the first arrival train. This assumption is com-
mon in passenger flow control and train timetabling studies [4,32].
3. Mathematical formulations

In this section, we first introduce a two-stage SP model for pas-
senger flow control and train scheduling problem with completely
known probability information in Section 3.1. We then formulate a
novel DRO model with uncertain probability in Section 3.2.
3.1. Two-stage SP model with completely known probability
information

To characterize the above problem in a stochastic version, the
modeling process will be explicitly discussed in the following
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sections. In Section 3.1.1, we first list all the related notations
and decision variables in the formulation. The events that describe
the dynamic processes of passenger loading and train operations
are introduced in Section 3.1.2. In Section 3.1.3, we present a
two-stage SP model based on the mean-CVaR criterion.
3.1.1. Notations and decision variables
In this paper, we use boldface letters to represent vectors and V

is employed to represent the set of random variables. Uncertainty
is modeled via a set of stochastic scenarios, the probability distri-
bution of which is denoted as p[�]. We use Ep x½ � to represent the
expectation of x with probability distribution p[x]. Based on these
definitions, we next develop a two-stage SP model for the problem
of interest, in which the first stage determines the train schedules
and the second stage is associated with the movement of passen-
gers. To formulate the model rigorously, five sets of decision vari-
ables are defined as follows.

Decision variables:
tai;k: arrival time of train i at station k (integer variable).

tdi;k: departure time of train i at station k (integer variable).
di;k tð Þ: departure indicator of in-service train i at station k and

timestamp t (binary variable).

Pina;out
i;k xð Þ: number of outside arrival passengers who actually

board train i at station k in scenario x (integer variable).

Pinc;out
i;k xð Þ: number of outside arrival passengers who are

allowed to board train i at station k in scenario x under the robust
passenger flow control strategy (integer variable).

In these decision variables, tai;k and tdi;k determine the arrival and
departure times of train i at station k, respectively; di;k tð Þ is also a
scheduling variable, which corresponds to a train timetable (i.e.,
the headway between adjacent trains, the arrival and departure

times of each train at each station); Pina;out
i;k xð Þ and Pinc;out

i;k xð Þ are



Y. Lu, L. Yang, K. Yang et al. Engineering 12 (2022) 202–220
related to the dynamic evolution process of passengers. The
detailed sets, parameters, and notations are listed below in order
to describe the problem more conveniently.

Sets:
W: set of involved scenarios, W ¼ x1;x2; . . . ;xWj j

� �
.

S: set of involved stations on the focus line,
S ¼ Sor [ Str ¼ 1;2; . . . ; Sj jf g.

Sor: set of involved common stations.
Str: set of involved transfer stations.
I: set of in-service trains, I ¼ 1;2; . . . ; Ij jf g.
T: set of discrete timestamps, T ¼ 1;2; . . . ; Tj jf g.
Parameters and notations in the first-stage model:
k, v: index of stations, k;v 2 S.
x: index of scenarios, x 2W .
px: probability of scenario x.
i, j: index of trains, i; j 2 I.
t: index of time, t 2 T .
tunit: discretized time granularity.
tri;k: running time of train i from station k to station (k + 1).

tdwi;k : dwell time of train i at station k.
hi;k: departure headway between trains i and (i + 1) at station k.
hi;k: minimum headway for two consecutive in-service trains at

station k.

h
�
i;k: maximum headway for two consecutive in-service trains at

station k.
T0: total operating time of the focus line.
Parameters and notations in the second-stage model:
C: train capacity.
Pcome;out
k t;xð Þ: number of outside arrival passengers at station k

and timestamp t in scenario x, Pcome;out
k t;xð Þ 2 V .

Pcome;tr
k t;xð Þ: number of passengers who get off trains at station

k and make transfer at timestamp t in scenario x, Pcome;tr
k t;xð Þ 2 V .

Pon
i;k xð Þ: number of in-vehicle passengers in train i when depart-

ing from station k in scenario x, Pon
i;k xð Þ 2 V .

Pal
i;k xð Þ: number of alighting passengers of train i when arriving

at station k in scenario x, Pal
i;k xð Þ 2 V .

Pwaita;out
i;k xð Þ: number of passengers who actually wait for train i

in the hall of station k in scenario x, Pwaita;out
i;k xð Þ 2 V .

Pwait;tr
i;k xð Þ: number of passengers who wait for making transfers

to train i at station k in scenario x, Pwait;tr
i;k xð Þ 2 V .

Pinc
i;k xð Þ: total number of passengers boarding train i at station k

under robust passenger flow control strategy in scenario x.

Pina
i;k xð Þ: total number of passengers actually boarding train i at

station k in scenario x.
dv;k xð Þ: ratio of outside arrival passengers who arrive at station

v heading to station k in scenario x, dv;k xð Þ 2 V .
Fig. 5. Illustration of scheduli
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bv ;k xð Þ: ratio of transfer passengers who arrive at station v
heading to station k in scenario x, bv ;k xð Þ 2 V .

3.1.2. Passenger loading and train operations
For the sake of clarity, this section introduces a non-increasing

binary variable di,k(t) to denote the departure characteristics of
train i at station k and timestamp t. Specifically, di,k(t) = 0 indicates
that train i has departed from station k at timestamp t, and di,k(t) = 1
indicates otherwise. As shown in Fig. 5, train i departs from station
k at timestamp 2. It is clear that a series of ‘‘1” for di+1,k(t) – di,k(t)
indicates the departure headway between trains i and (i + 1) at sta-
tion k, during which passengers can board train (i + 1) according to
the robust passenger flow control strategy. By using this binary
variable, it is possible to formulate the problem of interest as an
optimization model with linear forms, as described in the follow-
ing discussion.

3.1.3. A two-stage SP model
A two-stage SP model based on the mean-CVaR criterion is for-

mulated in this section, in which the distribution of the uncertain
passenger demand is assumed to be completely known in advance
and is captured by multiple scenarios with deterministic probabil-
ity distribution. In the first stage, we propose a formulation that is
only relevant to train scheduling, shown in the equations below:

min f1 � T0 þ f2 � ð1� kÞE½Q d; n xð Þð Þ� þ k � CVaR½Qðd; nðxÞÞ�½ � ð1Þ

s:t: tai;k ¼ tdi;k�1 þ tri;k�1; 8i 2 I; k 2 Sf 1f g ð2Þ

tdi;k ¼ tai;k þ tdwi;k ; 8i 2 I; k 2 S ð3Þ

hi;k ¼ tdiþ1;k � tdi;k; 8i 2 Inf Ij jg; k 2 S ð4Þ

hi;k � hi;k � h
�
i;k; 8i 2 Inf Ij jg; k 2 S ð5Þ

hi;k ¼
X
t2T

diþ1;k tð Þ � di;k tð Þ� � � tunit; 8i 2 In Ij jf g; k 2 S ð6Þ

di;kðtÞ � di;kðt þ 1Þ; 8i 2 I; k 2 S; t; t þ 1 2 T ð7Þ

T0 ¼
X

i2If Ij jf g

X
k2S

hi;k þ
X
i2I

X
k2S

tdwi;k þ
X
i2I

X
k2Sf Sj jf g

tri;k ð8Þ

di;k tð Þ 2 0;1f g; 8i 2 I; k 2 S; t 2 T ð9Þ
where Q d; n xð Þð Þ is the random optimal value of the second-stage
model, d denotes the first-stage decision vector of train schedules,
n xð Þ represents the random input data of passenger flows, E is the
expected number of waiting passengers, k is the tradeoff coefficient
that reflects the decision-makers’ risk preference, f1 and f2 are two
ng variables at station k.
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cost coefficients, and CVaR denotes the conditional value-at-risk
(VaR) criterion, which is a popular risk measure to model the
decision-maker’s risk preference. Compared with the VaR criterion,
CVaR highlights the average level of excess losses that occur beyond
the VaR cutoff point in the distribution. Therefore, CVaR is superior
to VaR in reducing uncertainty risk, since more risk-averse decisions
can be obtained by adopting the CVaR criterion. This could be partic-
ularly helpful in preventing serious situations in which a large num-
ber of passengers congregate at an urban rail transit station.

The objective function in Eq. (1) aims to minimize the sum of
the operating time (i.e., T0), the expected number of waiting pas-
sengers, and the CVaR for making decisions. In particular, if k = 0,
the obtained solution will be the result of not taking the CVaR
for making decisions into consideration. It is clear that this objec-
tive function will minimize the operating time if f2 is set to zero. In
this case, this problem turns out to be a supply-side-oriented opti-
mization. However, when considering multi-scenario coupling,
only minimizing the operating time will inevitably increase the
risk of service unfulfillment. Thus, the CVaR criterion is employed
to handle the decision risk caused by uncertainty, and the number
of waiting passengers is the most common decision criterion in the
passenger flow control problem.

Given the section running time tri;k and the station dwell time tdwi;k ,
Eqs. (2) and (3) formulate the arrival and departure times for each
train. In particular, tai;1 is an input parameter that is fixed in advance.
Eq. (4) defines the departure headway between two consecutive
trains i and (i + 1) arriving at station k. Eq. (5) guarantees the
minimum and maximum safe departure headway. By imposing
Eq. (6), we can obtain the actual time with respect to the departure
headway. Eq. (7) ensures that the 0–1 decision variable di,k(t) is non-
increasing for train i at station k. Eq. (8) is employed to calculate the
total operating time for the focus line by summing up the headway,
station dwell time, and section running time of each train at all sta-
tions. Finally, the domain of the decision variable, di,k(t), is defined
by Eq. (9).

In the second stage, the corresponding robust passenger flow
control strategy is optimized, which is formulated as follows:

Q d; n xð Þð Þ ¼min
X
i2I

X
k2S

Pwaita;out
i;k xð Þ ð10Þ

s:t:X
t2T

Pcome;out
k t;xð Þþ

X
t2T

Pcome;tr
k t;xð Þ¼

X
i2I

Pina
i;k xð Þ; 8k2 S;x2W ð11Þ

Pwaita;out
i;k xð Þ ¼

P
t2T

di;k tð Þ � Pcome;out
k t;xð Þ; if i ¼ 1

P
t2T

di;k tð Þ � Pcome;out
k t;xð Þ �Pi�1

j¼1
Pina;out
j;k xð Þ; if i 2 Inf1g

8>><
>>: ; 8k 2 S; x 2W

ð12Þ

Pwait;tr
i;k xð Þ ¼

P
t2T

di;k tð Þ � Pcome;tr
k t;xð Þ; if i ¼ 1

P
t2T

di;k tð Þ � di�1;k tð Þ� � � Pcome;tr
k t;xð Þ; if i 2 Inf1g

8><
>: ; 8k 2 S; x 2W

ð13Þ

Pwaita;out
i;k xð Þ � 0; 8i 2 I; k 2 S; x 2W ð14Þ

Pwait;tr
i;k xð Þ � 0; 8i 2 I; k 2 S; x 2W ð15Þ

Pina;out
i;k xð Þ � Pwaita;out

i;k xð Þ; 8i 2 I; k 2 S; x 2W ð16Þ

Pina
i;k xð Þ ¼ Pina;out

i;k xð Þ þ Pwait;tr
i;k xð Þ; 8i 2 I; k 2 S;x 2W ð17Þ

0 � Pina;out
i;k xð Þ � Pinc;out

i;k xð Þ; 8i 2 I; k 2 S; x 2W ð18Þ
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Pinc;out
i;k xð Þ ¼ Pinc;out

i;k x0ð Þ; 8i 2 I; k 2 S; x;x0 2W ð19Þ
Pinc
i;k xð Þ ¼ Pinc;out

i;k xð Þ þ Pwait;tr
i;k xð Þ; 8i 2 I; k 2 S;x 2W ð20Þ
Pal
i;k xð Þ ¼

Xk�1
v¼1

Pinc;out
i;v xð Þ � dv;k xð Þ þ Pwait;tr

i;v xð Þ � bv;k xð Þ
� �

;

8i 2 I; k 2 S; x 2W

ð21Þ

Pon
i;k xð Þ ¼

Pinc
i;k xð Þ; if k ¼ 1

0; if k ¼ jSj;
Pon
i;k�1 xð Þ þ Pinc

i;k xð Þ � Pal
i;k xð Þ; if k 2 S f1; Sj jg

8><
>: 8i 2 I;x 2W

ð22Þ
Pon
i;k xð Þ � C; 8i 2 I; k 2 S; x 2W ð23Þ
In this stage, we need to formulate the relationship between the

train schedule and the robust passenger flow control strategy, by
establishing their coupling constraints. The objective function
Eq. (10) aims to minimize the total number of waiting passengers
for different scenarios. As we consider the direction from station 1
to station jSj as the operation direction, and thus station jSj is the
terminal station with no passenger demand, the number of waiting
people at this station is zero. By imposing Eq. (11), it is ensured
that all passenger demand should be satisfied over the considered
time horizon T. The number of passengers waiting for train i in the
station hall can be calculated by Eq. (12). Since all outside arrival
passengers need to queue in the station hall and wait for boarding
permission, the number of waiting passengers is the difference
between the cumulative number of outside arrival passengers
and the cumulative number of passengers being served. Eq. (13)
tracks the number of transfer passengers boarding train i at station
k. As the transfer passengers can directly reach the platform, these
passengers must have a high priority to get on trains. By using
Eqs. (12) and (13), passenger demand and train schedules can be
tightly connected in a series of unified formulations. Eqs. (14)
and (15) require the number of waiting passengers to be non-
negative because the number of passengers who are allowed to
get on any train i cannot be greater than the number of outside
arrival and transfer passengers, respectively.

Next, we analyze the dynamic passenger loading process, which
consists of two types of activities: boarding and alighting. Since
multiple stochastic scenarios are considered in this study, a robust

passenger flow control strategy, Pinc
i;k xð Þ, which is suitable for all

involved scenarios, would be generated. However, due to the diver-

sity of passenger demand, an actual control strategy, Pina
i;k xð Þ, also

exists in each respective scenario. Eq. (16) is used to restrict the
number of outside arrival passengers actually boarding train i,
which should not exceed the number of waiting passengers.
Through Eq. (17), the total number of passengers actually boarding
train i at station k can be calculated. Eq. (18) is imposed to ensure
that the actual number of boarding passengers is less than or equal
to that value under the robust passenger flow control strategy.
Eq. (19) ensures that the number of outside arrival passengers
allowed to board train i under the robust passenger flow control
strategy is equal for each scenario, which greatly improves the
chance of practical application in the real world. Eq. (20) makes it
possible to obtain the total number of passengers that are allowed
to board train i at station k under the robust passenger flow control
strategy. Specifically, at common stations, the boarding passengers
under the robust passenger flow control strategy only include out-
side arrival passengers, while the transfer passenger demand is also
required to be considered at transfer stations. Eq. (21) makes sure
that the number of alighting passengers under the robust passenger
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flow control strategy from train i at station k is equal to the number
of passengers heading to this station, who are in train i in front of
this station. Eq. (22) considers the dynamic variation of in-vehicle
passengers under the robust passenger flow control strategy when
train i leaves station k. More specifically, when train i arrives at its
start terminal (station 1) with empty vehicles, the number of in-
vehicle passengers will be equal to the number of boarding passen-
gers under the robust passenger flow control strategy. This value is
equal to 0 when train i leaves the terminal station because all pas-
sengers are required to get off the train. In comparison, at each
intermediate station, the number of in-vehicle passengers is closely
related to the total number of in-vehicle passengers at the previous
station, the number of alighting passengers at the current station,
and the number of boarding passengers at the current station.
Moreover, the number of in-vehicle passengers cannot exceed the
capacity of the trains, as expressed in Eq. (23).

If the discrete probability distribution of different scenarios can
be specified, we can formulate the expected number of waiting
passengers as a computationally tractable form, which can be
expressed as follows:

Ep Q d; n xð Þð Þ½ � ¼ pT � Q d; n xð Þð Þ ð24Þ

where pT ¼ px1
; px2

; :::; pxWj j

� �
, px � 0 is the probability of scenario

x such that
P
x2W

px ¼ 1, and Q d; n xð Þð Þ ¼ Q d; n x1ð Þð Þ;ð

Q d; n x2ð Þð Þ; :::;Q d; n xWj j
� �� �

. Similarly, the third part of the objec-
tive function, CVaR Q d; n xð Þð Þ½ �, can be transformed into the follow-
ing form:

CVaRa;p½Q d; n xð Þð Þ� ¼min
/2Rþ

/þ 1
1� a Ep max Q d; n xð Þð Þ � /;0f g½ �

� 	
ð25Þ

in which a denotes decision-makers’ risk preferences, and the value
of / represents the maximum loss of the function Q d; n xð Þð Þ at a
given value of risk preference a.

For clarity, an auxiliary variable t(x) is introduced here, and
Eq. (25) can be reformulated as follows:

min
/2Rþ

/þ 1
1� ap

Tt

s:t: Q d; n xð Þð Þ � e/ � t
t � 0

ð26Þ

where t ¼ t x1ð Þ; t x2ð Þ; :::; t xWj j
� �� �

, e is the unit vector.
According to the above analyses, the two-stage SP model can be

formally expressed as follows:

min f1 �T0þf2 � 1�kð Þ �pT �Q d;n xð Þð Þþk � /þ 1
1�ap

Tt

 �� 

s:t: Q d;n xð Þð Þ�e/� t; 8x2W
t�0
Eqs: 2ð Þ� 23ð Þ

ð27Þ

In practice, it is rather difficult to precisely obtain the probabil-
ity distribution of stochastic scenarios. In such a circumstance, the
probability distribution is assumed to be only partially known; in
this study, it belongs to an ambiguity set, which will be analyzed
in the following sections.

3.2. DRO model with uncertain probability

Based on the notations in the previous sections, we formally
propose the following DRO model in Section 3.2.1; next, in Sec-
tion 3.2.2, we specifically design a discrepancy-based ambiguity
set for our developed model. In Section 3.2.3, we further reformu-
late the DROmodel as an MILP model. Finally, we analyze the com-
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plexity in terms of the number of decision variables and key
constraints in Section 3.2.4.

3.2.1. DRO model
Given the uncertain probability of each stochastic scenario, a

DROmodel based on the worst-case mean-CVaR criterion is formu-
lated in this section, as shown below:

minf1 �T0þ f2 �sup
p2P

1�kð Þ �Ep Q d;n xð Þð Þ½ �þk �CVaRa;p Q d;n xð Þð Þ½ �� �
s:t: Eqs: 2ð Þ� 26ð Þ

ð28Þ

in which we use sup
p2P

�f g to denote the worst-case evaluation over all

possible distributions, and P represents an ambiguity set character-
ized by the available partial distributional information.

Below, we discuss the equivalent formulations for the DRO
model. First, the objective function in model (Eq. (28)) can be
transformed into

min f1 � T0 þ f2�

sup
p2P

min
/2Rþ

1� kð Þ � Ep Q d;n xð Þð Þ½ � þ k � /þ 1
1� aEp t½ �


 �� 	 ! ð29Þ

According to the strong dual property of Q d; n xð Þð Þ, we can
change the order of the operators sup

p2P
min
/2Rþ

�f g, leading to the fol-

lowing results:

sup
p2P

min
/2Rþ

1� kð Þ � Ep Q d; n xð Þð Þ½ � þ k � /þ 1
1� a Ep t½ �


 �� 	

¼min
/2Rþ

sup
p2P

1� kð Þ � Ep Q d; n xð Þð Þ½ � þ k � /þ 1
1� aEp t½ �


 �� 	

¼min
/2Rþ

k/þ 1� kð Þ �max
p2P

Ep Q d; n xð Þð Þ½ � þ k
1� a max

p2P
Ep t½ �

ð30Þ

Then, the proposed two-stage DRO model (Eq. (28)) (i.e., the
DRO model) can be equivalently formulated as follows:

min f1 � T0 þ f2 � min
/2Rþ

k/þ 1� kð Þ �max
p2P

Ep Q d; n xð Þð Þ½ � þ k
1� a max

p2P
Ep t½ �

� 	
s:t: Eqs: 2ð Þ � 23ð Þ

ð31Þ
Here, the computation processes of max

p2P
Ep Q d; n xð Þð Þ½ � and

max
p2P

Ep t½ � are dependent on the property of the ambiguity sets.

Moreover, the maximum expected number of waiting passen-
gers, that is, max

p2P
Ep Q d; n xð Þð Þ½ �, can be equivalently represented by

max
p2P

Ep Q d; n xð Þð Þ½ � ¼max
p2P

pT � Q d; n xð Þð Þ ð32Þ

Likewise, the CVaR in the objective function of model (Eq. (28)),
that is, max

p2P
CVaRa;p Q d; n xð Þð Þ½ �, is equivalent to

min
/2Rþ

/þ 1
1� a max

p2P
pTt

s:t: Q d; n xð Þð Þ � e/ � t
t � 0

ð33Þ

Note that the DRO model (Eq. (28)) is a semidefinite program-
ming, which is computationally intractable for general ambiguity
sets. Hence, to solve it directly using a commercial solver (e.g.,
CPLEX) within an acceptable computation time, we can transform
the DRO model (Eq. (28)) into its computationally tractable form.
In the next section, a special ambiguity set is designed to charac-
terize the distribution uncertainty, and the corresponding compu-
tationally tractable forms of the DRO model (Eq. (28)) are deduced.



Table 1
Numbers of decision variables and constraints in the DRO model.

Variables or constraints Total number

Decision variables tai;k; t
d
i;k

2 � Ij j � Sj jð Þ
Decision variables di;k tð Þ Ij j � Sj j � Tj j
Decision variables Pina;out

i;k xð Þ; Pinc;out
i;k xð Þ 2 � Ij j � Sj j � Wj jð Þ

Decision variables l;l0 2
Decision variables g xð Þ; c xð Þ;g0 xð Þ; c0 xð Þ 4 � Wj j
Train timetable Eq. (2) Ij j � Sj j � 1ð Þ
Train timetable Eq. (3) Ij j � Sj j
Train timetable Eqs. (4)–(6) 3 � Ij j � 1ð Þ � Sj j
Train timetable Eq. (7) Ij j � Sj j � Tj j � 1ð Þ
Train timetable Eq. (8) 1
Train timetable Eq. (9) Ij j � Sj j � Tj j
Robust passenger flow control Eq. (11) Sj j � Wj j
Robust passenger flow control Eqs. (12)–(23) 12 � Ij j � Sj j � Wj j
Remaining constraints in the model Eq. (35) 8 � Wj j
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3.2.2. Ambiguity set
In this study, uncertainty is modeled via a series of stochastic

scenarios, and the corresponding probability distributions are
characterized by a discrepancy-based ambiguity set [49], that is,
P, which is defined as follows:

P ¼ p ¼ p0 þ 1jeT1 ¼ 0; k 1 k1 � W
� � ð34Þ
To be specific, p0 is a vector representing the nominal distribu-

tion of the discrete probability, 1 denotes the fluctuation vector,
and W is a real value between 0 and 1. Note that the condition
eT1 = 0 is formulated to ensure that the vector p meets the require-
ments eT(p0 + 1) = 1. That is, the discrepancy-based ambiguity set
describes the deviation from a reference (often empirical) distribu-
tion. The reasons why we use this ambiguity set are threefold:
① This set is simple and practical. The former part, p0, can be
obtained from the data of different dates in practical operations,
which is easy to realize in engineering. ② This set is convenient
for transformation into a computationally tractable form by apply-
ing the related theoretical analysis. ③ This set often possesses
asymptotic properties [50].

3.2.3. Deterministic equivalent formulation
Under the designed ambiguity set, the deterministic equivalent

formulation can be obtained by invoking the theoretical results of
Ref. [49], which are shown as follows.

Theorem 1. Under the discrepancy-based ambiguity set P, the
equivalent form of the DRO model (Eq. (28)) can be expressed as
follows:

min f1 �T0þ f2 � k/þ 1�kð Þ � pT
0Q d;n xð Þð ÞþWTgþWTc

� �þ�
k

1�a pT
0tþWTg0 þWTc0

� ��
s:t: el�gþc¼Q d;n xð Þð Þ

el0 �g0 þc0 ¼ t
Q d;n xð Þð Þ�e/� t
t�0
g�0; c�0; g0 �0; c0 � 0
Eqs: 2ð Þ� 23ð Þ

ð35Þ

where l;g;c;l0;g0;c0 2 R� RWj j � RWj j � R� RWj j � RWj j are auxiliary
variables or vectors, and W = eW.

Proof. Under the discrepancy-based ambiguity set P, Eq. (32)
can be transformed into the following equivalent form:

max
p2P

pTQ d; n xð Þð Þ ¼ pT
0Q d; n xð Þð Þþ

max
1

1TQ d; n xð Þð Þj1Te ¼ 0; k 1 k1 � W
� � ð36Þ

where k 1 k1 ¼max
x2W

1xj j.
With the strong duality theory of linear programming, the

dual form of Eq. (32) can be formulated as the following MILP
model:

min
l;g;c

pT
0Q d; n xð Þð Þ þ WTg þ WTc

s:t: el� gþ c ¼ Q d; n xð Þð Þ
g � 0; c � 0

ð37Þ

Likewise, the dual programming of Eq. (33) is developed as the
following linear programming model:

min
l0 ;g0 ;c0

/þ 1
1� a pT

0t þ WTg0 þ WTc0
� �

s:t: el0 � g0 þ c0 ¼ t

Q d; n xð Þð Þ � e/ � t

t � 0

g0 � 0; c0 � 0

ð38Þ
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Combining models (Eqs. (37) and (38)), under the
discrepancy-based ambiguity set P ¼ p ¼ p0 þ 1jeT1 ¼ 0;

�
k 1 k1 � Wg, the DRO model (Eq. (28)) is equivalent to the follow-
ing MILP model:

min f1 � T0 þ f2 � 1� kð Þ � pT
0Q d; n xð Þð Þ þWTgþWTc

� �þ�
k � /þ 1

1� a pT
0tþWTg0 þWTc0

� �� 	
s:t: el� gþ c ¼ Q d; n xð Þð Þ

el0 � g0 þ c0 ¼ t
Q d; n xð Þð Þ � e/ � t
g0 � 0;c0 � 0
Eqs: 2ð Þ � 23ð Þ

ð39Þ

By regrouping the terms, model (Eq. (39)) can be represented as
model (Eq. (35)). The proof of Theorem 1 is thus complete.

Remark 2: In the case of W = 0, the DRO model (Eq. (35)) is
equivalent to the two-stage SP model (Eq. (27)).

3.2.4. Complexity analyses
The decision variables in the proposed DROmodel (Eq. (35)) can

be categorized into three categories: The first category comprises
the variables associated with the train schedule—that is,
tai;k; t

d
i;k;hi;k; di;k tð Þ—and the second is related to the robust passenger

flow control strategy—that is, Pina;out
i;k xð Þ and Pinc;out

i;k xð Þ. The last
category comprises the auxiliary variables, such as l, g(x), c(x),
l0, g0(x), and c0(x). Obviously, the scales of the abovementioned
decision variables are fully dependent on the number of stations,
trains, timestamps, and scenarios. We are particularly interested
in analyzing the complexity of the proposed model (Eq. (35)) in
detail, as shown in Table 1. To illustrate this problem more clearly,
an instance with 40 in-service trains, 20 stations, 180 timestamps,
and three scenarios is provided in order to identify the total num-
ber of decision variables and constraints. In this case, there are over
150 000 decision variables and 319 980 constraints, which indi-
cates that the proposed model (Eq. (35)) is a fairly complex
problem.

4. Solution approaches

Based on the analyses above, if the scale of the problem is small,
the proposed model (Eq. (35)) can be solved by means of MILP sol-
vers (e.g., CPLEX) in a short time, due to the linearity of the model.
However, it is difficult to solve real-world large-scale instances.
Thus, we need to design heuristic algorithms to search for approx-
imate optimal solutions within an acceptable computation time, in
order to meet the needs of real-world applications. Therefore, an
effective hybrid algorithm combining an LS with an MILP solver
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will be developed in this section to find high-quality solutions. The
framework and the detailed techniques of our hybrid algorithm are
introduced in the following discussion.
4.1. Algorithm framework

An algorithm framework is developed to solve the proposed
DRO model, following the procedure shown in Fig. 6. In brief, the
original problem (Eq. (35)) is decomposed into two subproblems.
The first subproblem (denoted by MP) determines the decision
variables related to the train schedule for the focus line, while
the second subproblem (denoted by SCP) optimizes the control
variables for uncertain passenger demand over all the involved
scenarios. An LS is designed to search for feasible train schedules.
Then, each feasible schedule is taken as the input for subproblem
SCP to produce the corresponding robust passenger flow control
strategy, which is used to evaluate the generated schedule in sub-
problem MP. We observe that subproblem SCP is an MILP model
that can theoretically be solved to optimality. However, similar
to the problem in Ref. [11], the scenarios in subproblem SCP are
tightly coupled across different scenarios, making it difficult for
the problem to be solved directly by MILP solvers. Therefore, we
decompose it here into a series of single-scenario-based subprob-
lems SSP in order to speed up the computation, in which the train
schedule is the input for subproblem SCP and SSP. As each sub-
problem SSP is an MILP problem and does not involve the coupling
relationship among different scenarios, it can be efficiently solved
using a suitable MILP solver.
Fig. 6. The procedure for so
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Next, the minimum value of the optimal solutions to subprob-

lems SSP, denoted by Pinc;out;SSP
i;k , is treated as the input to subprob-

lem SCP. That is, we first let

Pinc;out;SSP
i;k  min Pina;out

i;k x1ð Þ; Pina;out
i;k x2ð Þ; :::; Pina;out

i;k xWj j
� �n o

ð40Þ

and then add the following equation to subproblem SCP.

Pinc;out
i;k xð Þ � Pinc;out;SSP

i;k ; 8i 2 I; k 2 S; x 2W ð41Þ

The solution space of the decision variable Pinc;out
i;k xð Þ, which is

the key variable that couples the various scenarios together, is
greatly reduced by Eq. (41); thus, Eq. (41) acts as a so-called ‘‘valid
inequality” to the problem of interest. The proposed valid inequal-
ity is then taken as the input for subproblem SCP.

4.2. Local search algorithm

The LS is an iterative searching procedure that starts from an
initial solution and attempts to find a better solution. It should
be noted that, due to the existence of time-related binary variable
di,k(t), the number of decision variables in subproblem MP is huge.
For simplicity, this paper assumes that the running time over each
section and the dwell time at each station are identical for different
in-service trains. To guarantee the headway in operations, it is
therefore sufficient to ensure that the departure headway can be
kept at the start terminal station. In addition, since the arrival time
for the first train is known in advance, the decision variable
mentioned above can be converted into the headway between
lving the DRO model.



Algorithm 1. The checking procedure for solution feasibility.

Input: A solution that needs to be checked
Output: The feasibility of the solution
Step 1: According to Eqs. (2)–(5) and the input solution,

calculate the arrival and departure times for all in-service
trains at each station, then go to Step 2;

Step 2: If tdIj j; Sj j 2 T , go to Step 3; otherwise, the solution is
infeasible, stop;

Step 3: The solution is feasible, stop.
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two consecutive trains arriving at the start terminal station. Thus,
this paper takes a Ij j � 1ð Þ-dimensional headway vector to repre-
sent a solution for the train scheduling problem MP. To be specific,
we adopt a problem-based solution representation, which consists
of only one type of decision variable—that is, the headway vector
H ¼ h1;1;h2;1; :::;hi;1; :::;h Ij j�1;1

� �
—in which hi,1 denotes the headway

between trains i and (i + 1) at the start terminal station. In this way,
the number of core decision variables decreases from Ij j � Sj j � Tj j to
( Ij j � 1), which significantly reduces the complexity of subproblem
MP.

To solve subproblem MP, an initial solution should first be gen-
erated. Next, the approximate optimal solution is searched in a
greedy way. During the searching process, only the best solution
in the neighborhood space can be accepted as a seed solution.
Finally, the algorithm is terminated when the current best solution
cannot be updated within a given maximum number of iterations,
or when the number of search iterations reaches a predetermined
threshold. Then, the best solution that has been encountered is
outputted as a near-optimal solution. For the sake of description,
we introduce some important notations in the algorithm: n
denotes the index of iteration, nmax denotes the threshold of the
number of iterations, M denotes the maximum number of itera-
tions for which the encountered best solution is not updated, Xn

denotes the best solution at iteration n, X0 denotes the initial solu-
tion, m denotes the number of candidate solutions at each itera-
tion, N(Xn–1) denotes the neighborhood at iteration n, X* denotes
the current best solution, f* denotes the current best objective
value, and fn denotes the best objective value at iteration n.
4.2.1. Initial solution generation
In this study, the initial solution is generated randomly as the

seed solution for the first iteration. That is, we first generate a total
of ( Ij j � 1) headway variables randomly within a given range h; �h

� �
,

and thus an initial solution X0 can be produced, whose feasibility
can be tested by Algorithm 1, shown below. If this solution is fea-
sible, it will be set as the initial solution; otherwise, we need to
regenerate the headway vector until a feasible solution is found.
In the searching process, the initial solution will be treated as the
input data for subproblem SCP, and the corresponding objective
value is used as the evaluation of this train schedule.
4.2.2. Neighborhood generation
In order to generate the neighborhood for each iteration, a total

number m of candidate solutions must be generated. For example,
Algorithm 2. The procedure of the LS + MILP solver algorithm.

Step 1: Initialize the iteration index n ¼ 1 and generate a feasible in

solution; let Xn�1 ¼ X0; f 	 ¼ f 0 and set y ¼ 0, then go to Step 2;

Step 2: Generate neighborhood N Xn�1
� �

by the method used in neig

Step 3: For each candidate solution Xn;c , calculate the decision variab
input the train schedule to subproblems SSP of the different scena

then the passenger flow control strategy Pina;out
i;k xð Þ for each scena

Step 4: Let Pinc;out;SSP
i;k  min Pina;out

i;k x1ð Þ; Pina;out
i;k x2ð Þ; :::; Pina;out

i;k xWj j
� �n o

subproblem SCP; solve it via a suitable MILP solver. Then go to St
Step 5: Get the current best solution Xn and its corresponding objec
Step 6: Update the best solution. If f n < f 	, let f 	 ¼ f n, X	 ¼ Xn, then
Step 7: Check the termination condition. If n < nmax and y < M, then

solution X	 and the best objective value f 	, then stop.
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the set of candidate solutions at iteration n can be denoted by

N Xn�1
� �

¼ Xn;1;Xn;2; :::;Xn;c; :::;Xn;m
n o

, where Xn,c represents one of

the candidate solutions and c denotes the index of candidate solu-
tions. More specifically, we can generate the candidate solutions by
adding or subtracting a tiny integer vector on Xn–1, according to the
following calculation: Xn;c ¼ Xn�1 þ Dn where the value of Dn is ran-
domly generated.

It is worth mentioning that we need to test the feasibility of
each newly generated neighbor solution by means of Algorithm
1. If the solution is feasible, we then insert it into the neighborhood
of the current seed solution; otherwise, a new solution must be
regenerated until its feasibility is guaranteed.
4.2.3. Algorithm procedure and termination criteria
The procedure of the LS + MILP solver algorithm is reported

below as Algorithm 2, which is designed based on the aforemen-
tioned specific techniques. Two criteria are employed to terminate
the searching process: ① If the current iteration n is greater than a
pre-given threshold nmax, the search process should be terminated.
② If the objective value of the currently encountered best solution
is not updated within M iterations, the LS is terminated, and the
current best solution can be treated as the near-optimal solution.
We use y to denote the number of iterations that the current best
solution is not updated.
5. Numerical experiments

In this section, a series of numerical experiments based on real-
world operation data from the Beijing rail transit system are con-
ducted to demonstrate the effectiveness and performance of our
itial solution X0. Calculate the objective value f 0 of the initial

hborhood generation, then go to Step 3;

les associated with train scheduling problem MP, i.e., tai;k and tdi;k;
rios, respectively, which can be solved by a suitable MILP solver;

rio x 2W , can be obtained, so go to Step 4;

,8i 2 I; k 2 S; input the train schedule and Eq. (41) to the

ep 5;
tive value f n;
set y ¼ 0; otherwise, set y ¼ yþ 1, and go to Step 7;
set n ¼ nþ 1, and go to Step 2; otherwise, output the best
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proposed models and algorithm. More specifically, the stochastic
and dynamic passenger demand is obtained by processing histori-
cal AFC data, and the running time of each section is deduced from
the practical timetable. To solve this large-scale problem within an
acceptable computation time, we use the proposed algorithm
framework to generate near-optimal solutions for the models.
The algorithm is coded by MATLAB 2014a with CPLEX 12.6 on a
Windows 10 personal computer with Intel Core i5-10500 central
processing unit (CPU) and 16G random-access memory (RAM).

5.1. Data description

As shown in Fig. 7, this set of experiments consider Line 15 of
the Beijing rail transit system (i.e., the blue line), which has a total
length of 41.4 km and 20 stations. This line connects a residential
zone in a suburban town with the downtown working area, and
numerous commuters need to ride this line on weekdays, resulting
in over-saturation in the morning peak hours in the downtown
direction. We only consider the direction from station Fengbo
(FB) in the suburbs to station Qinghuadongluxikou (QH) down-
town as the experiment environment, for which the station dwell
time and the section running time are taken from real operation
data, as shown in Table S1 in Appendix A. We select the morning
peak hours from 7:00 to 10:00 as the considered time horizon.
To characterize the dynamics of the passenger demand, the
discretized time granularity is set as tunit = 60 s in this series of
experiments, and a total of 180 timestamps are involved (i.e.,
T ¼ 1;2; :::;180f g), so as to balance the real-world operation condi-
tions and the computation efficiency. To depict the uncertainty of
passenger demand, three typical stochastic scenarios with
unknown probabilities are taken into account, for which
the nominal probability distribution is predetermined to be
pT
0 ¼ 0:20;0:30;0:50ð Þ. To determine the ambiguity set, the value

of the adjustable parameterW is set as 0.02, 0.06, and 0.10, respec-
tively; the risk-aversion parameter a is chosen from the set
0:95;0:50;0:05f g; and the tradeoff coefficient k is chosen from
the set 0:10;0:50; 0:90f g. For illustrative clarity, the dynamic out-
side arrival passenger demand in scenario 1 is displayed in Fig. 8.
In addition, it should be noted that there are four transfer stations
on this focus line: station Wangjing (WJ) connects Lines 15 and 14,
station Wangjing West (WJX) connects Lines 15 and 13, station
Datunlu East (DTLD) connects Lines 15 and 5, and station Olympic
Green (ALPK) connects Lines 15 and 8. These four stations attract
many transfer passengers in addition to the outside arrival
Fig. 7. Illustration of Line 15 of the Beijing rail transit system. QH: Qinghuadongluxikou;
East; GZH: Guanzhuang; WJX: Wangjing West; WJ: Wangjing; WJD: Wangjing East; C
HSY: Houshayu; NFX: Nanfaxin; SM: Shimen; SY: Shunyi; FB: Fengbo.
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demand. In the data preparation stage, the passenger ratios for
the outside arrival and transfer passengers at different destinations
are given in Tables S2 and S3 in Appendix A, respectively. In the
algorithm, the threshold of the number of iterations nmax is set as
100. The other relevant parameters are listed in Table S4 in Appen-
dix A, where C is set as the capacity using the 120% full-loading rate
of each in-service train.

Using the above parameter settings, a series of numerical
experiments are conducted to demonstrate the performance of
our proposed approaches. The first set of experiments are carried
out to evaluate the validity of the proposed DRO model in
Section 5.2. The experiments in Section 5.3 aim to compare the
performance of the SP model (Eq. (27)) with that of the DRO model
(Eq. (35)). In addition, the experiments in Section 5.4 are used to
evaluate the computation results of the classic RO model
(Eq. (S2) in Appendix A) and the DRO model (Eq. (35)). Finally,
Section 5.5 reports the impact of some key coefficients in the final
set of experiments.

5.2. Computation results of the DRO model

To test the proposed DRO model (Eq. (35)), we consider the
computation results by using different combinations of parameters
a,W, and k. It should be noted that the cost coefficients f1 and f2 in
the objective function are used to make tradeoffs between opera-
tions and services. Here, to make the comparison of optimization
results more obvious and to consider the difference in the order
of magnitude for two objectives, we set f1 as 100 000 and f2 as 1
in this set of experiments, and the detailed sensitivity analyses
related to these two coefficients are shown in Section 5.5.

The computation results are displayed in Table 2. For clarity,
Fig. 9 presents the optimal objectives obtained by the DRO model
with different combinations of parameters. Typically, with the
increase of parameter W, the optimal objective of the model
(Eq. (35)) gradually worsens. Furthermore, the tradeoff coefficient
k and the optimal objectives have the same monotonicity, and the
optimal objective increases when the risk-aversion parameter a
increases. These phenomena are consistent with the theoretical
results. More specifically, the parameter a represents the level of
risk aversion; that is, a = 1 represents extreme risk aversion. There-
fore, a larger parameter a leads to a more conservative decision
plan, which corresponds to a larger objective value. In the ambigu-
ity set, W represents the disturbance range of the uncertain prob-
ability. As the parameter W increases, the distribution of
LDK: Liudaokou; BST: Beishatan; ALPK: Olympic Green; ALL: Anlilu; DTLD: Datunlu
GZ: Cuigezhuang; MQY: Maquanying; SH: Sunhe; GZ: Guozhan; HLK: Hualikan;



Fig. 8. Illustration of the outside arrival passenger demand of Line 15.
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probability information to the decision-maker becomes increas-
ingly coarse, resulting in much worse outcomes for the decision.

For clarity, Fig. 10 displays an optimized train schedule and the
number of in-vehicle passengers in each train over each section,
where the red lines represent the full-load sections. Clearly, most
departure headway during the 7:00–7:42 time period is relatively
small, and the full-load situations are all associated with the trains
that depart from the start terminal station during this time period,
which demonstrates that the train schedule and passenger demand
are closely coupled. Next, we are particularly interested in
investigating how the objective value converges to the optimal
value in the searching process of our proposed algorithm. Since
the convergence tendency of the objective values is similar for
different instances, we only present the results of the instance with
a = 0.95, k = 0.10, andW = 0.02 for illustrative convenience here, as
Table 2
Computation results of the DRO model.

Risk-aversion parameter a Tradeoff coefficient k Adjustable parameter W

0.02

Objective value CPU tim

0.95 0.1 17767833.3464 1336.64
0.5 17771866.8497 1482.18
0.9 17775309.9180 1352.34

0.05 0.1 17766970.0804 1471.17
0.5 17767989.3749 1580.82
0.9 17768991.0045 1476.09

Fig. 9. Computation results of the DRO
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shown in Fig. 11. It follows from this figure that the best objective
value can be iteratively reduced by the proposed LS + MILP solver
algorithm, where the solution quality is gradually improved with a
fast convergent speed. More specifically, the best objective value
decreases drastically in the first several iterations, but is not
updated any longer in the last few iterations. Thus, we conclude
that the LS + MILP solver algorithm exhibits a good performance
in solving the developed DRO model (Eq. (35)) in terms of solution
quality, while requiring a reasonable computation time.
Furthermore, to clarify the impact of the tradeoff coefficient, k, in
the following context, we will discuss the variations of the
expected number of waiting passengers and CVaR when parameter
k changes. We summarize this section with the following
observation.

Observation 1. (The necessity of considering different combina-
tions of a, k, and W.) It follows from the computation results that
the combination of parameters a, k, and W has significant effects
on the DRO model. If the decision-makers prefer a lower risk deci-
sion, it is better to set a bigger a and k, and to know the probability
distribution as precisely as possible (in which case, W should be
small). That is, the level of risk aversion and the disturbance range
of uncertain probability are significant factors in the process of
optimizing the train schedules and passenger flow control
strategies.

Next, we further consider the variation of the expected number
of waiting passengers and CVaR with respect to different values of
parameter k. For comparison, we set parameter a as 0.50 and setW
as 0.02 and 0.06, respectively. Fig. 12 depicts the variation trend of
the expected number of waiting passengers and CVaR with differ-
ent values of k. Clearly, for two instances in this figure, the CVaR
yields a downward linear increasing tendency in the optimal
objective if we increase the coefficient k, while the expected value
shows the opposite trend when a and W are fixed. In addition,
when k is set as 0.5, the risk preference of the decision-makers is
neutral. Thus, the expected value and CVaR are very close in this
0.06 0.10

e (s) Objective value CPU time (s) Objective value CPU time (s)

5 17769921.0128 1181.031 17771819.6438 1657.806
1 17772870.7818 1234.462 17773845.5056 1615.507
1 17775484.8424 1251.802 17775659.4888 1646.706
3 17769336.2210 1177.698 17771531.4178 1472.486
0 17770350.0112 1574.838 17772497.5873 1338.949
7 17771316.9863 1169.674 17773422.7690 1461.012

model. (a) a = 0.95; (b) a = 0.05.



Fig. 10. Train schedule and in-vehicle passengers for the instance when a = 0.95, k = 0.10, and W = 0.02.

Fig. 11. Convergence tendency of the best objective in the LS + MILP solver
algorithm.
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case, as shown in Fig. 12. These findings are summarized as the fol-
lowing observation.

Observation 2. (The necessity of considering k depends on the
risk attitude of decision-makers.) The numerical experiments in
this section indicate the importance of the tradeoff coefficient k
in the proposed model, as it provides a support for generating a
balanced solution that is customized to the actual needs of the
decision-makers. The tradeoff coefficient k provides decision-
makers with the opportunity to obtain a personalized and reliable
plan. Decision-makers can choose the appropriate values of k based
on their subjective preferences and risk attitudes.
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5.3. Comparison between the SP model and the DRO model

In this section, numerical experiments are conducted by solving
the two-stage SP model (Eq. (27)). Since the probability distribu-
tion is known exactly in this model, the disturbance range of the
uncertain probabilities—that is,W—is equal to 0. Therefore, we dis-
play the computation results with different combinations of a and
k in Fig. 13. As shown, the optimal objective shows an increasing
tendency with an increase in the risk-aversion parameter a if the
tradeoff coefficient k is fixed. In addition, when the level of risk
aversion is fixed, the optimal objective follows the same trend with
respect to the tradeoff coefficient k.

It should be noted that, since parameter W is set as 0 in the SP
model (Eq. (27)), the objective values should theoretically be less
than those of the DRO model (Eq. (35)), with the same parameter
settings. Below, we further analyze their differences between the
SP model and the DRO model, by conducting a series of compara-
tive experiments. For clarity, the following formula is used to
quantify the differences (denoted as Price) in the optimal objective
values between the SP model (termed SP*) and the DRO model
(denoted as DRO*):
Price ¼ DRO	 � SP	ð Þ
SP	

� 100%

Table 3 provides a detailed performance comparison for various
combinations of a, k, and W.

From the computation results in Table 3, it can be observed that
the DRO model always yields a slightly larger objective value than
the SP model, since the values of Price are all positive. This demon-



Fig. 12. Expected number of waiting passengers and CVaR with respect to k. (a) a = 0.50, W = 0.02; (b) a = 0.50, W = 0.06.

Fig. 13. Computation results of the SP model.
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strates that, in an urban rail transit system, the more precise the
information of probability distribution we know (i.e., the smaller
W is), the better the passenger flow control strategy and train
schedule are. In this set of experiments, it can be seen that the
maximum Price calculated is not greater than 0.051640%, which
corresponds to a very small extra cost in the process of handling
distribution uncertainty. Hence, in terms of solution stability, our
proposed DRO model is superior to the SP model.

Observation 3. (The superiority of the DRO model in
comparison with the SP model.) To summarize, we conclude that
Table 3
The obtained Price in the numerical experiments.

Risk-aversion parameter a Tradeoff coefficient k

0.95 0.1
0.5
0.9

0.05 0.1
0.5
0.9
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the DRO model (Eq. (35)) utilizes limited distribution information
to hedge against the uncertainty more robustly than the SP model
(Eq. (27)), while requiring a relatively small Price.

5.4. Comparison between the classic RO model and the DRO model

In this section, we compare the performance of the classic RO
model in Eq. (S2) and the DRO model (Eq. (35)). Since the risk mea-
sure, CVaR, is not involved in the classic robust method, we set
k = 0 in the following experiments. For concise descriptions, the
classic RO model (Eq. (S2)) is referred to as the RO model. Fig. 14
provides a comparison of the results when adopting different W
and a in the models. As shown in Fig. 14, regardless of what W
is, the approximate optimal objective of the DRO model is smaller
than that of the RO model. The reason for the poor optimization
result of the RO model might be that the RO model is designed
to optimize the worst-case scenario rather than the expected
value, which leads to over-conservative solutions. It should be
noted that W represents the disturbance range of the uncertain
probability. We thus conclude that the uncertainty can be handled
well by our proposed DRO model, regardless of whether it is strong
or weak. In addition, we set different values of a to carry out exper-
iments, and the results show that the objective values remain the
same when parameter a varies. This finding is consistent with
the following analyses: Since a is set as zero in these experiments,
the coefficient k/(1 – a) in the objective function is 0 for any value
of a, so the corresponding part vanishes.

Observation 4. (The superiority of the DRO model in
comparison with the RO model.) From the computational results,
we can derive the following observations: ① Our proposed DRO
model outperforms the RO model in terms of solution quality
Adjustable parameter W

0.02 0.06 0.10

0.006055% 0.017805% 0.028491%
0.002938% 0.008588% 0.014072%
0.000492% 0.001476% 0.002459%
0.025960% 0.039281% 0.051640%
0.012523% 0.025810% 0.037899%
0.006915% 0.020006% 0.031858%



Fig. 15. The prices of distributional robustness under different values of f2/f1.

Fig. 14. Comparison of results from the RO model and the DRO model.
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and stability. ② When a decision-maker is extremely risk averse,
he/she can employ the classic RO method to optimize the worst-
case scenario, so as to obtain a conservative solution; otherwise,
we recommend the DRO approach with an appropriate combina-
tion of parameters, which can be selected flexibly according to
the decision-makers’ preference and actual requirements.

5.5. Sensitivity analyses with respect to f1 and f2

In this section, we perform sensitivity analyses with respect to
the variation of two parameters, f1 and f2. These two parameters
are used in the objective function of the DRO model (Eq. (35)) to
balance the operating time (denoted as Obj. 1) related to the inter-
ests of the operators and the target relating to passengers (denoted
as Obj. 2). To be specific, if the value of f2/f1 goes to1, then Obj. 2
takes precedence over Obj. 1, which implies that more weight is
given to passenger interests; otherwise, the proposed model
mainly focuses on the optimization of the train schedule for oper-
ators. In particular, we aim to discuss how different values of f2/f1,
leading to different train schedules, can affect the dynamic passen-
ger control process. Table 4 reports the results obtained by varying
f1, f2, and f2/f1. We list the objective values in the fifth column, and
list the values of Obj. 1 and Obj. 2 in the sixth and seventh columns,
respectively. As shown, when the value of f2/f1 is between 0.01 and
1, the value of Obj. 2 remains constant until f2/f1 drops to 0.00001.
The experiment with f1 = 1 and f2 = 0 does not consider the inter-
ests of the passengers, but only optimizes the train schedules. We
note that the value of Obj. 2 increases drastically in this case. This
computation result indicates the importance of collaboratively
optimizing the robust passenger flow control strategies and the
train schedule in order to ease congestion. In addition, in order
to analyze the additional costs caused by the ambiguous distribu-
Table 4
Sensitivity analyses of f1 and f2 with a = 0.50, k = 0.10, and W = 0.02.

Instance f1 f2 f2/f1 Obje

Case 1 0 1.00000 1 1669
Case 2 0.00001 1.00000 100 000 1669
Case 3 0.00010 1.00000 10 000 1669
Case 4 0.00100 1.00000 1000 1669
Case 5 0.01000 1.00000 100 1669
Case 6 1.00000 1.00000 1 1671
Case 7 1.00000 0.01000 0.01 18
Case 8 1.00000 0.00001 0.00001 1
Case 9 1.00000 0 0 1
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tion, we present the Price of each instance in Fig. 15. Clearly,
although the value of Price varies considerably with respect to dif-
ferent f1 and f2, it is still acceptable, since it does not exceed 4.00%
at most. Moreover, for instances f1 = 1 and f2 = 0, the Price turns
out to be 0, since the objective function does not take Obj. 2 into
account.

Observation 5. (Sensitivity to parameters f1 and f2.) Consider-
ing both Obj. 1 and Obj. 2, especially regarding the results of the
last experiment, it can be seen that only optimizing the train
schedule is insufficient to achieve the system optimum on the con-
sidered oversaturated line. To improve the service quality as much
as possible, the decision-makers of the urban rail transit system
must pay more attention to the collaborative optimization of
robust passenger flow control and train scheduling approaches,
and moreover, they must carefully determine the value of f2/f1
based on the practical operation needs.

6. Conclusions

To reduce over-saturation of the urban rail transit line, this
paper investigated the integrated problem of collaboratively opti-
mizing passenger flow control strategies and train schedules, for
a situation in which the passenger demand is uncertain and is
characterized by a series of stochastic scenarios with partially
known probability distribution. A multi-scenario two-stage DRO
model was formulated to generate near-optimal strategies for the
passenger flow control and train scheduling under distribution
ambiguity. The mean-CVaR criterion was adopted in the objective
function, and the goal was to minimize the sum of the operating
time, the expected number of waiting passengers, and the CVaR
of congestion, the coefficients of which could be adjusted flexibly
according to the practical situation in order to achieve the
most suitable balance. Since the proposed model is usually
computationally intractable, a discrepancy-based ambiguity set
was constructed by using partial information on the uncertain
probability distribution of the stochastic scenarios. Computation-
ally tractable forms of the proposed model were also deduced. To
ctive value Obj. 1 Obj. 2 CPU time (s)

70.080 176.000 166970.080 1563.642
70.082 176.000 166970.080 1169.072
70.098 176.000 166970.080 1355.917
70.256 176.000 166970.080 1376.100
71.840 176.000 166970.080 1172.356
46.080 176.000 166970.080 1401.422
45.701 176.000 166970.080 1181.674
77.677 176.000 167697.539 1721.266
76.000 176.000 352150.961 1099.210
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obtain high-quality solutions for large-scale problems within an
acceptable computing time, we developed a hybrid algorithm by
combining an LS with a suitable MILP solver. To verify the perfor-
mance of the proposed approaches, a series of numerical experi-
ments were conducted using actual operation data from a Beijing
rail transit line. The computation results show that our proposed
DRO model is superior to the SP model in terms of solution stabil-
ity. In addition, our model is superior in terms of solution quality
and solution stability, compared with the classic RO model. These
findings validate the proposed DRO method and the LS + MILP sol-
ver algorithm.

Future research can be dedicated to the following aspects: ① In
the process of characterizing the uncertain probability distribution,
a discrepancy-based ambiguity set is used in this study. Thus, a
promising extension would be to construct multi-type ambiguity
sets for capturing the probability distribution, such as a Gaussian
ambiguity set or a polyhedral ambiguity set. ② The study of inte-
grated and interconnected multimodal transport systems remains
a hot topic for the future development of urban mobile ecosystems.
Hence, the collaborative optimization of the passenger flow control
in a multimodal transportation system may be an interesting
research direction for comprehensively easing congestion. ③ In
addition, it should be noted that this paper only considers the
operation environment of an urban rail transit line. An interesting
direction for future research would be to investigate efficient algo-
rithms for more complex lines or networks in Beijing and in other
representative cities.
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