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Patient-derived tumor xenografts (PDXs) are a powerful tool for drug discovery and screening in cancer.
However, current studies have led to little understanding of genotype mismatches in PDXs, leading to
massive economic losses. Here, we established PDX models from 53 lung cancer patients with a genotype
matching rate of 79.2% (42/53). Furthermore, 17 clinicopathological features were examined and input in
stepwise logistic regression (LR) models based on the lowest Akaike information criterion (AIC), least
absolute shrinkage and selection operator (LASSO)-LR, support vector machine (SVM) recursive feature
elimination (SVM-RFE), extreme gradient boosting (XGBoost), gradient boosting and categorical features
(CatBoost), and the synthetic minority oversampling technique (SMOTE). Finally, the performance of all
models was evaluated by the accuracy, area under the receiver operating characteristic curve (AUC), and
F1 score in 100 testing groups. Two multivariable LR models revealed that age, number of driver gene
mutations, epidermal growth factor receptor (EGFR) gene mutations, type of prior chemotherapy, prior
tyrosine kinase inhibitor (TKI) therapy, and the source of the sample were powerful predictors.
Moreover, CatBoost (mean accuracy = 0.960; mean AUC = 0.939; mean F1 score = 0.908) and the
eight-feature SVM-RFE (mean accuracy = 0.950; mean AUC = 0.934; mean F1 score = 0.903) showed
the best performance among the algorithms. Meanwhile, application of the SMOTE improved the predic-
tive capability of most models, except CatBoost. Based on the SMOTE, the ensemble classifier of single
models achieved the highest accuracy (mean = 0.975), AUC (mean = 0.949), and F1 score (mean = 0.938).
In conclusion, we established an optimal predictive model to screen lung cancer patients for non-obese
diabetic (NOD)/Shi-scid, interleukin-2 receptor (IL-2R) cnull (NOG)/PDX models and offer a general
approach for building predictive models.

� 2021 THE AUTHORS. Published by Elsevier LTD on behalf of Chinese Academy of Engineering and
Higher Education Press Limited Company. This is an open access article under the CC BY-NC-ND license

(http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction 85% of lung cancers are non-small-cell lung cancer (NSCLC), and
Lung cancer causes most cancer deaths in humans, with over 1
million deaths occurring each year worldwide [1]. Approximately
small-cell lung cancer (SCLC) accounts for 15% of lung cancers
[2]. Recently, the chemotherapy-based treatment paradigm for
lung cancer patients has shifted with the introduction of driver
genes and the advancement of molecular detection technology
[3,4], especially in patients with epidermal growth factor receptor
(EGFR) gene mutations [5,6] and rearrangements of the anaplastic
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large-cell lymphoma kinase (ALK) gene [7]. Nevertheless, targeted
therapy faces a series of difficulties, including different individual
responses and frequent acquired resistance [8,9]. Immune check-
point inhibitors (ICIs) are recommended for lung cancer patients
[10]. However, only approximately 20% of lung cancer patients
respond to immunotherapy. It is important to determine the
mechanisms of drug resistance in lung cancer patients.

Preclinical animal models are crucial for drug screening.
Patient-derived tumor xenografts (PDXs) have emerged as an accu-
rate preclinical system capable of maintaining the molecular,
genetic, and histopathologic heterogeneity of parental tumors
[11,12]. Moreover, a new generation of super-immunodeficient
mice called non-obese diabetic (NOD)/Shi-scid, interleukin-2
receptor (IL-2R) cnull (NOG) mice, which feature the deletion of
the IL-2R common gamma chain and functional deficiency of mul-
tiple immune cells (e.g., T cells, B cells, natural killer (NK) cells,
macrophages, and dendritic cells), is considered to be an excellent
choice for building PDX models for cancer immunotherapy [13].
Compared with nude mice and traditional severe combined
immunodeficient (SCID) mice, NOG mice have demonstrated out-
standing potential for research on ICIs, adoptive T cell therapy
(ACT), and other immunotherapies because tumor-infiltrating T
lymphocytes (TILs) can be serially transplanted into them after
xenografts develop [14,15].

Nonetheless, the low success rate of PDX establishment (20%–
40%) [16–18] and the notable rate of inconsistent driver gene
mutations between established PDXs and the original tumors
(10%–20%) [19,20] is a considerable problem that has not been well
studied. Since protocols to generate PDX models are time-
consuming, labor-intensive, and costly [21], the inconsistency of
driver gene mutations is very problematic for researchers, physi-
cians, and patients. However, multiple factors, including sex,
smoking history, pathology, tumor-node-metastasis (TNM) stage,
tumor grade, tumor sample quality, and EGFR gene mutations, have
been shown to be correlated with the rate of successful tumor
engraftment [17,18,22]. Whether these factors contribute to the
consistency of driver gene mutations in PDX models, especially
those established in NOG mice, has not been validated. This study
aimed to use machine learning (ML) algorithms, including multi-
variable logistic regression (LR), support vector machine (SVM)
recursive feature elimination (SVM-RFE), a gradient-boosting deci-
sion tree (GBDT), and the synthetic minority oversampling tech-
nique (SMOTE) to establish a powerful tool for predicting driver
gene mutation inconsistency between NOG/PDX models and
patient tumors (Fig. 1).
2. Materials and methods

2.1. Patient samples

Lung cancer tissues or cells from 53 patients were obtained
from computed tomography (CT)-guided percutaneous lung biopsy
(CT-PLB), lymph node biopsy (LNB), or thoracentesis at Shanghai
Pulmonary Hospital (China) between August 2018 and October
2019. All patients provided written informed consent authorizing
the collection and use of their tissues for study purposes. The study
was approved by the Ethics/Licensing Committee of Shanghai
Pulmonary Hospital (approval number: NO K18-203). Moreover,
this study was performed in accordance with the ethical standards
of the 1964 Declaration of Helsinki.
2.2. Preparation of tissue samples

Harvested tissues from transbronchial biopsy (TBB), CT-PLB,
and LNB were divided into three pieces. The first piece was minced
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into fragments of 50–100 mm3, immersed in frozen Bambanker
medium (Cat. No.: BBH01; Nippon Genetics, Japan), and then kept
in liquid nitrogen until implantation into immunodeficient mice.
The second piece was immediately frozen in liquid nitrogen for
DNA/RNA extraction. The third piece was used to generate
formalin-fixed paraffin-embedded (FFPE) slides for pathologic
assessment.

2.3. Preparation of malignant pleural effusion

The preparation and culture of malignant pleural effusion (MPE)
were conducted as previously described. Approximately 200–
1000 mL of pleural effusion was extracted by thoracentesis. The
samples were centrifuged at 3000 revolutions per minute (rpm)
for 10 min and then resuspended in phosphate-buffered saline
(PBS). Tumor cells were isolated from the interphase layer of sam-
ples by density gradient centrifugation using Ficoll-Paque PLUS (GE
Healthcare Bio-Sciences, Sweden). After being washed with PBS,
tumor cells were cultured in Roswell Park Memorial Institute
(RPMI)-1640 containing 10% fetal bovine serum (FBS; Thermo
Fisher Scientific, USA) and 10 ng�mL�1 epidermal growth factor
(EGF) at a density of 1 � 106 to 2 � 106 cells per plate.

2.4. NOG/PDX establishment

All animal experiments in this study followed the guidelines of
the Institutional Animal Care and Use Committee (IACUC). PDX
models were established in 6- to 8-week-old female NOG mice
(Charles River, China). Frozen tissues were thawed at 37 �C and
directly subcutaneously implanted into the sterilized skin of NOG
mice (n = 4–5 for each tumor sample). Simultaneously, tumor cells
isolated from the MPE were washed once in PBS and then injected
(5 � 106 cells) into the right flank of each NOG mouse (n = 4–5 for
each MPE sample).

The initial tumor-implanted NOG mice were maintained for
120 days, and tumors were measured once a week. The following
formula was used to calculate tumor volume (TV): TV = (length �
width2)/2 (length was the longest diameter, while width was the
shortest diameter). The xenografted tumor was passaged when
the tumor size reached approximately 700–800 mm3, and the
PDX models utilized in this study were from the third passage
(P3) to the fifth passage (P5). The PDX tumors of each passage were
separated into three pieces. The first piece was implanted into
another NOG mouse for passaging. The second piece was immedi-
ately frozen in liquid nitrogen for DNA/RNA extraction. The third
piece was used to generate FFPE slides for pathologic assessment.

All animal care and experiments were performed in accordance
with an animal protocol that was approved by the Ethics/Licensing
Committee of Shanghai Pulmonary Hospital.

2.5. DNA and RNA extraction

Lung cancer tissues and PDX tissues were pathologically
reviewed to ensure that tumor cells made up more than 80% of
the tumor and that no significant tumor necrosis occurred before
DNA extraction. Genomic DNA was extracted from each tissue
sample using a QIAamp DNA mini kit (51306; Qiagen, Germany).
The quantity and purity of the DNA samples were measured using
a Nanodrop ND-1000 UV/VIS spectrophotometer (Thermo Fisher
Scientific). DNA fragment integrity was confirmed by electrophore-
sis using a 1% agarose gel. The DNA concentration was normalized
to 20 ng�lL�1 and stored at �20 �C until use. Both ‘‘hot spot” muta-
tions in EGFR (exons 18, 19, 20, and 21) and ALK fusions (EML4-ALK)
were screened by an amplification refractory mutation system
(ARMS) and mutant-enriched liquid chip polymerase chain reac-
tion (PCR).



Fig. 1. Study design and protocol for establishing lung cancer NOG/PDX models and ML. In this study, we initially obtained lung cancer tissues via computed tomography
(CT)-guided percutaneous lung biopsy (CT-PLB), lymph node biopsy (LNB), or thoracentesis, and then implanted all tissues into NOG mice. After successfully establishing 53
NOG/PDX models, we took all PDX tissues and then performed hematoxylin and eosin (H&E) staining gene sequencing to confirm whether the genotypes of PDX models
matched those of patients’ tumors. We then input 17 clinicopathological features of patients to three ML methods—LR, SVM-RFE, and GBDT. Afterward, we performed five
algorithms of these three models, stepwise LR based on the lowest Akaike information criterion (AIC), least absolute shrinkage and selection operator (LASSO)-LR, SVM-RFE,
extreme gradient boosting (XGBoost), and gradient boosting and categorical features (CatBoost), to select or rank features among all 53 samples. Next, we generated 100
training groups and 100 testing groups via stratified random sampling. We also exerted the SMOTE to generate ten more positive classes whose genotypes were different
from those of the parental tumors and added them into every training group. Finally, we compared the overall performance of each algorithm after training in corresponding
training groups.
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2.6. Definition of genotype matching and mismatching

In this study, genotype matching was defined as the exact same
mutation types of EGFR and ALK in the PDX model and the corre-
sponding patient. Three types of genotype mismatching were
defined: ① The original driver gene mutation of patients was not
present in the PDX model; ② driver gene mutations were detected
in the PDXmodels but not in the corresponding patient; and③ dri-
ver gene mutations appeared in both the PDX models and corre-
sponding patients, but the number and/or type of driver genes
were inconsistent between PDX models and patients.
104
2.7. Machine learning

2.7.1. Stepwise LR based on the lowest Akaike information criterion
The Akaike information criterion (AIC) is an index for scoring

and selecting a model, which is calculated with the following
formula:

AIC ¼ �2=N � log-likelihoodð Þ þ 2K=N

where N is the number of examples, K is the number of variables in
the model plus the intercept, and the log-likelihood is a measure of
model fit, usually obtained from statistical outputs. The ‘‘MASS”



Table 1
The definition of performance indexes in this study.

Predicted class True class

Positive Negative

Positive True positive count (TP) False positive count (FP)
Negative False negative count (FN) True negative count (TN)
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package of R software was used to perform stepwise LR based on
the lowest AIC.

2.7.2. Least absolute shrinkage and selection operator-LR
The driver gene mutation was used as a dependent variable Y

input in the LR model and was coded as 0 to indicate deletion (con-
sistency) and as 1 to indicate presence (inconsistency). Given the
covariate Xi, the probability of driver gene mutation inconsistency
is calculated as follows:

Y ¼ b0 þ b1X1 þ b2X2 þ b3X3 þ � � � þ bkXk

The logistic least absolute shrinkage and selection operator
(LASSO) estimator b0, . . ., bk is defined as the minimum value of
the negative log-likelihood:
Pn

i¼1 �yiðb0 þb1x1 þ�� �þbkxkÞþ lg½1þexpðb0 þb1x1þ �� �þbkxkÞ�
subject to

Pk
j¼1jbjj � k

Here, k > 0 is an adjustment parameter that controls the sparsity
of the estimator (i.e., the number of coefficients with a value of
zero) and, in practice, is chosen by using validation samples or
cross-validation [23]. To obtain the logistic LASSO estimator, we
used the ‘‘glmnet” package in R software.

2.7.3. SVM-RFE
SVM-RFE is a SVM-based feature elimination method that pro-

vides the classification as the output by selecting the peptide set
with the best performance from the initial feature set. It has been
reported to be one of the best classification algorithms for address-
ing overfitting in bioinformatics. In this study, we used the
‘‘sklearn. feature_selection” package of Python software for SVM-
RFE (kernel = ‘‘linear”, C = 0.3).

2.7.4. Extreme gradient boosting (XGBoost)
XGBoost is used for supervised learning problems; here, we

used it to classify whether the driver gene mutations matched in
the PDX models and parental tumors. In this study, a tree booster
was used for each iteration, and the ‘‘xgboost” package of Python
software was applied for XGBoost with the following parameters:

max_depth = 6, subsample = 1.0, min_child_weight = 1.0,
gamma = 0.3, learning_rate = 0.2, n_estimators = 100, colsample_
bytree = 0.25, and eval_metric = ‘‘auc”.

2.7.5. Gradient boosting and categorical features (CatBoost)
Another algorithm of the GBDT library named CatBoost was

used for feature selection and predictive tool establishment. In this
study, we used the ‘‘catboost” package of Python software for
CatBoost. The detailed parameters for CatBoost were as follows:

loss_function = ‘‘Logloss”, eval_metric = ‘‘AUC”, learning_rate =
0.1, depth = 6, iterations = 100, border_count = 20, subsample = 1.0,
colsample_bylevel = 1.0, random_strength = 0.7, scale_pos_weigh
t = 1, and reg_lambda = 10.

2.7.6. SMOTE
The SMOTE is an oversampling method that works by applying

a sampling method to increase the number of positive classes
through random data replication so that the amount of positive
data is equal to the amount of negative data. The SMOTE algorithm
was first introduced by Chawla et al. [24]. This approach works by
constructing synthetic-data–minor-data replication. The SMOTE
algorithm runs by defining the k nearest neighbor for each positive
class and then performing the data synthetic duplication for the
desired percentage between the positive class and the randomly
chosen k nearest neighbor. In general, it can be formulated as fol-
lows: Xsyn = Xi + (Xknn – Xi) � d, where Xsyn represents the synthetic
data point, Xi and Xknn are the original instance and the nearest
neighbor data point which is randomly picked among the k nearest
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neighbors, while d is a random number between 0 and 1. In this
study, we used the ‘‘smote_variants” package of Python software
for SMOTE to add ten more positive samples into the training data.

2.7.7. Bootstrap resampling
In this study, bootstrapping was performed with Python soft-

ware to stratify 100 training groups (n = 35; 7 nonmatching sam-
ples and 28 matching samples) and 100 testing groups (n = 18; 4
nonmatching samples and 14 matching samples) using
resampling.

2.8. Model performance evaluation

To evaluate the performance of all the predictive models in this
study, we calculated the indexes (Table 1).

The following calculations were made:
(1) Accuracy = [True positive count (TP) + true negative count

(TN)]/[TP + TN + false positive count (FP) + false negative count
(FN)]

(2) Precision = TP/(TP + FP)
(3) Recall = TP/(TP + FN)
(4) F1 score = (2 � precision � recall)/(precision + recall)
(5) The receiver operating characteristic curve (ROC) takes the

false positive rate as the abscissa and true positive rates as the
ordinate.

The area under the ROC curve (AUC) was calculated by the
‘‘sklearn.metrics” of Python software.

2.9. Statistical analysis

The paired-sample t-test was used to compare the performance
among different models in the testing groups. All data analysis in
this study was performed with statistical product and service solu-
tions (SPSS) (version 23.0; IBM SPSS, USA), R software (version
3.1.0; R Core Team, USA), MATLAB (version 7.12.0; Mathworks,
USA), and Python software (version 2.7; Python Software Founda-
tion, USA). All figures were produced with GraphPad Prism (version
8.0; GraphPad Software, USA). Statistical tests were two-sided, and
P < 0.05 was considered statistically significant.

2.10. Computer code availability

All original data and code from this study are available at
https://github.com/dddtqshmpmz/PDX.

3. Results

3.1. Establishment of NOG/PDX models

The general clinicopathologic features of all 53 NSCLC patients
are shown in Tables S1 and S2 in Appendix A. The median patient
age was 66 years, and 83.0% (44/53) were male. Three (5.7%)
patients were diagnosed with TNM-stage 1, and the others were
diagnosed with stage 3/4 (94.3%). Forty patients (75.5%) were diag-
nosed with NSCLC, including 9 squamous cell carcinomas (SCCs),
15 adenocarcinomas (ADCs), and 16 other NSCLCs. Thirteen

https://github.com/dddtqshmpmz/PDX


Table 2
Characteristics of 53 patients and univariable LR of 17 clinicopathological variables for determining factors correlated to the inconsistency of driver genes between PDX models
and parental tumors.

Variable Matching of driver genes
between PDX models and
parental tumors

P OR (95% CI)

Yes No

Mean age (year) 65.36 59.73 0.050 0.921 (0.848–1.000)
Gender
Male 39 5 0.010 1.000
Female 3 6 15.600 (2.938–82.836)

Smoking status
No 12 9 0.010 1.000
Yes 30 2 11.250 (2.113–59.884)

Source of the sample
CT-PLB 40 8 0.042 1.000
LNB or thoracentesis 2 3 7.500 (1.704–52.377)

Pathology
ADC 8 7 0.012 10.500 (1.076–102.478)
SCC 9 0 0
Other NSCLCs 13 3 2.769 (0.252–30.383)
SCLC 12 1 1.000

EGFR mutation
No 41 2 < 0.001 1.000
Yes 1 9 184.500 (15.046–2262.404)

Number of mutations
0 41 1 < 0.001 1.000
1 1 7 287.000 (16.024–5140.254)
2 0 3 6.620 � 1010

T-stage
1–2 12 1 0.148 1.000
3–4 30 10 4.000 (0.460–34.750)

N-stage
0 5 1 0.546 1.000
1 4 0 0
2 12 4 1.667 (0.147-18.874)
3 21 6 1.429 (0.139-14.695)

M-stage
0 13 1 0.173 1.000
1 29 10 0.223 (0.026–1.929)

TNM-stage
1–2 3 0 0.230 1.000
3–4 39 11 455646925.900

Number of distant metastatic sites
0 13 1 1.000 1.000
1 17 5 0.077 (0.002–2.394)
2 5 2 0.294 (0.015–5.595)
3 5 1 0.400 (0.016–10.017)
4 1 1 0.200 (0.006–6.664)
5 1 1 1.000 (0.020–50.397)

Prior therapy
No 12 2 0.473 1.000
Yes 30 9 1.800 (0.338–9.581)

Prior chemotherapy
No 15 9 0.005 8.100 (1.545–42.476)
Yes 27 2 1.000

Chemotherapy type
EC 7 0 0.037 1.000
GC 7 0 1.000
Paclitaxel liposome 3 0 1.000
AC 3 1 538491658.700
Other chemotherapy 7 1 2307282139.000
None 15 9 989284985.700

Prior TKI therapy
No 39 6 0.005 1.000
Yes 5 3 10.833 (2.040–57.525)

Curative effect of prior therapy
No therapy 12 2 0.387 1.000
PR 3 0 0.417 (0.076–2.296)
PD 3 0 0
SD 4 1 0
Not evaluated 20 8 0.625 (0.060–6.486)

The P value and odds ratio (OR) are analyzed by univariate LR.
EC: etoposide and carboplatin; GC: gemcitabine and cisplatin; AC: pemetrexed and carboplatin; PR: partial response; PD: progressive disease; SD: stable disease;
CI: confidence interval; T stage: size or direct extent of the primary tumor; N stage: degree of spread to regional lymph nodes; M stage: presence of distant metastasis; TNM
stage: tumor, node, metastasis (TNM) staging classification according to the American Joint Committee on Cancer (AJCC).
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(24.5%) patients had SCLC. Among all the samples, tissues from ten
patients (18.9%) had EGFR gene mutations, one patient (1.9%) had
ALK fusion, and the remaining 42 samples were nonmutant tissues
(79.2%). There were 39 patients (73.6%) with metastasis. Forty-
eight samples (90.6%) were obtained by CT-PLB, while LNB was
used to obtain two samples (3.8%), and three samples (5.7%) were
obtained by thoracentesis. There were 39 patients (73.6%) who
received therapy before sampling, including chemotherapy
(n = 29), tyrosine kinase inhibitors (TKIs) (n = 8), and immunother-
apy (n = 2), while 14 patients (26.4%) had not received any
therapy.

All PDX models included in this study were confirmed to be
successfully established (with a size reaching approximately
700–800 mm3) by pathologists, and representative sections of
PDX models with hematoxylin and eosin (H&E) staining are
shown in Fig. 1. The overall rate of driver gene matching was
84% (42/50).
Fig. 2. Feature selection based on the lowest AIC and LASSO. (a) AIC for all possible mo
presented in columns defined by the number of variables in the model. In general, the mo
model containing age, the number of driver gene mutations, type of prior chemotherapy,
all potential models. The upper abscissa is the number of non-zero coefficients in the m
penalization coefficient. Binomial deviance was plotted versus lg(k). Dotted vertical lin
standard error of the minimum criteria. The left vertical line represents the minimum
standard error of the minimum. The optimal k value of 1 standard error of the minimum w
at this time. (c) LASSO coefficients of ten candidate variables that are significant in uni
minimum, resulting in two non-zero coefficients: the number of driver gene mutations

107
3.2. Model 1: LR

3.2.1. Univariable analysis of factors associated with genotype
mismatches

Univariate LR analysis indicated that the risk factors for driver
gene mutation inconsistency between PDX models and parental
tumors were female sex, younger age, smoking history, acquisition
from LNB or thoracentesis, NSCLC except for SCC, EGFR mutations,
more driver gene mutations, no prior chemotherapy, prior
chemotherapy with pemetrexed plus carboplatin, and prior TKI
therapy (Table 2).

3.2.2. Multivariable selection in all 53 examples
LR based on the AIC. To balance predictive model performance

and complexity, we performed stepwise model selection by calcu-
lating the AIC. According to univariable analysis, there were ten
potential predictive features. Fig. 2(a) shows the AIC values of each
dels in the stepwise multivariable LR. A lower AIC indicates a better fit. Results are
del excluding the number of driver gene mutations achieved the worst AIC, while the
prior TKI therapy, and source of the sample was the one with the lowest AIC among
odel at this time. (b) Factor selection using the LASSO-LR model. k was the optimal
es were plotted at the optimal k values based on the minimum criteria and one
error, and the right vertical line represents the cross-validated error within one
as selected. The upper abscissa is the number of non-zero coefficients in the model

variable LR. The right dotted vertical line was plotted at one standard error of the
and EGFR gene mutations.
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step in the backward stepwise LR, where ten predictive features
were deleted one by one until the AIC no longer decreased. In gen-
eral, models excluding the number of driver genes presented the
Fig. 3. Rank of importance of the top ten variables and the modeling process of the SVM-
algorithms (SVM-RFE, CatBoost, and XGBoost), where the same color represents the sam
number of variables in 100 testing groups. The eight-feature SVM-RFE showed the highes
on the different number of variables in 100 testing groups. The eight-feature SVM-RFE ex
of 100 classification and regression trees (CARTs) obtained by XGBoost model training. A
obtained at the leaf node. After weighing the total score of 100 trees, each sample’s ove
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worst AIC, which indicated that the number of driver genes was
an important predictor. Moreover, the best multivariable model
selected by the AIC was a five-variable LR model that included
RFE and GBDT. (a) A chart showing the ten most critical variables according to three
e ranking. (b) The mean predictive accuracy of the SVM-RFE based on the different
t accuracy with the fewest variables. (c) The mean F1 score of the SVM-RFE is based
hibited the highest F1 score with the fewest variables. (d) A figure showing three out
fter inputting the test sample into each CART, each sample’s predicted score can be
rall score and the corresponding classification can be obtained.
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age, the number of driver gene mutations, type of prior chemother-
apy, prior TKI therapy, and the source of the sample.

LASSO-LR. We performed LASSO regularization in LR to
improve the predictive accuracy and interpretability. Here, we
input ten significant features from the univariable LR model into
a multivariable LASSO-LR. Two features of the ten features—
namely, EGFR mutations and the number of driver genes—were
screened out via LASSO-LR combined with 10-fold cross-
validation, where the optimal penalization coefficient kwas valued
as one standard error (Figs. 2(b) and (c)).
3.3. Model 2: SVM-RFE

SVM-RFE begins with a complete feature set and eliminates the
least important feature for classification in each iteration according
to the weight vector of the dimension length. According to the
ranking of feature importance, which is visualized in Fig. 3(a), we
first deleted the seven least important variables and then elimi-
nated the remaining ten variables one by one to optimize the pre-
dictive accuracy. According to the mean predictive accuracy and
the F1 score in the testing groups, the SVM-RFE model that
Fig. 4. Comparison of the performance among different models. (a) The performance of s
testing groups, CatBoost and the eight-feature SVM-RFE exhibited better performance t
performance in the training groups and testing groups. *P < 0.05, **P < 0.01, ***P < 0.001
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included eight variables maintained the best performance with
the least complexity (Figs. 3(b) and (c)). As a result, the eight-
feature SVM-RFE was the best model among all the SVM classifiers.

3.4. Model 3: GBDT

To implement a GBDT, we used two commonly used algo-
rithms: XGBoost and CatBoost. A large number of experiments
indicated that multicollinearity among features did not hinder pre-
dictive classifications of decision trees [25]. Therefore, we input all
17 features in XGBoost and CatBoost in this study. The rank of fea-
tures based on the XGBoost and CatBoost classification algorithms
is also presented in Fig. 3(a). The representative structure of a deci-
sion tree generated by XGBoost and CatBoost is shown in Fig. 3(d).

3.5. Modeling in training groups and evaluating performance in testing
groups

3.5.1. Comparison of different models
According to the AUC, accuracy, and F1 score of the 100 testing

groups, CatBoost (mean accuracy = 0.960; mean AUC = 0.939;
ingle models. According to the predictive accuracy, the AUC, and the F1 score in 100
han XGBoost, LASSO-LR, and LR based on the lowest AIC. (b) The bias of the model
, based on the paired-sample t-test between CatBoost and other models.
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mean F1 score = 0.908) and the eight-feature SVM-RFE (mean accu-
racy = 0.950; mean AUC = 0.934; mean F1 score = 0.903) were dra-
matically better than the other three models, XGBoost (mean
accuracy = 0.951; mean AUC = 0.908; mean F1 score = 0.873),
LASSO-LR (mean accuracy = 0.937; mean AUC = 0.886; mean F1
score = 0.841), and LR based on the AIC (mean accuracy = 0.923;
mean AUC = 0.850; mean F1 score = 0.789). Although the accura-
cies of the eight-feature SVM-RFE and XGBoost were statistically
equal, CatBoost and the eight-feature SVM-RFE had the overall best
performance. In addition, the mean accuracy (P = 0.103), AUC
(P = 0.066), and F1 score (P = 0.128) of CatBoost and the eight-
feature SVM-RFE were not significantly different (Fig. 4(a)), which
showed promise in overcoming the limitations of the imbalanced,
small sample dataset. We also evaluated the bias of the perfor-
mance of these models (Fig. 4(b)), where the difference in accuracy,
F1 score, and AUC between the training and testing groups
remained below 8% except for the F1 score of LR based on the
AIC (the difference between training and testing groups: 11.6%).
3.5.2. Improvement of model performance with the SMOTE
The SMOTE is an oversampling method that increases the num-

ber of positive classes through random data replication so that the
positive and negative classes have equal numbers [26]. Herein, we
applied the SMOTE to add ten more positive samples into training
groups in order to accomplish feature selection, establish each
model, and then test the models in the original 100 testing groups
(Tables S2 and S3 in Appendix A). LASSO-LR had the same two fea-
tures in the balanced training data applied with the SMOTE: EGFR
mutations and the number of driver gene mutations. In compari-
son, LR based on the AIC selected the following seven features
out of all the features: sex, EGFR mutations, number of driver gene
mutations, M-stage, number of metastatic sites, type of prior
chemotherapy, prior TKI therapy, and source of the sample. The
rank of the ten most essential features in SVM-RFE, XGBoost, and
CatBoost is shown in Fig. 5, with the number of driver gene muta-
tions and EGFR mutations remaining as the leading contributors.

Interestingly, performing the SMOTE enhanced the overall effi-
cacy of LASSO-LR (accuracy: 0.957 vs 0.923; AUC: 0.936 vs 0.850;
F1 score: 0.902 vs 0.789; all P < 0.001), LR based on the AIC (accu-
racy: 0.945 vs 0.937; AUC: 0.904 vs 0.885; F1 score: 0.864 vs 0.841;
all P < 0.001), the eight-feature SVM-RFE (accuracy: 0.961 vs 0.958,
P = 0.025; AUC: 0.940 vs 0.935, P = 0.045; F1 score: 0.909 vs 0.903,
P = 0.047), and XGBoost (accuracy: 0.934 vs 0.908, P = 0.004; AUC:
0.953 vs 0.952, P = 0.630; F1 score: 0.896 vs 0.874, P = 0.108)
(Figs. 6(a)–(d)). However, the application of the SMOTE did not
Fig. 5. A chart showing the ten most critical variables according to three algorithms (SV
same ranking.
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impact the predictive ability of CatBoost for genotype mismatching
(accuracy: 0.961 vs 0.960; AUC: 0.909 vs 0.908; F1 score: 0.940 vs
0.939; all P > 0.05) (Fig. 6(e)).

In this case, CatBoost demonstrated the same stable potential
for both even and uneven samples. However, LR achieved the lar-
gest significant performance enhancement with the SMOTE, which
revealed that LR should be recommended for even data. Moreover,
we described an approach that can improve the SVM-RFE and
XGBoost in small, uneven samples.
3.5.3. Ultimate optimization of the ensemble classifier for performance
Considering the dramatic enhancement of the performance of

most models after applying the SMOTE, we finally used an ensem-
ble classifier after conducting the SMOTE based on LR based on the
AIC, the eight-feature SVM-RFE, XGBoost, and CatBoost. Surpris-
ingly, the accuracy (mean = 0.975), AUC (mean = 0.949), and F1
score (mean = 0.938) of the ensemble classifier were further opti-
mized compared with those of the single model (Fig. 6(f)). More-
over, the bias of the ensemble classifier in the training and
testing groups was also superior (all differences below 5%) (Fig.
6(f)).

Therefore, we propose an ensemble classifier based on single
optimized models, which overcame the sample size and distribu-
tion defects and achieved the best level of discrimination and
stability.
4. Discussion and conclusion

This study initially developed a predictive model for driver gene
mutation inconsistency between NOG/PDX models and patient
samples. A total of 53 lung cancer NOG/PDX models were success-
fully engrafted and excised, including 42 NOG/PDX models with
driver gene mutations that matched those in parental tumors
and 11 NOG/PDX models with nonmatching tumors. To analyze
this small unbalanced database, we used five algorithms: LR based
on the AIC, LASSO-LR, eight-feature SVM-RFE, XGBoost, and
CatBoost. According to the indexes in the testing groups, CatBoost
and eight-feature SVM-RFE had the best performance. Moreover,
use of the SMOTE generally improved the performance of all mod-
els except CatBoost at the fundamental level. In the end, the
ensemble classifier based on single models had the best perfor-
mance (mean accuracy = 0.975; mean AUC = 0.949; mean F1
score = 0.938), with an acceptable bias between the training and
testing groups (all differences under 5%).
M-RFE, CatBoost, and XGBoost) with SMOTE, where the same color represents the



Fig. 6. The performance of SMOTE with different algorithms. (a) The performance of the introduction of SMOTE to LASSO-LR. (b) The performance of the introduction of
SMOTE to LR based on the AIC. (c) The performance of the introduction of SMOTE to eight-feature SVM-RFE. (d) The performance of the introduction of SMOTE to CatBoost.
(e) The performance of the introduction of SMOTE to XGBoost. (f) The performance of the ensemble classifier in training and testing groups by conducting the SMOTE based on
LR based on the AIC, the eight-feature SVM-RFE, XGBoost, and CatBoost. *P < 0.05, **P < 0.01, ***P < 0.001, based on the paired-sample t-test.
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The generation and passaging of PDX models are dynamic
events in which clonal and subclonal alterations frequently occur,
especially when the development of P1 PDX models is slow, which
gives adequate time for tumor cells to mutate and adapt to a new
environment [27,28]. In addition to cell-autonomous heterogene-
ity, stromal heterogeneity in the tumor microenvironment (TME)
is a critical reason why driver genotypes of PDXs differ from those
of parental tumors [12]. It has been reported that SCC is much
more prone to tumorigenesis in nude mice than ADC [18], which
is inconsistent with our conclusion that SCC is the most challeng-
ing tumor type to establish NOG/PDX models with genetic match-
ing. More CD8+ TILs were detected in SCC tumors than in non-SCC
cell nests [29], which suggests that PDX models of SCC may lose
more tumor stroma during xenograft engraftment. Moreover, SCC
has been found to be prone to carry significantly more clonal muta-
tions than ADC [30], contributing to more clonal selection.
Although age had a small weight in multivariable LR, we have
not found an appropriate method to illustrate that a younger age
rather than an older age is a risk factor for driver gene matching
[31]. Most PDX models use 8-week-old mice rather than aged mice
(> 8 months), while recent studies have found that aging could dra-
matically alter components of the TME [32]. Therefore, inconsis-
tencies in the age of mice and patients could be a reason why
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age was found to be a predictive feature here. Another feature,
the source, also played a negative role in genotype matching,
which differed from tumor engraftment. Although fluid sources
have been suggested to have a higher engraftment rate [33], we
found it was more challenging to maintain driver genotypes of par-
ental tumors in fluid-derived tumor xenografts.

The number of driver gene mutations, including clonal and sub-
clonal mutations, is associated with intratumor heterogeneity,
genomic instability, and chromosomal instability [34]. First, the
largest coefficient of the driver gene number in the multivariable
LR model also illustrates its importance in developing non-
patient-matched genotypes. Second, PDX models from EGFR
mutant lung cancers were reported to have poor histological differ-
entiation and frequent EGFR mutation loss [35], which supported
the high risk of EGFR mutant inconsistency in NOG/PDX models
in this study. Third, the evidence that pemetrexed increased the
number of TILs and upregulated immune-related genes related to
antigen presentation might support the conclusion that PDX mod-
els from patients receiving pemetrexed were less likely to maintain
the original genotypes [36]. TKIs have been proven to alter the pul-
monary TME, including increases in CD8+ T cells and mononuclear
myeloid-derived suppressor cells (M-MDSCs; CD11b+Ly6–G–-
Ly6Chigh), and decreases in fewer Foxp3+ T regulatory cells (Tregs)
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and M2-like macrophages (CD206+) [37]. In addition, clonal selec-
tion is a frequent occurrence during TKI therapy, resulting in TKI
resistance [38]. Interestingly, we found that factors that promoted
TILs promoted genotype stability during NOG/PDX model estab-
lishment, which needs further verification (Fig. 7(a)).

Recently, ML has been a useful method for predictive modeling
in numerous areas, as it enables predictive models to systemati-
cally ‘‘learn” information from initial data and adapt to each new
data environment [39]. However, ML has not been widely used in
small sample databases (less than ten frequencies per predictor
variable), which is a common characteristic of biomedical animal
models with high costs and complicated techniques [40]. Ulti-
mately, the ML algorithms that we used to establish predictive
tools for lung cancer NOG/PDX models had excellent performance,
which not only provides a predictive tool to screen lung cancer
patients for NOG/PDX models for precision immunotherapy, but
Fig. 7. Potential impact of the TME on driver gene mutations and a flow chart for building
to the inconsistency of driver gene mutation and the TME. According to univariable and
factors for nonmatching genotypes between PDX models and parental tumors. All of these
myeloid-derived suppressor cells (CD11b+Ly6–G–Ly6Chigh), and M2-like macrophages (CD
datasets: ① When the dataset is uneven, perform SMOTE first. Select features to deve
stepwise LR based on the AIC, LASSO-LR, SVM-RFE, XGBoost, CatBoost, and so forth. ②
bootstrap resampling to avoid overfitting and achieve stable performance. ④ Formu
⑤ Evaluate the predictive model based on the ROC, accuracy, and F1 score in the corresp
the critical predictors for the positive class by LR, and apply the optimal algorithm for t
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also offers a general approach for building predictive models with
small biomedical samples (Fig. 7(b)).

Several limitations remain in this study. First, the number of
patients included in the study was limited, and larger scale exper-
iments should be carried out to further validate these conclusions.
Second, the prediction results of this model cannot be accurate to
each driving gene mutation due to the limited training data. Third,
the EGFRmutation status was both an independent variable and an
outcome, which may cause collinearity. Last, potential selection
bias was inevitable, and this study’s sex ratio was uneven. Larger
scale trials should be performed to further validate these
conclusions.

In conclusion, we established a predictive model for driver gene
mutation inconsistency between NOG/PDX models and patient
samples based on ML, which promises to improve the success rate
of PDX establishment and reduce the massive economic loss. Fur-
predictive models in small datasets. (a) Association between the factor contributing
multivariable LR, SCC, application of pemetrexed, and prior TKIs therapy were risk
three factors raised TILs. Moreover, TKIs could decrease Foxp3+ Tregs, mononuclear
206+) in the TME. (b) Flow chart for building predictive models in small biomedical
lop a multivariable model in all samples with standard ML algorithms, including
Propose an ensemble classifier based on the optimized single models. ③ Perform
late the predictive score or establish the predictive classifier in training groups.
onding testing groups to determine an optimal algorithm for modeling. ⑥ Interpret
he final prediction.
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thermore, the NOG mice used in this study are considered to be an
excellent choice for building PDX models for cancer immunother-
apy, although they are not well studied. Therefore, the model we
established has potential for immunotherapy screening and
development.
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