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Data-driven approaches and artificial intelligence (AI) algorithms are promising enough to be relied on
even more than physics-based methods; their main feed is data which is the fundamental element of
each phenomenon. These algorithms learn from data and unveil unseen patterns out of it. The petroleum
industry as a realm where huge volumes of data are generated every second is of great interest to this
new technology. As the oil and gas industry is in the transition phase to oilfield digitization, there has
been an increased drive to integrate data-driven modeling and machine learning (ML) algorithms in dif-
ferent petroleum engineering challenges. ML has been widely used in different areas of the industry.
Many extensive studies have been devoted to exploring AI applicability in various disciplines of this
industry; however, lack of two main features is noticeable. Most of the research is either not practical
enough to be applicable in real-field challenges or limited to a specific problem and not generalizable.
Attention must be given to data itself and the way it is classified and stored. Although there are sheer
volumes of data coming from different disciplines, they reside in departmental silos and are not accessi-
ble by consumers. In order to derive as much insight as possible out of data, the data needs to be stored in
a centralized repository from where the data can be readily consumed by different applications.

� 2022 THE AUTHORS. Published by Elsevier LTD on behalf of Chinese Academy of Engineering and
Higher Education Press Limited Company. This is an open access article under the CC BY license

(http://creativecommons.org/licenses/by/4.0/).
1. Introduction

Artificial intelligence (AI) seeks to mimic human decision mak-
ing. The subset of AI techniques known as machine learning (ML)
enables computers to learn how to act outside the confines of their
programmed behavior, through the use of external data. ML has
revolutionized myriad industries and fields of study, with incredi-
bly wide-ranging applications from stock market analysis to self-
driving cars. With the advent of Internet of Things (IoT) devices
and big data (where a high volume of data is generated at high
velocity and with many different varieties), ML is one of the most
important technologies to ensure that actionable insights can be
gleaned from big data.

In the oil and gas industry, model types are divided into three
main categories: physical, mathematical, and empirical models
[1]. A physical model is a scaled-down or scaled-up version of an
object that is developed to simplify the understanding of how a
physical object or scenario looks or operates. These models have
the disadvantages of being costly and time-consuming to develop,
and may not be sufficiently accurate in some cases. Empirical mod-
els are established based on experiments; they are subject to a
variety of errors, such as human and measurement errors, and
are not generalizable. Mathematical models encode physical laws
to simulate the underlying physics; however, they require many
assumptions and simplifications [1]. To deal with the challenges
in these three model types, derive insights, and make intelligent
decisions in a timely manner, a more promising technique is
required. This is where ML can be applied, due to its ability to cap-
ture and act upon insights from vast datasets that could never be
handled through purely programmatic rules, due to the complexity
of the relationships between data and the insights gleaned from
the data.

The oil and gas industry is rapidly transitioning to oil-field
digitization, and there has been an increased drive to apply data-
driven modeling and ML algorithms to various petroleum engi-
neering challenges. Data-driven modeling uses mathematical
equations derived from data analysis, as opposed to knowledge-
driven modeling, in which logic is the main tool to represent a the-
ory [2,3]. While there may be data-driven algorithms that do not
learn from data (and thus cannot be called ML), ML is a subset of
data-driven approaches that demonstrate a form of AI. Fig. 1 sum-
marizes different types of ML algorithms.
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Fig. 1. Different types of ML algorithms. DBSCAN: density-based spatial clustering of applications with noise; HDBSCAN: hierarchical density-based spatial clustering of
applications with noise.
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ML has been widely used in different areas of the petroleum
industry, including geoscience, reservoir engineering, production
engineering, and drilling engineering. The next four sections pre-
sent a critical review and perspective of the application of ML in
each of these areas.

1.1. Intelligent geoscience

Geoscience has utilized algorithms such as decision trees,
Markov chains, and K-means clustering as early as the 1960s.
Markov chains have been utilized in sedimentology [4], hydrology
[5], and well-log analysis [6]. Preston and Henderson [7] used
K-means clustering to interpret the periodicity of sediment depos-
its. Early application of decision trees can be found in economic
geology and perspective mapping [8,9]. Due to a variety of factors,
28
including a lack of computational power and immaturity of the
field, ML adoption did not perfectly satisfy initial expectations;
hence, little development of AI occurred in the 1970s. Zhao and
Mendel [10] employed recurrent neural networks (NNs) to perform
seismic deconvolution in the 1980s, which can be considered a
resurgence of interest in AI. A shift from knowledge-driven to
data-driven ML occurred in the 1990s, when the first review
of NNs in geophysics was published by McCormack [11].
McCormack’s review explored pattern recognition and presented
a summary of NN applications over the previous 30 years, along
with applied samples of seismic trace editing and automated
well-log analysis. Deep learning (DL) and, more specifically, convo-
lutional neural networks (CNNs) were revitalized in the 2010s,
when Waldeland and Solberg [12] applied a small CNN to seismic
data for salt recognition. Fault interpretation [13–15], horizon
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picking [16], and facies classification [17,18] are other applications
of CNNs in geoscience. Mosser et al. [19] applied a generative
adversarial network (GAN)—that is, an ML model in which two
NNs work together competitively to make more accurate predic-
tions—early on in geoscience to perform pore scale modeling of
three-dimensional (3D) porous media. GANs have also been uti-
lized in seismogram generation and geostatistical inversion [20].

Seismicity is another important field in geoscience in which ML
has become widely used. Mousavi et al. [21] used ML algorithms to
discriminate deep micro-seismic events from shallow ones based
on features of waveforms recorded on surface receivers. He et al.
[22] used an ML algorithm to improve the risk management of
induced seismic events. The proposed model was a set of simple
closed-form expressions, with the advantages of high transparency
and fast execution speed, providing the operator with the greatest
chance of success. Industrial activities such as mining, oil- and gas-
field depletion, wastewater injection, and geothermal operations
can induce seismicity [23,24]. In western Canada, the seismicity
induced from hydraulic fracturing (HF) has galvanized public and
academic attention [25]. Investigating the correlations between
induced seismicity and HF has been exceedingly challenging for a
long time, due to the complexity introduced by strongly coupled
geomechanical, geophysical, and geological behaviors. Thus, there
is plenty of room for exploring ML applications in seismicity.

1.2. Intelligent reservoir engineering

ML algorithms have become popular in various areas of reser-
voir engineering, particularly in reservoir characterization and in
pressure, volume, and temperature (PVT) computations. A two-
layer NN was developed by Gharbi and Elsharkawy [26] to esti-
mate bubble point pressure and a formation volume factor for oil
reservoirs. In another study, a radial basis function and multi-
layer perceptron NN were employed to estimate a formation vol-
ume factor, isothermal compressibility, and brine salinity [27].
Wang et al. [28] used artificial neural networks (ANNs) in a compo-
sitional reservoir simulation for phase equilibrium calculations,
including phase stability tests and phase splitting calculations. A
combination of two approaches—namely, a support vector
machine (SVM) and fuzzy logic—was utilized to predict permeabi-
lity and porosity using real-life well logs as an input feed [29]. Patel
and Chatterjee [30] utilized classification algorithms to carry out
quick and accurate rock typing (i.e., classifying reservoir rock into
different categories based on similarities). In the presence of ran-
dom noise, the performance of an ANN with a single hidden layer
was explored by An [31] to establish a model to predict the thick-
ness of a low-velocity layer. The proposed approach was also
applied on an oil field in northern Alberta, Canada, to construct a
distribution map of porosity-net pay thickness, based on which
four wells were drilled and the field production increased by
almost 20% [32]. Jamialahmadi and Javadpour [33] utilized a radial
basis function NN using depth measurements and the porosity of
core data as inputs to estimate the permeability of an entire oil
field in southern Iraq. An ensemble ML model (i.e., a random forest
algorithm) was developed by Wang et al. [34] to predict time-lapse
saturation profiles at well locations using actual production and
injection data from a structurally complicated and highly faulted
offshore oil field as the major inputs. A new framework for the pre-
diction of multiple reservoir parameters (i.e., porosity, saturation,
lithofacies, and shale content) was developed by introducing an
extreme learning machine (ELM), which is one of the most
advanced ML techniques [35]. In comparison to the classic
single-layer feed-forward NN approach, the proposed method
requires fewer computing resources and less training time without
sacrificing accuracy.
29
1.3. Intelligent production engineering

Production prediction/optimization and HF are two other fields
in the energy industry in which ML has grown popular. Many
parameters must be taken into account for production prediction
and optimization, including the recovery process, proppant type,
well spacing, treatment rate, and number of fracturing stages.
Although the optimization of operational parameters can save mil-
lions of dollars and significantly enhance unconventional reservoir
production, traditional reservoir simulations are computationally
expensive, which adds up when taking different variations of reser-
voir characteristics into account [36,37]. Hence, production predic-
tion and optimization are good candidates for AI applications, as
shown by the recent development and analyses of ML algorithms
for various recovery processes, such as water and chemical floods
and steam injection [38–40]. Dang et al. [41] utilized an NN for
the multidimensional interpolation of relative permeability to
overcome the impacts of different parameters (i.e., the polymer,
surfactant, and salinity) during hybrid recovery processes. Produc-
tion forecasting for wells in different reservoirs using geological,
core, and log data is a widely used ML application in this domain
[42,43]. Tadjer et al. [44] utilized DeepAR and Prophet (a time
series ML algorithm) as alternatives to decline curve analysis for
short-term oil and gas well forecasting. Using an NN to predict
bottom hole pressure in vertical wells, which is a crucial parameter
in the design of production facilities, is another application of ML
in this area [45]. A long short-term memory (LSTM) model along
with a feature-selection method was applied to predict the daily
production rates of shale gas wells in the Duvernay Formation in
Canada [46]. Horizontal well placement optimization was investi-
gated by Popa and Connel [47] via stratigraphic performance
estimation using a combination of fuzzy logic and NN.

In the last two decades, the growing number of HF jobs has
resulted in a substantial amount of measured data that can be used
to construct ML prediction models. A study was conducted by
Mohaghegh [48] to map a natural fracture network in Utica shale
using fuzzy logic cluster analysis. He et al. [49] developed a model
to optimize HF design in shale gas reservoirs using AI and fuzzy
logic analysis. A novel model was developed using an SVM to
determine the hydraulic apertures of rough rocks [50]. Yang et al.
[51] established a data analytics approach combining design
parameters derived from acoustic wireline logs and post-
fracturing analysis to optimize fracturing treatment design. The
obtained fracturing optimization algorithm was validated using
production logging tool data and deep shear-wave imaging along
horizontal wells in the Marcellus shale reservoirs. An integrated
approach combining ML, reservoir simulation, and HF was pre-
sented by Wang and Sun [52] to optimize well spacing in Permian
shales, considering a typical well for each representative region in
this large area. A reinforcement learning algorithm was applied by
Bangi and Kwon [53] to achieve a uniform proppant concentration
along fractures in order to improve HF productivity; the research-
ers coupled dimensionality reduction with transfer learning to
speed up the learning process. Duplyakov et al. [54] presented a
model based on a combination of boosting algorithms and ridge
regression to predict the cumulative oil production of a well com-
pleted with multistage fractures. A case study was performed on
74 hydraulically fractured wells in the Montney Formation in
Alberta, Canada, to predict cumulative production profiles over a
five-year period using well spacing, rock mechanical properties,
and completion parameters as input features [55]. A proxy model
was developed to predict cumulative gas production for shale
reservoirs using a deep NN based on production, completion, and
HF data as input features; this model was validated using field data
for 1239 horizontal wells in the Montney Formation [56].
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1.4. Intelligent drilling engineering

Considering that huge volumes of real-time data are being pro-
duced daily during drilling operations, drilling engineering has also
benefited greatly from the application of ML. Due to the volatility
of oil prices in recent years, methods to ensure good economics
in a variety of price scenarios have been sought. In order to achieve
this, ML has become increasingly common to alleviate drilling
challenges in real time. Drilling operation optimization and stuck
pipe prediction are two of the most critical areas in drilling engi-
neering and have been frequently investigated using AI applica-
tions. Mohaghegh [57] utilized an ANN for the real-time
identification of drilling anomalies and their related nonproductive
time (NPT). An ML model was developed by Unrau et al. [58] to
determine a real-time alarm threshold in order to detect anomalies
in flow rates and mud volume data during drilling operations. This
model assists in the early detection of lost circulation and mini-
mizes false alarm creation. Reinforcement learning algorithms
were applied by Pollock et al. [59] to refine a pretrained NN based
on 14 horizontal wells in the Permian and Appalachia basins. The
refined model managed to minimize tortuosity and deviations
from planned trajectories with a less than 3% error. Zhao et al.
[60] applied ML algorithms to derive a trend of different drilling
parameters in order to identify anomalous incidents and propose
remedial actions accordingly. An attempt was made to apply ML
algorithms to the optimization of a rate of penetration (ROP) using
drilling features such as weights on bit, flow rate, and rotations per
minute [61]. Goebel et al. [62] developed an ML model to predict
future stuck pipes based on the monitoring and investigation of
various parameters including ROP, pipe rotation, inclination angle,
and flow rate. A year later, real-time risk prediction during drilling
was presented by Dursun et al. [63]. ML algorithms were coupled
with data mining and natural language processing (NLP) tech-
niques to investigate daily drilling reports (DDRs) for two onshore
fields in the Middle East in an exceptionally short time, in order to
categorize productive and NPT and discover critical contributing
factors of NPT [64].
2. Challenges and opportunities

ML algorithms can be very effectively applied to address three
main types of problems: building surrogate models for understood
problems to reduce computational costs; building ML models for
problems that require human intervention and knowledge for
analysis; and building ML models for complex problems that were
previously impractical to be addressed. ML yields the fastest suc-
cess in realms in which the environment is straightforward, data
is easily available, and decisions are not expensive. Although most
cases of ML use in the petroleum industry do not meet any of these
criteria, as the environments are usually heterogeneous, decisions
are expensive (e.g., drilling a well), and data is sporadic, the invest-
ment in longer term gains through the effective application of ML
can provide a great deal of value, although thoughtful design and a
high degree of collaboration with domain experts is required [65].

Applying ML algorithms to petroleum engineering problems
requires a variety of challenges to be overcome. One challenge is
that the data often comes in a high volume (i.e., large amounts of
data), with a wide range of variety (i.e., many different data for-
mats) and veracity (i.e., data inconsistency and inaccuracy), and
at a high velocity (i.e., a high rate of data influx). Massive amounts
and varieties of data are being produced daily from downhole and
surface sensors installed on operational equipment in the petro-
leum industry. The industry utilizes structured and unstructured
data to keep track of production, safety, and maintenance. Acquir-
ing accurate data in the petroleum industry is usually difficult or
30
impossible, and can be expensive. As a result, obtaining sufficient
quantities of high-quality data for training and verification is a
prevalent challenge in the petroleum industry, which causes
uncertainties and noise in training data. In turn, such issues com-
promise the generalizability and accuracy of ML models. In addi-
tion, raw data is often not ready for ML algorithms and needs to
be preprocessed and cleaned. Subsurface uncertainties and data-
processing time delays are also important considerations. More-
over, such data usually resides in departmental silos, and the cor-
responding models are either unavailable or not open to others due
to confidentiality concerns and competitive edges—a problem that
is particularly prevalent in academic environments [65]. Further-
more, model explainability is important for geoscience, since it
can be just as important to know the reason for a result as it is
to know the result itself.

Perhaps due to the challenges mentioned above, ML adoption in
geoscience is not moving as quickly as in many other fields.
Although ML is a promising technique for using big data to dis-
cover input–output relationships and derive insights, ML perfor-
mance can be affected by the high dimensionality of the data.
This may lead to misleading correlations and impractical and unre-
liable clustering. It is noteworthy that data is usually ambiguous in
its initial state; thus, different preprocessing techniques are
required to identify salient features and make the ML model
capable of learning a system’s behavior. There is a risk that missing
data and a lack of system stability will introduce biases into ML
models, making it problematic to extract beneficial knowledge
from data [66]. Moreover, the considerations and challenges of uti-
lizing data from diverse sources should be taken into account. Pri-
vacy, security, and ethics related to data are also very important
aspects to consider. Hybrid modeling, which integrates ML algo-
rithms with physics-based methods, can be considered as a way
to mitigate the abovementioned problems. Furthermore, transfer
learning—in which a pretrained model is used as a starting point,
and then a model is trained on top of it by considering one’s own
training data—is a relatively recent ML technique that can poten-
tially be beneficial in geoscience contexts.
3. Perspectives

The potential of ML has not been fully used in two areas of the
petroleum industry—namely, reservoir simulation and text mining.
Reservoir simulation involves differential equations (DEs) that ade-
quately illustrate physical property changes over time and space
and are thus useful for describing physical phenomena in nature.
There are many problems in science and engineering that require
solving complicated DEs. However, DEs are remarkably difficult
to solve, and their associated simulations are extremely complex
and computationally intensive. This level of complexity requires
the use of giant computers to perform simulations and justifies
the interest in AI among researchers in this area. Utilizing DL,
which involves NNs with more than one hidden layer, is a promis-
ing technique that will speed up solving DEs and save scientists
and engineers a great deal of time and effort. Caltech researchers
have introduced a new DL technique for solving DEs that is more
accurate, generalizable, and 1000 times faster than traditional DL
algorithms [67]. This new adaptation is based on defining the input
and output in a Fourier space, as opposed to a Euclidean space in
traditional DL. This development will not only lessen the depen-
dency on supercomputers but also raise the computational capac-
ity to efficiently model more intricate problems.

The petroleum industry is just beginning to harness the power
of ML for smart reporting and extracting information from text
documents. Daily drilling and completion reports are two of the
main text-based documents in the industry that contain important
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text, as well as a variety of other types of data such as depths, cas-
ing sizes, hole sizes, and perforation depths. NLP and DL algorithms
can be used to develop models for automated quality control of
operations and performance improvement, providing approaches
that are far more efficient than the traditional approach of relying
on the knowledge of subject matter experts [68]. Several studies
have investigated text processing in the petroleum industry, with
a focus on topics including the text mining of operational data
for risk management and issue prediction [69], producing metrics
and pattern recognition based on contextual analysis of reports
[70,71], and reports classification [71]. Although the literature con-
tains such studies on using text mining techniques to mitigate
text-based challenges in the industry, there is still great potential
for ML in this area, and it must be further explored.

4. Concluding remarks

Data-driven approaches and AI algorithms hold enough promise
that they may someday be relied upon even more than physics-
based methods. Their main feed is data, which is the fundamental
element of each scenario. These algorithms learn from data and
reveal unseen patterns. Within the petroleum industry, there is
great interest in using this technology to gain insight from the
huge volumes of data that are generated every second. Many stud-
ies explore AI applicability in various subdisciplines of this indus-
try; however, there is a noticeable lack of two main features; that
is, most of the research on this topic is either not practical enough
to be applicable in real-field challenges or limited to a specific
problem and not generalizable. Attention must be given to data
itself and to how it is classified and stored. Although tremendous
volumes of data are produced in different disciplines, such data
remains within departmental silos and is not accessible by others.
To derive as much insight as possible from data, the data must be
stored in a centralized repository from which it can be readily con-
sumed for different applications. Between data acquisition and the
application of AI and ML techniques, data must be processed in
order to effectively extract features and ensure that the data can
effectively support the algorithms. Although AI and ML techniques
are increasingly important within the petroleum and reservoir
engineering domain, they are only part of a holistic system. In
order to ensure that this system can deliver value, careful consid-
eration is required to apply algorithms to this challenging domain,
and the right type, quality and volume of data must be available
and effectively processed to achieve the desired outcomes. Thus,
although AI is a critical tool to efficiently manage the world’s
underground resources, data is the key to fully exploit the
possibilities.
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