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Ovulation induction is a first-line medical treatment for infertility in polycystic ovary syndrome (PCOS).
Poor ovulation responses are assumed to be due to insulin resistance and hyperandrogenism. In a
prospective cohort (PCOSAct) of 1000 infertile patients with PCOS, whole-exome plus targeted single-
nucleotide polymorphism (SNP) sequencing and comprehensive metabolomic profiling were conducted.
Significant genome-wide common variants and rare mutations associated with anovulation were identi-
fied, and a prediction model was built using machine learning. Common variants in zinc-finger protein
438 gene (ZNF438) indexed by rs2994652 (p = 2.47 � 10–8) and a rare functional mutation in REC114
(rs182542888, p = 5.79 � 10–6) were significantly associated with failure of ovulation induction.
Women carrying the A allele of rs2994652 and REC114 p.Val101Leu (rs182542888) had lower ovulation
(odds ratio (OR) = 1.96, 95% confidence interval (95%CI) = 1.55–2.49; OR = 11.52, 95%CI = 3.08–43.05,
respectively) and prolonged time to ovulation (mean = 56.7 versus (vs) 49.0 days, p < 0.001; 78.1 vs
68.6 days, p = 0.014, respectively). L-phenylalanine was found to be increased and correlated with the
Homeostatic Model Assessment for Insulin Resistance (HOMA-IR) index (r = 0.22, p = 0.050) and fasting
glucose (r = 0.33, p = 0.003) for rs2994652, while arachidonic acid metabolism was found to be decreased
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and associated with increased anti-Müllerian hormone (AMH; r = –0.51, p = 0.01) and total testosterone
(TT; r = –0.71, p = 0.02) for rs182542888. A combined model of genetic variants, metabolites, and clinical
features increased the prediction of ovulation (area under the curve (AUC) = 76.7%). Common variants in
ZNF438 and rare functional mutations in REC114, associated with phenylalanine and arachidonic acid
metabolites, contributed to the failure of infertility treatment in women with PCOS.

� 2022 THE AUTHORS. Published by Elsevier LTD on behalf of Chinese Academy of Engineering and
Higher Education Press Limited Company. This is an open access article under the CC BY-NC-ND license

(http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Polycystic ovary syndrome (PCOS) is both a reproductive and a
metabolic disorder affecting 5%–10% of women of reproductive age
around the world. Women with PCOS suffer frommenstrual abnor-
malities, hirsutism, insulin resistance, metabolic syndrome, and
infertility [1]. Infertility occurs in up to 80% of women with PCOS
[2], due to infrequent or absent ovulation. Genetic factors play an
important role in the development of PCOS, and familial aggrega-
tion studies and twin-sister studies support the heritability of
PCOS [3]. So far, more than 200 candidate genes, involving sex hor-
mones, insulin action and calcium signaling, oxidative stress, and
endocytosis [4–6], have been identified by array-based genome-
wide association studies.

Aromatase inhibitors and selective estrogen receptor modula-
tors are used as a first-line medical treatment to induce ovulation.
However, 10%–40% of women with PCOS do not respond to the
pharmacotherapy [7,8]. The poor ovulation response in infertile
women with PCOS remains a significant clinical challenge. Cur-
rently, little is known about the causes of the failure of infertility
treatments. There are no effective screening markers or widely uti-
lized predictive models for selecting treatments for PCOS either.

Ovulation response might be influenced by genetic and meta-
bolic factors and by certain clinical characteristics mediated by
insulin signaling and steroidogenesis [9]. In this study, we assessed
the genetic variants, metabolic signatures, and associated clinical
features of anovulation in women with PCOS. We employed
whole-exome plus targeted single-nucleotide polymorphism
(SNP) sequencing and comprehensive metabolomics profiling to
identify novel genetic variants and the associated metabolic signa-
tures important for the ovulation response of infertility treatments.
y https://www.dynege.com/.
2. Materials and methods

2.1. Study design, population, and protocol

The blood samples used in this study were derived from a
prospective cohort (PCOSAct) which recruited 1000 infertile women
with PCOS to receive either clomiphene or placebo with or without
acupuncture [9,10], conducted at 27 hospitals between July 6, 2012,
and November 18, 2014. For center, 11 and 10 sites were geograph-
ically distributed to the southern and northern China, respectively. All
patients fulfilled the diagnostic criteria for PCOS according to the
modified Rotterdam criteria: oligomenorrhea or amenorrhea (men-
strual interval > 35 and 90 days, respectively), together with clinical
(modified Ferriman–Gallwey hirsutism score � 5 in Chinese
population) or biochemical hyperandrogenism (total testosterone
(TT) > 1.67 nmol�L–1), polycystic ovaries (> 12 follicles each, <
9 mm in diameter, or ovarian volume > 10 mL3), or both. The ethics
committees approved the trial, and it was registered in Clinical-
Trials.gov (NCT01573858) and chictr.org.cn (ChiCTR-TRC-12002081).

The PCOSAct is being carried out according to the principles of
the Declaration of Helsinki and is approved by the ethics committee
of the First Affiliated Hospital, Heilongjiang University of Chinese
Medicine. The trial was commenced after having obtained the
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approval of the Ethic Committees. Participants are informed of
the risks and benefits of the study, and they are allowed to volun-
tarily cease their participation in the study at any time for any rea-
sons. Written consent for the use of baseline blood samples for this
study was obtained from all participants.

2.2. Whole-exome plus targeted SNP sequencing

A FlexiGene DNA kit (Qiagen, Germany) was used to extract
DNA according to the manufacturer’s instructions. The integrity,
concentration, and purification of the samples were determined
by means of agarose gel electrophoresis. Purified genomic DNA
(> 0.4 lg) was used to construct libraries and was enriched in
protein-coding sequences with the QuarXeq Human Whole Exome
1.0 plus 200 K SNPs Kit (Dynege, China), according to Dynege’s
manufacturer protocoly. Samples were subjected to sequencing on
Illumina NGS systems. Raw data was processed according to the
gatk4-germline-snps-indels workflow. In brief, we converted multi-
ple pairs of inputted raw data (FASTQ files) to an unmapped BAM file
using the Genome Analysis Toolkit (GATK) software v4.1.2.0 (see
Section S1 in Appendix A). The quality control parameters for retain-
ing SNPs and subjects were as follows: SNPmissingness < 0.05 (before
sample removal), subject missingness < 0.02, autosomal heterozygosity
deviation (Fhet < 0.2), SNP missingness < 0.02 (after sample removal),
difference in SNP missingness between cases and controls < 0.02, and
SNP Hardy–Weinberg equilibrium (p > 1 � 10�6). Relatedness was
calculated using identity by descent, and one of each pair of related
individuals (pi_hat > 0.2) was excluded. Significant variants were further
validated using independent genotyping experiments.

2.3. Metabolomic profiling

Serum metabolic profiles were measured by means of ultra-
performance liquid chromatography (UPLC) and were input into
the Progenesis QI software (Waters, USA) for data preprocessing.
After the peaks were matched, extracted, and normalized, the ions
were normalized, and high-stringency hierarchical clustering and
discriminant analysis was performed on all ions, according to ovu-
lation outcome. Sparse partial least squares analysis was per-
formed to determine the contribution value of each ion to the
clustering. The inter-group separation was determined using t-
tests on the normalized data. Statistically significant ions between
groups were selected as candidate ions, and element matching and
secondary identifications were performed. The Human Metabo-
lome Database (HMDB) and Metaboanalyst website were used to
estimate the possible contributions of the metabolites. Based on
the mass fragment software attached to the Masslynx software
system, the obtained compounds and the secondary mass spec-
trum were used as inputs. The effectiveness of the metabolites
was demonstrated by means of data from pyrolysis mass spec-
trometry and the possibility of chemical structure cleavage. The
Kyoto Encyclopedia of Genes and Genomes (KEGG) was used for
analyzing metabolic pathways. The significant metabolites
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associated with the variants and mutations were considered to
constitute the metabolic signature for ovulation and were
validated with quantitative liquid chromatography-tandem mass
spectrometry (LC-MS/MS) methods specific for eicosanoids (see
Section S1 in the Appendix A).

2.4. Machine learning and the predictive model

The PCOSAct was conducted at 27 hospitals, including tradi-
tional Chinese medicine (TCM) and western medicine (WM) hospi-
tals. In total, 612 and 367 patients were recruited from the TCM
and the WM hospitals, respectively. For the machine learning,
the data from TCM hospitals were used as training set and internal
validation set, while the data from WM hospitals were used as
external validation set although there was no significant difference
between TCM and WM hospital in all the clinical outcomes. We
have built predictive models for ovulation based on selective traits,
with or without the polygenic risk score (PRS), significant risk
genotypes, and the levels of associated metabolite signatures and
their combinations. Linear regression (LR) was used to predict ovu-
lation first; the results were then compared with the results of dif-
ferent algorithms, including a support vector machine (SVM), K-
nearest neighbor (KNN), random forest (RF), gradient boosted deci-
sion tree (GBDT), and neural network (NN). During training, the
leave-one-out cross-validation testing method was used to con-
duct model parameter pruning. After training, internal and exter-
nal validations were conducted. All models yielded a normalized
probability of ovulation ranging from 0 to 1. We assigned patients
with a probability of less than 0.5 as having a low chance of ovula-
tion; otherwise, patients were assigned as having a high chance.
We ran the training and prediction tasks using the R package
‘‘caret” by setting the model parameters as ‘‘bayesglm,”
‘‘svmLinear,” ‘‘knn,” ‘‘rf,” ‘‘gbm,” and ‘‘avNNet” for the LR, SVM,
KNN, RF, GBFT, and NNmodels, respectively. We evaluated the pre-
diction performance of the models using the receiver operating
characteristic (ROC) curve (area under the curve (AUC)), accuracy,
sensitivity, specificity, positive predictive value (PPV), negative
predictive value (NPV), F1 score, Cohen’s Kappa coefficient (Kappa),
and Brier score. We used the ‘‘varImp” function in the ‘‘caret” R
package to calculate the feature importance.

2.5. Statistical analysis

For the association analysis of common variants, standardized
quality control, imputation, and statistical analyses were per-
formed using Rapid Imputation for COnsortias PIpeLIne (RICOPILI)
[11]. Genotype imputation was performed by means of the pre-
phasing/imputation stepwise approach implemented in Eagle
v2.3.5 [11] and Minimac3 [12] using the 1000 Genomes Phase3
Reference [13]. For the common variants analysis, the genome-
wide significance threshold was set at 5.0 � 10�8. Principal compo-
nents were generated for the sample, together with the third phase
of the international HapMap project (HAPMAP3) sample, using
EIGENSTRAT v8 [14]. For the rare variants analysis, the high-
quality variants marked as PASS were restricted by GATK. Variants
were annotated using the Ensembl Variant Effect Predictor. We
defined pathogenic variants as rare (minor allele frequency
<0.01) if they had scores for Sorting Intolerant From Tolerant (SIFT)
< 0.05, Polymorphism Phenotyping v2 (PolyPhen-2) > 0.8, or Com-
bined Annotation-Dependent Depletion (CADD) >20. The patho-
genic variants were used for single-variant and burden tests
using RVTESTS [15]. The significance level was set at 5.13 � 10�7

(0.05/97453) and 2.97 � 10�6 (0.05/16804) for the single-variant
and burden tests, respectively. All statistical analysis of genetic
associations of the variants with the ovulation were adjusted by
treatment, including acupuncture.
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Clinical data were described as the mean (standard deviation
(SD)) for continuous variables or as frequencies (percentages) for
categorical variables. The Mann–Whitney U-test or the v2 test
was used to compare the differences between groups, while the
Kruskal–Wallis test was used to compare the differences among
groups. Kaplan–Meier curves were used to assess the association
between time to first ovulation and risk genotype, and the mean
time to ovulation was calculated. The correlations between
metabolites and biochemical parameters were analyzed using
Spearman’s method. A prediction model was built by means of
logistic regression and then validated using deep machine learning
(see Section S1 in Appendix A). A two-tailed p value of < 0.05 was
defined as statistically significant, and all statistical analyses were
performed in R v3.6.1.
3. Results

3.1. Study population characteristics

A total of 979 and 936 baseline blood samples were available for
genomic sequencing and metabolomic profiling, respectively
(Fig. S1 in Appendix A). There were no significant differences in
baseline demographic characteristics between the clomiphene
and placebo groups. Ovulation (90.8% vs 66.0%, p < 0.001), concep-
tion (42.6% vs 21.6%, p < 0.001), clinical pregnancy (29.1% vs 15.1%,
p < 0.001), and live birth (27.3% vs 14.3%, p < 0.001) were signifi-
cantly higher in the women who received clomiphene compared
with those who received a placebo (Table 1).

The genetic background of our samples was consistent with
Han Chinese and Japanese populations but distinct from European
and African populations (Fig. S2 in Appendix A). Two loci associ-
ated with ovulation were identified in all women, including a com-
mon variant rs2994652 at locus 10p11.23 of ZNF438 (odds ratio
(OR) = 1.96 for A allele, 95% confidence interval (95%CI) = 1.55–
2.49, logistic regression p = 2.47 � 10–8) and a rare variant
rs182542888 of REC114 (p.Val101Leu; OR = 11.52, 95%CI = 3.08–
43.05, score test p = 5.79 � 10–6) (Fig. 1, Fig. S3 and Tables S1–S3
in Appendix A). Another two ZNF438 variants, rs57718262
(p = 2.84 � 10–7) and rs34486207 (p = 1.16 � 10–6), were also
associated with ovulation in the clomiphene and placebo groups,
respectively (Figs. S4 and S5 and Table S1 in Appendix A). The risk
of anovulation was 1.96- and 2.47-fold greater if any REC114
risk alleles were observed together with the ZNF438 rs2994652 risk
allele in total and in the clomiphene groups, respectively (Table S4
in Appendix A). Variants associated with other pregnancy
outcomes did not reach genome-wide significance.

3.2. Effects of variants on the time to first ovulation

The time to ovulation was significantly prolonged in women
carrying ZNF438 rs2994652 (Fig. 2(a)) or REC114 rs182542888
(Fig. 2(b)) alleles in the total (mean = 56.7 vs 49.0 days and 78.1
vs 68.6 days, respectively), clomiphene (mean = 42.0 vs 36.1 days
and 71.6 vs 39.5 days, respectively), and placebo (mean = 71.1 vs
63.5 days and 113.0 vs 68.9 days, respectively) groups, respec-
tively, as well as for those carrying rs34486207 and rs57718262
of ZNF438 (Fig. S6 in Appendix A).

3.3. Clinical features and ZNF438 protein expression

Women who ovulated had a lower body mass index (BMI), TT,
anti-Müllerian hormone (AMH), free androgen index (FAI), and fre-
quency of rs2994652 and rs182542888, but a higher menstrual
cycle and sex hormone-binding globulin (SHBG) than anovulatory
women, both overall and in the clomiphene and placebo groups



Table 1
Baseline demographic characteristics (values are mean (SD) unless stated otherwise).

Characteristics Clomiphene (n = 488) Placebo (n = 491) Total (n = 979) p valuesa

Age (years) 27.97 (3.36) 27.86 (3.25) 27.91 (3.31) 0.50
Height (cm) 161.20 (5.07) 161.22 (5.15) 161.21 (5.11) 0.43
Weight (kg) 62.71 (11.95) 63.47 (12.96) 63.09 (12.47) 0.43
BMI (kg�m�2) 24.06 (4.06) 24.36 (4.46) 24.21 (4.26) 0.42
Waist circumference (cm) 85.17 (11.29) 85.63 (11.78) 85.40 (11.53) 0.57
Hip circumference (cm) 98.11 (8.78) 98.73 (8.55) 98.42 (8.67) 0.30
Mean menstrual cycle per year 6.17 (1.98) 6.21 (2.19) 6.19 (2.09) 0.78
Mean menstrual interval (day) 70.16 (46.67) 68.86 (39.44) 69.51 (43.17) 0.76
Infertility duration (month) 23.77 (17.67) 24.04 (17.63) 23.91 (17.64) 0.76
Pause (beats per minute) 75.95 (5.99) 76.19 (6.50) 76.07 (6.25) 0.71
Systolic blood pressure (mmHg) 112.26 (9.64) 112.27 (9.17) 112.26 (9.40) 0.82
Diastolic blood pressure (mmHg) 74.82 (7.97) 74.78 (7.77) 74.80 (7.87) 0.88
Modified F–G score 2.96 (2.57) 3.11 (3.00) 3.03 (2.80) 0.95
Acne score 0.42 (0.75) 0.46 (0.78) 0.44 (0.76) 0.38
Acanthosis score 1.20 (0.46) 1.21 (0.48) 1.21 (0.47) 0.70
Left ovary antral follicle count 11.88 (2.83) 12.19 (3.18) 12.04 (3.01) 0.06
Right ovary antral follicle count 11.93 (2.67) 12.24 (2.95) 12.08 (2.82) 0.05
Polycystic ovary morphology (n (proportion)) 426 (87.3%) 440 (89.6%) 866 (88.5%) 0.30
LH (IU�L–1) 10.30 (6.08) 10.69 (5.80) 10.50 (5.94) 0.14
Follicle stimulating hormone (IU�L–1) 6.12 (1.66) 6.07 (1.66) 6.10 (1.66) 0.47
Estradiol (pmol�L–1) 284.32 (370.86) 255.31 (254.55) 269.83 (318.29) 0.95
Progesterone (nmol�L–1) 2.52 (4.68) 2.65 (5.50) 2.58 (5.10) 0.99
TT (nmol�L–1) 1.67 (0.66) 1.66 (0.64) 1.66 (0.65) 0.96
Free testosterone (pmol�L–1) 2.28 (0.81) 2.30 (0.88) 2.29 (0.84) 0.91
Sex hormone binding globulin (nmol�L–1) 43.37 (29.48) 41.92 (31.51) 42.65 (30.50) 0.09
AMH (ng�mL�1) 12.00 (6.63) 11.97 (6.09) 11.99 (6.36) 0.73
FAI 5.53% (4.04%) 6.17% (4.78%) 5.85% (4.43%) 0.16
Fasting insulin (pmol�L–1) 96.50 (94.18) 95.82 (82.50) 96.16 (88.51) 0.44
Glucose (mmol�L–1) 4.98 (0.94) 5.11 (1.02) 5.05 (0.98) 0.10
Total cholesterol (mmol�L–1) 4.69 (1.12) 4.80 (1.05) 4.74 (1.09) 0.06
Triglyceride (mmol�L–1) 1.53 (0.85) 1.61 (0.96) 1.57 (0.91) 0.37
High-density lipoprotein (mmol�L–1) 1.28 (0.39) 1.28 (0.36) 1.28 (0.37) 0.80
Low-density lipoprotein (mmol�L–1) 2.94 (0.90) 3.00 (0.85) 2.97 (0.88) 0.14
Fertility outcomes after treatment (n (proportion))
Ovulation 443 (90.8%) 324 (66.0%) 767 (78.3%) < 0.001
Conception 208 (42.6%) 106 (21.6%) 314 (32.1%) < 0.001
Clinical Pregnancy 142 (29.1%) 74 (15.1%) 216 (22.1%) < 0.001
Live birth 133 (27.3%) 70 (14.3%) 203 (20.7%) < 0.001
Pregnancy loss 71 (34.8%) 35 (33.3%) 106 (34.3%) 0.80

aClomiphene vs placebo.
IU: international unit; BMI: body mass index; FAI: free androgen index; LH: luteinizing hormone; 1 mmHg = 133.3 Pa.
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(Table S5 in Appendix A). Women who ovulated also had lower
systolic blood pressure, acanthosis score, fasting insulin, and
triglyceride level compared with anovulatory women in the clomi-
phene group, whereas lower luteinizing hormone (LH) was seen in
the placebo group. Both ZNF438 and REC114 protein expressions in
follicles were decreased in the ovary of women with PCOS com-
pared with healthy controls (Fig. S7 in Appendix A).

3.4. Metabolomic profiles

A group of baseline metabolites were separated based on the
ovulation response in the clustering analysis (Fig. S8 in Appendix
A). According to the rs2994652 and rs182542888 alleles, the
phenylalanine/tyrosine/tryptophan biosynthesis pathway
(hsa00400) and the arachidonic acid metabolic pathway were
enriched (Figs. S9–S11 in Appendix A). The levels of
L-phenylalanine, 4-hydroxyphenylpyruvic acid, indole, and
3-hydroxybenzoic acid were significantly higher in the women
carrying ZNF438 variants, whereas the levels of arachidonic acids,
leukotrienes, and prostaglandins were significantly lower and
those of hydroperoxides were significantly higher in women carry-
ing REC114 variants (Fig. 3). L-phenylalanine was positively associ-
ated with the Homeostatic Model Assessment for Insulin
Resistance (HOMA-IR) index (r = 0.219, p = 0.049) and fasting glu-
cose (r = 0.326, p = 0.003) but negatively associated with SHBG
(r = –0.268, p = 0.015) in women carrying ZNF438 variants. The
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levels of leukotrienes, prostaglandins, and hydroperoxides were
negatively associated with LH (r = –0.761, p = 0.011), TT
(r = –0.709, p = 0.022), and AMH (r = –0.507, p = 0.013) in women
carrying REC114 variants, respectively.

3.5. Prediction models created by machine learning

Selective clinical traits were included in the machine learning to
predict ovulation (Fig. S12 in Appendix A). The logistic regression
model incorporating risk genotypes and associated metabolites
performed better (Fig. 4) than that incorporating the risk geno-
types or their associated metabolites alone, with an AUC of 0.77,
a PPV of 0.84, and a Kappa coefficient of 0.29 in the external
validation (Table S6 in Appendix A). The important features for
the prediction included treatment, AMH, rs2994652, menstrual
cycle, BMI, rs182542888, acanthosis, smoking, modified
Ferriman–Gallwey (FG) score, hydroperoxides, and menstrual
interval, which were consistent with other models in the machine
learning experiment (Fig. S12).

4. Discussion

The common variant rs2994652 of ZNF438 and the rare mis-
sense mutation rs182542888 of REC114 were found to be signifi-
cantly associated on a genome-wide level with no ovulation
response in women with PCOS after ovulation induction. When



Fig. 1. Significant SNP in PCOS undergoing ovulation induction. (a) Overall Manhattan plot (left) and locus region (right, 10p11.23) of the variant ZNF438 rs2994652.
(b) Overall Manhattan plot (left, chromosome 15: 50–100 Mb) and locus region (right, 15q24.1) of the rare variant REC114 rs182542888. Both variants are significantly
associated with ovulation. In the Manhattan plots, the variants are indicated by gene name. For the locus region, linkage disequilibrium values are calculated based on
genotypes of the merged Italian and Spanish datasets derived from Trans-Omics for Precision Medicine (TOPMed) imputation. Positions in the genome assembly hg19 are
plotted. The recombination rate is shown in centimorgans (cM) per million base pairs (Mb). The plot shows the names and locations of the genes; the transcribed strand is
indicated with an arrow. Genes are represented with intronic and exonic regions. The red diamond in each panel represents the variant most strongly associated with the
corresponding outcomes. NPTN: neuroplastin gene. IT1: intronic transcript 1. A detailed quantile–quantile (QQ) plot and functional mutation are provided in Fig. S3 in
Appendix A; detailed variant information is shown in Tables S2 and S3 in Appendix A.
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the variant or mutation were present, both the risk of anovulation
and the mean time to first ovulation were significantly increased
after clomiphene treatment. Furthermore, L-phenylalanine was
significantly higher in women carrying the ZNF438 variants and
was positively correlated with HOMA-IR and fasting insulin,
whereas arachidonic acids levels were significantly decreased in
women carrying the REC114 variants and were negatively associ-
ated with TT, AMH, and LH. REC114 and ZNF438 variants are
involved in insulin-resistant and androgen-excessive manifesta-
tions in PCOS, resulting in no ovulation response and failure in
infertility treatment.

ZNF438 is located at 10p11.2 and is strongly expressed in the
ovary of a healthy adult female [16]. ZNF438 belongs to the
Krüppel Cys2His2 (C2H2) ZNF family, which is associated with
metabolic disorders such as obesity, hyperlipidemia, and cardio-
vascular diseases [17]. Phenylalanine, which is increased in both
peripheral and follicular fluid in women with PCOS [18,19], is ele-
vated and positively linked with the HOMA-IR index in women car-
rying the ZNF438 variants. The phenylalanine/tyrosine/tryptophan
biosynthesis pathway has been shown to contribute to insulin-
signaling defects in PCOS via insulin receptor substrate phosphory-
lation. Insulin resistance, a core pathological feature of PCOS,
involves not only anovulation in the ovary but also systematic
metabolic disorders, such as obesity, hyperlipidemia, metabolic
syndrome, and nonalcoholic fatty liver disease [20]. In addition
to a higher frequency of ZNF438 variants, we found that anovula-
tory women with PCOS receiving clomiphene had a greater waist
circumference, systolic blood pressure, triglyceride level, and fast-
ing insulin level, which are the main components of metabolic syn-
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drome. Therefore, insulin resistance in the ovary and peripheral
tissues secondary to ZNF438 variants results in both poor ovulation
and systematic metabolic disorders, via the phenylalanine biosyn-
thesis pathway.

REC114 is located at 15p11.2 and is essential for DNA double-
strand break formation during meiosis [21], in addition to its role
in oocyte maturation and embryonic arrest [22]. REC114 serves
as a promoter and enhancer in many cellular processes, such as
immune response, inflammation, and proliferation. Here, we found
that decreased prostaglandin was negatively correlated with TT,
whereas increased hydroperoxides were negatively correlated
with AMH in women carrying REC114 variants. Elevated intrafollic-
ular prostaglandin E2 (PGE2) mediates key ovulatory events,
including cumulus expansion, follicle rupture, and oocyte release
in the process of ovulation [23]. REC114 variants may contribute
to oocytes failing to resume meiosis following the ovulatory surge
of LH, and a decreased arachidonic acid level induces follicle
maturation arrest [24], which may stimulate the antral follicles
to produce more AMH and testosterone from the granulosa and
theca layers. In addition, compared with healthy controls, prosta-
glandins such as PGE2, are significantly lower in women with PCOS
and decrease after exposure to androgen but not to insulin [25].
Therefore, it is plausible that the REC114 mutation results not only
in ovulation failure but also in worsened ovarian androgenesis via
the arachidonic acids metabolism pathway.

Methods are still lacking for identifying women with no ovula-
tion response before starting infertility treatment. Various clinical,
endocrine, and ovarian ultrasonographic characteristics have been
explored as predictors of ovarian response. However, certain



Fig. 2. Kaplan–Meier curves of the variants on ovulation. Probability of ovulation with risk genotype (red) vs non-risk genotype (blue) after clomiphene (left) or placebo
(right) treatment in different variants. Compared with the non-risk genotype, women with the variants (a) ZNF438 rs2994652 and (b) REC114 rs182542888 exhibited
significantly prolonged ovulation time in both the clomiphene (mean = 42.0 vs 36.1 days and 71.6 vs 39.5 days, respectively) and placebo (mean = 71.1 vs 63.5 days and 113.0
vs 68.9 days, respectively) groups.
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biomarkers, such as FAI, are not accurately measured, which limits
their use [26]; moreover, AMH, which is a marker of ovarian
reserve, has poor predictive ability for ovulation when serum levels
are >7.0 ng�mL�1, which is frequently the case in women with
PCOS [27]. Recently, BMI, infertility duration, insulin and glucose
levels, and hyperandrogenism have been consistently identified
as predicting ovulation in cross-validation using two separated
PCOS cohorts [27,28]. Given its advantages of flexibility, scalability,
and ability to analyze diverse data types [29], we used machine
learning to create ovulation prediction models by combining
genetic and metabolic factors; in addition, the performance of
the models was found to be improved as risk genotypes and asso-
ciated metabolites were included. In addition to intervention, BMI,
acanthosis, mF-G score, and AMH, the ZNF438 and REC114 risk
genotypes were identified as the key traits of ovulation prediction.
AMH and modified FG score (as an indicator of hyperandrogenism)
were linked to REC114 variants, while BMI, acanthosis, and systolic
blood pressure were associated with insulin resistance mediated
by ZNF438 variants. Thus, REC114 and ZNF438 mutations and their
relevant clinical features provide insights into the response in Han
Chinese women with PCOS undergoing ovulation induction.
Genetic testing for precision medicine is very popular in clinical
practice, especially for cancer and some degenerative diseases.
Follicle-stimulating hormone receptor (FSHR) SNPs have been
explored as predictors of ovarian response, although this usage
has minimal clinical potential. Based on our findings, targeted gene
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sequencing of the risk allele by Sanger sequencing or genotyping
by polymerase chain reaction (PCR) will be a very fast and inexpen-
sive test to identify poor responders [30], which will help to tailor
personalized therapy for infertility in the future.

In this study, we focused on identifying the genetic factors of
responses to treatment, based on a cohort with ovulation induction
in women with PCOS. Surprisingly, instead of candidate genes for
the pathomechanism of PCOS, such as FSHR and so forth, the novel
risk genes ZNF438 and REC114 were found to be significant on a
genome-wide level, in common variant and rare variant analyses,
respectively. The identified risk genotypes and metabolites were
involved in insulin signaling and androgen biosynthesis, as well
as in ovulation independent of clomiphene treatment, suggesting
a wider implication for other ovulation induction treatment. Nev-
ertheless, there are still limitations in our study. First, our study
had a relatively moderate sample size. However, it was based on
the patient intervention cohort of a randomized trial, with treat-
ment response for the whole exome and targeted SNP sequencing,
which is different from case-control genetic studies between indi-
viduals with PCOS and healthy individuals. Second, the results
might be relevant only for Han Chinese women with PCOS. Larger
sample size cohorts and different study populations with medical
ovulation induction might identify other relevant and
population-based variants and further validate the results pre-
sented here. Third, wide spectrums of clinical presentations for this
disease and absent potential important predictor may be responsi-



Fig. 3. Metabolic effects of ZNF438 and REC114 variants in PCOS. (a) The mechanism of clomiphene resistance and systemic effects on ovulation in PCOS with the ZNF438 and
REC114 risk variants (ZNF438mut and REC114mut). (b) Quantitative levels (normalized logarithm transformed concentrations) of the significant metabolites of phenylalanine/
tyrosine/tryptophan biosynthesis pathway (L-phenylalanine) for ZNF438mut, and the arachidonic acid metabolism (arachidonic acid) for REC114mut identified by
metabolomics profiling. (00: wild type (pink); 01: heterozygous (blue); 11: homozygous (green). Data presented by the box and whisker plots are the median, first, and third
quartiles, and the 5th and 95th percentiles; the p values are from linear mixed modeling. Details of the metabolomics profiling and significant metabolic pathway are
provided in Figs. S8–S12 in Appendix A.) (c) I. Correlation plots of L-phenylalanine concentrations (normalized logarithm transformed concentrations) with SHBG and glucose
levels and the Homeostatic Model Assessment for Insulin Resistance (HOMA-IR) index in association with ZNF438 risk (orange) and non-risk (blue) genotypes, respectively.
(SHBG: non-risk, r = –0.088, p = 0.012; risk, r = –0.268, p = 0.015; glucose: non-risk, r = 0.246, p = 0; risk, r = 0.326, p = 0.003; HOMA-IR: non-risk, r = 0.128, p = 0; risk, r = 0.219,
p = 0.049.) II. Correlation plots of leukotrienes, prostaglandins, and hydroperoxides concentrations (normalized logarithm transformed concentrations) with LH, TT, and AMH
levels in association with REC114 risk (orange) and non-risk (blue) genotypes, respectively. (Leukotrienes: non-risk, r = –0.082, p = 0.014; risk, r = –0.761, p = 0.011;
prostaglandins: non-risk, r = –0.033, p = 0.325; risk, r = –0.709, p = 0.022; hydroperoxides: non-risk, r = –0.076, p = 0.022; risk, r = –0.507, p = 0.013.) The term r denotes the
Spearman rank correlation coefficient; the p values are from linear mixed models.
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Fig. 4. Prediction of ovulation. (a) Different testing datasets for the prediction of ovulation in women with PCOS after treatment. Logistic regression was used to differentiate
ovulation from anovulation via a combination of clinical features plus genetic factors by significant risk genotypes (SNPs, ZNF438 rs2994652, and REC114 rs182542888) and
metabolic signatures by associated metabolites (L-phenylalanine, arachidonic acid, leukotrienes, prostaglandins, and hydroperoxides), with AUCs that ranged from 0.6927
(95%CI, 0.676–0.7955) to 0.7671 (95%CI, 0.7059–0.8283). (b) A comparison of AUCs, ranking, and importance of the selected risk genotypes (ZNF438 rs2994652 and REC114
rs182542888) and metabolic signature (hydroperoxides) in different models. The combined model with both factors increases the prediction values in terms of AUC, ranking,
and importance. A comparison of this model with other models through the deep machine learning system for ovulation outcome is provided in Fig. S12, and detailed values
of each model are shown in Table S6.
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ble for the little improvement of predictive performance, more-
over, it implies that genetic and metabolic factors, compared with
clinical traitors, seem to have limited role in predicting clinical out-
comes, such as FSHR polymorphisms [31].
5. Conclusions

In conclusion, variants in two novel genes, ZNF438 and REC114,
alongside the two new metabolic signatures of L-phenylalanine
and arachidonic acids, contribute to the failure of infertility treat-
ment. These findings provide a better understanding of the disease
mechanism and will help to develop personalized infertility treat-
ment for women with PCOS.
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