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Although the association between immunoglobulin G (IgG) N-glycosylation and metabolic traits has been
previously identified, the causal association between them remains unclear. In this work, we used
Mendelian randomization (MR) analysis to integrate genome-wide association studies (GWASs) and
quantitative trait loci (QTLs) data in order to investigate the bidirectional causal association of IgG N-
glycosylation with metabolic traits. In the forward MR analysis, 59 (including nine putatively causal gly-
can peaks (GPs) for body mass index (BMI) (GP1, GP6, etc.) and seven for fasting plasma glucose (FPG)
(GP1, GP5, etc.)) and 15 (including five putatively causal GPs for BMI (GP2, GP11, etc.) and four for
FPG (GP1, GP10, etc.)) genetically determined IgG N-glycans were identified as being associated with
metabolic traits in one- and two-sample MR studies, respectively, by integrating IgG N-glycan-QTL vari-
ants with GWAS results for metabolic traits (all P < 0.05). Accordingly, in the reverse MR analysis of the
integrated metabolic-QTL variants with the GWAS results for IgG N-glycosylation traits, 72 (including one
putatively causal metabolic trait for GP1 (high-density lipoprotein cholesterol (HDL-C)) and five for GP2
(FPG, systolic blood pressure (SBP), etc.)) and four (including one putatively causal metabolic trait for GP3
(HDL-C) and one for GP9 (HDL-C)) genetically determined metabolic traits were found to be related to the
risk of IgG N-glycosylation in one- and two-sample MR studies, respectively (all P < 0.05). Notably,
genetically determined associations of GP11 ? BMI (fixed-effects model-Beta with standard error (SE):
0.106 (0.034) and 0.010 (0.005)) and HDL-C ? GP9 (fixed-effects model-Beta with SE: –0.071 (0.022)
and –0.306 (0.151)) were identified in both the one- and two-sample MR settings, which were further
confirmed by a meta-analysis combining the one- and two-sample MR results (fixed-effects model-
Beta with 95% confidence interval (95% CI): 0.0109 (0.0012, 0.0207) and –0.0759 (–0.1186, –0.0332),
respectively). In conclusion, the comprehensively bidirectional MR analyses provide suggestive evidence
of bidirectional causality between IgG N-glycosylation and metabolic traits, possibly revealing a new
richness in the biological mechanism between IgG N-glycosylation and metabolic traits.

� 2022 THE AUTHORS. Published by Elsevier LTD on behalf of Chinese Academy of Engineering and
Higher Education Press Limited Company. This is an open access article under the CC BY-NC-ND license

(http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction resistance, dyslipidemia, and hypertension [1,2]. These conditions
Metabolic syndrome is a set of widely prevalent and
multifactorial metabolic disorders, including obesity, insulin
are interrelated and share underlying mediators, mechanisms,
and pathways [2]. However, the molecular mechanisms of meta-
bolic disorders are not fully understood. Metabolic disorders are
critical risk factors for fatal diseases (including cardiovascular dis-
ease, stroke, and cancer) [3–5], which escalate global public health
problems and exacerbate the global burden of related fatal dis-
eases. Therefore, exploring the pathogenesis of metabolic traits is
of great importance for the prevention and intervention of meta-
bolic disorders.
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Glycosylation, as a crucial and common posttranscriptional
attachment of proteins, is involved in many biological and/or
pathological processes [6–8]. Previous studies have shown that
more than half of all known proteins have a glycan structure,
which affects the function of the protein [7,9]. As the most com-
mon type of antibody, immunoglobulin G (IgG) plays a crucial role
in nonspecific immune function. N-glycans are remarkably abun-
dant and diverse, and are usually found on the outermost surface
of the IgG binds to cellular and secreted macromolecules. The
placement of N-glycans induces the effects of the Fc region of an
IgG macromolecule in antibody-based immunity in humans. Alter-
ation of N-glycosylation significantly influences IgG structure and
function and, by extension, its immunological properties, thereby
causing a shift between pro- and anti-inflammatory IgG functions
[7,10,11]. Altered IgG N-glycans have been shown to be involved in
several metabolic disorders, including obesity [12], dyslipidemia
[13], hypertension [14], and type 2 diabetes mellitus (T2DM)
[15,16]. However, the causality between the alteration of IgG N-
glycosylation and metabolic traits remains to be determined.

Recently, Mendelian randomization (MR) has been increasingly
used to make causal inferences between risk factors and outcomes.
More specifically, using a variety of instrumental variable (IV) anal-
ysis methods, MR studies rely on the natural, random assortment
of genetic variants during gamete formation, which greatly reduces
the impact of reverse causality and confounding factors [17–19].
Nevertheless, due to genetic variation, the MR approach is usually
biased by weak IVs that only explain a small part of the exposure
variance [20–22]. Genome-wide association studies (GWASs) have
ascertained genetic variants related to quantitative exposure, and
thus provide knowledge of quantitative trait loci (QTLs) [23–26].
Integrating QTL data and GWAS analysis can increase the ability
of GWASs to ascertain genetic loci controlling complex traits and
improve the explanation of trait variance—suggesting that QTL
variants could provide highly effective IVs for risk factors in MR
studies [23,26,27]. Previous studies have reported that the poly-
morphisms of B3GAT1, SLC9A9, MGAT5, FUT8, FUT6/FUT3, and
HNF1A are linked with variation within the plasma N-glycome in
European adults [28], and that these variants are involved in the
regulation of glycoenzymes and play crucial roles in the process
of IgG N-glycosylation among people of European descent [29].
Consequently, we assumed that identifying IgG N-glycan-QTLs
IVs and integrating them into disease (outcome)-related IVs
(genetic variants) in a GWAS could help elucidate the underlying
molecular mechanisms of genetic susceptibility to diseases, at least
in part due to altered IgG N-glycans.

In fact, it should be pointed out that all current MR approaches
present the challenge of discriminating the mediation effect from
horizontal pleiotropy [30,31], with the former being interpreted
as results when the genetic variant affects the target outcome
through multiple phenotypes (outside of the pathway of interest
exposure). We hypothesized that the association between IgG
N-glycosylation and metabolic traits might have bidirectional
causality, which might contribute to bidirectional regulation based
on independent pathogenic mechanisms or pathways.

With the continuous development and optimization of
glycoengineering techniques, glycans provide a novel dimension
of medical science—namely, glycomedicine, in which glycomics
approaches can be employed with the aim of better targeting
disease diagnostics, drug discovery, and dosing based on individual
glycomics profiles to enable preventive, predictive, and precision
medicine [32]. Therefore, we undertook a bidirectional MR analysis
integrating GWASs for metabolic traits/IgG N-glycans and IgG
N-glycan-QTLs/metabolic-QTLs data in order to assess the causa-
tion between IgG N-glycosylation and metabolic traits in East
Asians. Our study further identified the mechanisms underlying
genetic susceptibility to complex traits and explored the regulatory
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mechanisms of IgG N-glycosylation. This work may provide a cer-
tain basis for the development of glycomedicine targeting meta-
bolic status or diseases and may contribute to facilitating timely
healthy-lifestyle interventions and treatment decisions for
metabolism-related diseases from the perspectives of prediction,
prevention, and precision medicine.
2. Materials and methods

In this study, we used two approaches relying on two data
sources, as follows: We used a one-sample MR approach, in which
the IV-exposure and IV-outcome effects were evaluated in the
same sample; and we applied a two-sample MR approach, in which
the IV-exposure and IV-outcome effects were assessed in different
samples. The overall design used for this study is delineated in
Fig. S1(a) in Appendix A.
2.1. One-sample MR study based on individual-level data

2.1.1. Study participants
This study was based on a community-based cohort cross-

sectional study using data from Xuanwu Hospital, Capital Medical
University, Beijing, China. More detailed descriptions of the study
design and evaluation methodologies have been previously
reported [12,33]. All participants met the following inclusion crite-
ria: ① an age greater than or equal to 18 years; ② no medication
history in the past 2 weeks; and ③ having IgG N-glycosylation and
GWAS data. In addition, the exclusion criteria were presented as
follows: If the participants had a history of mental illness, infec-
tious disease, malignant tumor, stroke, or other cerebrovascular
diseases and/or presented incomplete data, they were excluded
from this study. In total, 536 participants who aligned with the
above inclusion and exclusion criteria were included in the study.
Each participant was required to sign written informed consent
before enrollment. The study was approved by the Ethics Commit-
tee of the Capital Medical University, Beijing, China (No.
2009SY16), and was performed in accordance with the principles
expressed in the Declaration of Helsinki.
2.1.2. Data collection
All participants completed routine physical examinations that

contained anthropometric measurements and biochemical tests;
detailed information is described in our previous report [33]. Blood
pressure (BP), including diastolic blood pressure (DBP) and systolic
blood pressure (SBP), was measured (with at least 5 min of rest) on
the right arm with a standard mercury sphygmomanometer by
trained nurses. The height, weight, and body mass index (BMI) of
the participants were measured with the participants wearing light
indoor clothing and no shoes. After an overnight fast, peripheral
blood from the subjects were collected in the morning in ethylene-
diaminetetraacetic acid (EDTA) anti-coagulated tubes for the
detection of biochemical indexes. Biochemical traits related to
metabolism (triacylglycerol (TG), high-density lipoprotein choles-
terol (HDL-C), total cholesterol (TC), low-density lipoprotein
cholesterol (LDL-C), and fasting plasma glucose (FPG)) were
assayed as previously described [13]. Since the metabolic indica-
tors were not normally distributed, we used zero-mean normaliza-
tion (z-score normalization) to process the metabolic trait data and
then continued the subsequent analysis. In this MR study, we inte-
grated GWAS and QTL data to assess the causality between IgG N-
glycosylation and metabolic traits. Therefore, the metabolic traits
included in this study were BMI (kg�m�2), SBP (mmHg,
1 mmHg = 0.133 kPa), DBP (mmHg), TG (mmol�L–1), HDL-C
(mmol�L–1), TC (mmol�L–1), LDL-C (mmol�L–1), and FPG (mmol�L–1),



y https://cnsgenomics.com/shiny/mRnd/; accessed in December 2021.
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which were used as continuous variables for subsequent statistical
analysis.

2.1.3. Analysis of the IgG N-glycome
We performed IgG N-glycans detection on all participants, as

previously described [34]. In brief, IgG was separated from the
human plasma samples of all subjects utilizing pretreated 96-
well protein G monolithic plates. The isolated IgG was dried and
denatured according to standard experimental procedure; then,
the sample was incubated for 18–20 h (37 �C) to obtain the
released IgG N-glycans.

Next, 2-aminobenzamide labeling solution was added to each
released IgG N-glycans sample, incubated for 3 h at 65 �C, and then
filtered to obtain the labeled N-glycans. Hydrophilic interaction
chromatography-ultraperformance liquid chromatography was
used to separate and detect the IgG N-glycan profiles. The sepa-
rated chromatograms were first processed by the automatic pro-
cessing method with a traditional integration algorithm; then,
the chromatograms were manually corrected to ensure that all
the analytic samples maintained the same intervals of integration.
Finally, 24 glycan peaks (GPs; GP1–GP24) were obtained according
to peak position and retention time, and the amount of glycans in
each peak was expressed as a percentage (%) of the total integrated
area. Detailed structures of the N-glycans in each peak have been
previously described [34]. To control the experimental variability,
we used batch correction and z-score transformation methods to
deal with the original glycan data in order to make all data compa-
rable [13,34].

2.1.4. Genotyping and genotype imputation
The IgG N-glycan-QTL genetic variants were applied as the IVs

from the IgG N-glycans GWAS, which was conducted in 536
participants with both genetic and IgG N-glycosylation data from
Xuanwu Hospital, Capital Medical University, Beijing, China [33].
We used Illumina Omni Zhonghua chips (Illumina, USA) to perform
the genotyping procedures. The quality control process was
performed as previously described in detail [35]. Genotypes were
imputed using the East Asian component of the 1000 Genomes
Project panel phase 3 via the Michigan Imputation Server [36].
Single nucleotide polymorphisms (SNPs) with an imputation
quality ratio > 0.30 and a minor allele frequency (MAF) > 0.01 were
retained, leaving 7 108 659 imputed SNPs that were subsequently
used for IgG N-glycan-QTLs mapping. We did not correct the
principal component (PC), as we did not encounter the problem
of population stratification.

2.1.5. Statistical analyses
With the individual-level data from one sample, we used a

series of MR analyses to investigate the relationship between IgG
N-glycosylation and metabolic traits. A genome-wide IgG
N-glycan-QTL study was performed to identify genetic variants
known to influence IgG N-glycosylation. In total, 7 108 659
imputed genetic variants against each of the 24 IgG N-glycans were
tested in 536 participants. Adjusting for age and gender, IgG N-
glycans and SNPs were used as dependent variables and indepen-
dent variables, respectively, and the correlation between each
SNP and the IgG N-glycans was tested by means of linear regres-
sion. We then performed GWASs for metabolic traits, adjusted
for the same covariates of age and gender. Next, using SNPs as
independent variables and each metabolic trait as a dependent
variable, the correlation between each SNP and each metabolic
trait was estimated by means of linear regression. To screen the
IgG N-glycan-QTLs as IVs for IgG N-glycans, we performed a rela-
tively conservative Bonferroni correction to select IVs (i.e.,
P < 1� 10–5). Previous studies have suggested that a weak standard
of significance level of 1 � 10–5 can be used for causal inference in
76
MR studies, especially in studies with a small sample size [37,38].
Considering that our GWAS was based on 536 individuals, a
relaxed standard 1 � 10–5 was used to filter out candidate SNPs
as instrumental variables (IVs) in the one-sample forward MR anal-
ysis. Since there is high linkage disequilibrium (LD) between many
significant IgG N-glycan-QTLs and metabolic-QTLs, only the inde-
pendent IgG N-glycan-QTLs/metabolic-QTLs for each IgG N-glycan
and/or metabolic trait was retained (the r2 of LD < 0.001). We
selected the SNPs with the lowest P values from the genetic vari-
ants with LD. Moreover, LD proxies were defined based on 1000
genomes from East Asian samples. To reduce the bias of vertical
pleiotropy, overlapping SNPs as candidate IVs for both IgG
N-glycans and metabolic traits were removed [39]. The retained
SNPs were then used as final IVs. We estimated the variance in
exposures explained by each SNP (R2 = (2 � Beta2 � MAF � (1 –
MAF))/(2 � Beta2 � MAF � (1 – MAF) + SEBeta2 � 2 � N � MAF �
(1 – MAF)) [40] and summed them to calculate the overall R2

and F-statistics (R2 � (N – 2)/(1 – R2)). A higher R2 and F-statistic
suggested a lower risk of weak instrument bias.

To evaluate the bidirectional causality between IgG N-glycans
and metabolic traits, the inverse-variance weighted (IVW)
method was adopted in the main MR analyses; this method
was performed using the mr_ivw function based on the R package
MendelianRandomization (version 0.6.0). We used the observed
correlation between IgG N-glycosylation and metabolic traits to
explain the relationship between genetic association with IgG
N-glycosylation and genetic association with metabolic traits
due to sample overlap. An IVW Q test was conducted to test
the heterogeneity of the IVs. If heterogeneity existed (P < 0.05),
the random-effect IVW method was applied; otherwise, the
fixed-effect IVW method was used. We also implemented sensi-
tivity analyses to determine potential violations of valid IV
assumptions using the weighted median (WM) and the MR-
Egger regression. The intercept of the MR-Egger analysis can be
used to evaluate pleiotropy. If a pleiotropic effect was not
observed, meaning that the threshold of the MR-Egger intercept
was more than 0.05, then the results of the IVW MR method were
retained. The MR pleiotropy residual sum and outlier
(MR-PRESSO) was also performed, in which the global test was
used to examine horizontal pleiotropy [31] (R package
MR-PRESSO, version 1.0). As some weak IVs were included in
the one-sample MR analysis, the MR robust adjusted profile score
(MR.RAPS) method (R package mr.raps, version 0.2) was further
used to make the results more robust [41]. In addition, we per-
formed leave-one-out sensitivity analyses, in which SNPs were
excluded in turn for analyses, in order to investigate SNPs that
could potentially bias the causal association. Moreover, a previous
study reported that an inflammatory marker—namely, C-reactive
protein (CRP)—was associated with the level of IgG N-glycans
[42]; therefore, the study further investigated whether CRP in fact
mediates the effect of IgG N-glycans on metabolic traits and vice
versa, by means of a multivariable MR analysis performed using
the IVW, WM, and MR-Egger regression approaches. The results
were recorded as the Beta and standard error (SE) of the out-
comes per genetically predicted increase in each exposure. The
power of the MR studies was determined using mRnd onliney.

The study data were cleaned by means of R language 4.0.0,
and statistical analysis was conducted using R language 4.0.0
and PLINK 1.9. To adjust for multiple testing, Benjamini–Hoch
berg’s (BH) procedure was used to control the false discovery
rate (FDR). The above findings showed limited pleiotropic bias
(MR-Egger intercept: P > 0.05; MR-PRESSO global test:
PFDR > 0.05).

https://cnsgenomics.com/shiny/mRnd/
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2.2. Two-sample MR study based on summary-level data

2.2.1. Data source
The GWAS results for the IgG N-glycans based on the above one-

sample study and GWAS results for metabolic traits based on sum-
mary statistics obtainedbyBiobank Japany [43]were used to perform
two-sample MR analyses. The GWASs incorporated gender, age, the
top 10 PCs, and the affection status of 47 diseases as covariates. The
sample size of the summary statistics of the GWAS about metabolic
traits based on Japanese ancestry populations was 158 284 for BMI,
93 146 for FPG, 136 597 for SBP, 136 615 for DBP, 105 597 for TG,
128 305 for TC, 70 657 for HDL-C, and 72 866 for LDL-C. The GWAS
summary data for CRP used in the above one-sample MR study was
also based on Biobank Japan, with a sample size of 75 391.

2.2.2. Statistical analyses
The IVs for the IgG N-glycans in the two-sample MR were

similar to those in the one-sample MR (significance threshold at
P < 1 � 10–5). For each metabolic trait, we selected SNPs associated
with the metabolic traits at genome-wide significance thresholds
P < 5 � 10–8 in the two-sample MR study. The process of selecting
IVs in the two-sample MR was the same as that in the one-sample
MR. Furthermore, in the two-sample MR analysis, the PhenoScanner
tool was applied to check and exclude any of the selected SNPs
(IVs) associated with other potential phenotypes affecting the out-
comes�. In the main MR analyses, the IVW method was used to
assess the bidirectional causality between IgG N-glycosylation and
metabolic traits based on the twosampleMR R package (version
0.5.6). For the two-sample MR analysis of IVW, it was not necessary
to consider the problem of sample overlap. The other analyses fol-
lowed the same processes as those used for the one-sample MR anal-
yses. The BH procedure was used to control the FDR in the MR
analysis. The above findings were of limited pleiotropic bias (MR-
Egger intercept: P > 0.05; MR-PRESSO global test: PFDR > 0.05).

2.3. Meta-analysis and the comparison of the one- and two-sample MR
analyses

If one or both of the one- or two-sample MR results for the same
exposure associated with an outcome were statistically significant,
we then used IVW meta-analytic technology to combine the IVW
method results from the one- and two-sample MR studies (R pack-
age meta, version 4.18–2). The combined results are recorded as
Beta with a 95% confidence interval (95% CI). Random-effect IVW
models were used if heterogeneity existed (P < 0.05); otherwise,
a fixed-effect IVW model was used. The use of Bonferroni correc-
tion for multiple testing adjusted the significance level to
P < 0.05/24 (0.0021) in the meta-analysis. The overlapping poten-
tial causal associations of metabolic traits with IgG N-glycans were
also compared in the one- and two-sample forward MR studies,
and vice versa.

In this study, a P value of less than 0.05 was regarded as sugges-
tive evidence for a potential association. A P value corrected by the
BH procedure to be less than 0.05 or a P value corrected by the
Bonferroni method to be less than 0.0021 was regarded as evidence
for a potential association. All statistical analyses were imple-
mented using R version 4.0.0 and PLINK 1.9.

2.4. Bioinformatics analyses

The annotations of the SNPs of the corresponding located genes
were obtained online g:Profiler toolyy. To functionally annotate
y http://jenger.riken.jp/en/result; accessed in April 2021.
� http://www.phenoscanner.medschl.cam.ac.uk/; accessed in September 2022.
yy https://biit.cs.ut.ee/gprofiler/snpense; accessed in December 2021.
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putative genetic variants, a functional enrichment analysis for the
identified genes was applied using the functional annotation tool
Metascape [44] for the genes harboring the IgG N-glycan-QTLs.
Enrichment analyses, including the gene ontology (GO) and Kyoto
Encyclopedia of Genes and Genomes pathway, were performed using
gene symbols, with putative genes (P < 0.05) as the input.
2.5. Explanations for the findings

As presented in Fig. S1(b) in Appendix A, the causal relation-
ships between IgG N-glycosylation and metabolic traits were
depicted as four possible conditions, which were investigated
through bidirectional MR analysis. Based on the screened SNPs as
IVs, the bidirectional MR analysis (i.e., forward and reverse MR set-
tings) did not overlap between IgG N-glycosylation and metabolic
traits. Four possible explanations were determined from our
results:

� Explanation 1. One or more genetic variants (SNPs) affect
metabolic traits, mediated by IgG N-glycosylation.

� Explanation 2. One or more genetic variants (SNPs) affect
metabolic traits through alternative biological mechanisms,
which then play a downstream role in IgG N-glycosylation.

� Explanation 3. There is bidirectional causality between IgG
N-glycosylation and metabolic traits through independent
biological pathways.

� Explanation 4. There is no causal association between IgG
N-glycosylation and metabolic traits, and the association
between IgG N-glycosylation and metabolic traits may be
caused by confounders.

In Fig. 1, we provide an overview of the MR approach used to
explore these four explanations. A forward MR study was imple-
mented to evaluate whether the level of IgG N-glycosylation influ-
enced the metabolic trait (Explanation 1). To robustly test
Explanation 2, reverse MR analysis was performed to appraise
whether the metabolic trait affected the IgG N-glycosylation levels
of interest. A P value > 0.05 indicated that Explanation 2 was unli-
kely in each instance. If there was bidirectional causality between
IgG N-glycosylation and metabolic traits, with a P value < 0.05
under both forward and reverse MR settings, then these findings
were interpreted as supporting Explanation 3—that is, that there
is significant causality between IgG N-glycosylation and metabolic
traits in both the forward and reverse MR, and that bidirectional
regulation is carried out through different pathogenic pathways.
When the P value was > 0.05 in both the forward and reverse
MR, these results were identified as supporting Explanation 4.
3. Results

3.1. Characteristics of genetic variants as IVs for IgG N-glycans and
metabolic traits

IgG N-glycan-QTLs analysis was conducted to explore the rela-
tionship between SNPs and IgG N-glycans in 536 participants with
available genetic variants and IgG N-glycosylation data. The mean
age of the participants was 48 (range, 43–51) years, comprising
169 males (31.53%) and 367 females (68.47%) (Table S1 in Appen-
dix A). A total of 5661 IgG N-glycan-QTL SNPs and metabolic-QTL
SNPs at P < 1 � 10–5 were identified, and overlapping SNP as IVs
for either IgG N-glycans or metabolic traits were not found. Finally,
1167 IgG N-glycan-QTL SNPs were used as IVs for IgG N-glycans in
one-sample MR studies, and the mean ± SD of R2 and the
F-statistics for each QTL were found to be (4.30 ± 0.86)% and
24.04 ± 5.15, respectively (Table S2 in Appendix A). Notably, the
number of selected IgG N-glycan-QTL SNPs was reduced from
1167 to 348 after IVs-exposure matching with IVs-outcome in

http://jenger.riken.jp/en/result
http://www.phenoscanner.medschl.cam.ac.uk/
https://biit.cs.ut.ee/gprofiler/snpense


Fig. 1. Analysis pipeline to evaluate explanations for observed associations between IgG N-glycosylation and metabolic traits. This flowchart provides an overview of the
analysis plan for evaluating four different explanations that might explain trait-associated glycan-QTLs.
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the two-sample MR setting (Table S2). In the one-sample study,
647 metabolic-QTL SNPs were used as IVs for metabolic traits,
and the mean ± SD of R2 and the F-statistics for each QTL were
found to be (4.49 ± 0.98)% and 25.18 ± 5.85, respectively
(Table S3 in Appendix A). In the two-sample study, 231
metabolic-QTL SNPs were used as IVs for metabolic traits, and
the mean ± SD of R2 and the F-statistics for each QTL were found
to be (0.11 ± 0.28)% and 106.04 ± 240.93, respectively (Table S4
in Appendix A). More details about the number of IgG N-glycan-
QTL/metabolic-QTL SNPs used as IVs in the analysis of each pheno-
type (IgG N-glycans or metabolic traits) in the bidirectional MR
analyses are presented in Fig. 2 and Tables S2–S4. Furthermore,
the mean ± SD proportions of power for the one- and two-
sample forward MR analyses were found to be (41.11 ± 33.76)%
and (21.04 ± 19.34)%, respectively. In addition, the mean ± SD pro-
portions of power for the one- and two-sample reverse-direction
MR analyses were found to be (50.48 ± 36.31)% and (12.29 ±
10.00)%, respectively. More information is available in Table S5 in
Appendix A. Moreover, QTL SNPs were used as IVs for IgG N-
glycans, metabolic traits, and CRP in the multivariable MR analysis
and are presented in Tables S6 and S7 in Appendix A.

3.2. Inferring putative forward causal associations

We evaluated the causal estimates of IgG N-glycosylation with
metabolic traits through bidirectional MR analysis. For forward MR
analysis, IgG N-glycan-QTL SNPs were used as instruments for IgG
N-glycans to test the putative causal influences of IgG N-
glycosylation on metabolic traits. In the main MR analyses (IVW
method), we observed that 66 and 15 genetically determined IgG
N-glycans were associated with metabolic traits in the one- and
two-sample forward MR studies, respectively (all P < 0.05). The
mean ± SD proportions of power based on the aforementioned sig-
nificance statistical results in the one- and two-sample studies
were (82.56 ± 15.87)% and (71.42 ± 15.32)%, respectively
(Table S5). We appraised the pleiotropic bias and retained only
those IgG N-glycans with little evidence of pleiotropy for further
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investigation (MR-Egger intercept: P > 0.05; MR-PRESSO global
test: PFDR > 0.05). After controlling for pleiotropic bias, 59 geneti-
cally determined IgG N-glycans were identified to be associated
with metabolic traits in the forward one-sample MR analysis (all
P < 0.05), including nine putatively causal GPs for BMI (GP1, GP7,
GP11, etc.), seven for FPG (GP1, GP5, GP12, etc.), six for SBP
(GP10, GP13, GP14, etc.), seven for DBP (GP2, GP12, GP13, etc.),
ten for HDL-C (GP1, GP2, GP6, etc.), seven for LDL-C (GP3, GP4,
GP12, etc.), seven for TG (GP2, GP5, GP10, etc.), and six for TC
(GP3, GP4, GP12, etc.) (Figs. 3(a)–(g) and Tables S8–S15 in Appen-
dix A). In parallel, 15 genetically determined IgG N-glycans were
associated with metabolic traits in the forward two-sample MR
study (all P < 0.05), including five putatively causal GPs for BMI
(GP2, GP11, GP13, GP14, and GP24), four for FPG (GP1, GP10,
GP16, and GP18), two for SBP (GP6 and GP23), one for DBP
(GP6), one for LDL-C (GP11), one for TG (GP6), and one for TC
(GP6) (Fig. 3(h) and Tables S8–S15).

Moreover, upon further controlling for pleiotropic bias and FDR,
we found that 36 genetically determined IgG N-glycans were asso-
ciated with metabolic traits in the forward one-sample MR analysis
(PFDR < 0.05), including four putatively causal GPs for BMI (GP1,
GP12, GP17, and GP22), four for FPG (GP1, GP5, GP13, and GP20),
three for SBP (GP13, GP17, and GP20), six for DBP (GP2, GP12,
GP13, GP17, GP19, and GP20), four for HDL-C (GP7, GP17, GP20,
and GP22), five for LDL-C (GP3, GP4, GP12, GP21, and GP22), five
for TG (GP2, GP5, GP10, GP14, and GP22), and five for TC (GP3,
GP4, GP12, GP21, and GP22) (Table 1 and Tables S8–S15). No
glycan-metabolic trait association was observed in the two-
sample MR study (PFDR > 0.05) (Tables S8–S15). Effect estimates
were broadly consistent between the IVW method and the sensi-
tivity analyses based on robust MR methods in the one-sample
MR (WM method, MR-Egger regression, and MR.RAPS method)
and two-sample MR settings (WM method and MR-Egger regres-
sion) (Table 1 and Tables S8–S15). Furthermore, after controlling
for the effect of pleiotropic bias and FDR, the results of the multi-
variable MR analysis showed that the number of genetically deter-
mined IgG N-glycans associated with metabolic traits decreased



Fig. 2. The number of SNPs was included in the analysis of each phenotype in the bidirectional one- and two-sample MR analyses. (a) Forward MR analyses; (b) reverse MR
analyses.
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from 36 (the results of the above univariate MR analysis) to 26 in
the forward one-sample setting (Fig. S2 and Table S16 in Appendix
A). We further observed that 14 new IgG N-glycans and metabolic
traits associations were identified in the multivariable MR analysis
compared with the univariate MR results, including one putatively
causal GPs for BMI (GP19), four for SBP (GP1, GP5, GP12, and
GP15), two for DBP (GP14 and GP15), three for FPG (GP6, GP12,
and GP15), two for TC (GP5 and GP7), one for HDL-C (GP4), and
one for LDL-C (GP5) (Fig. S3(a) in Appendix A). The effect estimates
and more details on specific glycans associated with metabolic
traits are presented in Fig. S3 and Table S16 in Appendix A.

The results of the meta-analysis between one- and two-sample
MR identified ten suggestive pieces of evidence for a potential
association between IgG N-glycans and metabolic traits
(P < 0.05), while only one potential association (GP23 ? SBP)
was observed (P < 0.0021) in the forward MR analysis (Table S17
in Appendix A). Furthermore, it is worth noting that there were
three overlapping suggestive causal associations of metabolic traits
with IgG N-glycans (GP11 ? BMI, GP13 ? BMI, and GP1 ? FPG)
between the one- and two-sample forward MR studies (P < 0.05)
(Table 2). Of these, the results of the meta-analysis further con-
firmed a positive causal association between GP11 and BMI
(fixed-effects model-Beta with 95% CI: 0.0109 (0.0012, 0.0207))
(Table S17). Genetically determined GP1 was identified to be asso-
ciated with FPG in both the one- and two-sample forward MR set-
tings (fixed-effects model-Beta with SE: –0.046 (0.016) and –0.006
(0.002)); the findings were robust using the WM method and the
MR-Egger regression in the one-sample MR analysis (Beta with
SE: –0.063 (0.021) and –0.078 (0.030)) and using the WM method
in the two-sample MR analysis (Beta with SE: –0.008 (0.003)). In
addition, the leave-one-out analysis for the association between
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GP1 and FPG showed that no outlying genetic variant had a
significant influence on the estimate (Figs. S4 and S5 in
Appendix A).

3.3. Inferring putative reverse causal associations

Taking these putative associations forward, we assessed the
potential causal associations by conducting a reverse MR of the
metabolic measurements against the IgG N-glycosylation levels
by selecting the metabolic-QTLs as IVs for metabolic measure-
ments. For the reverse MR analysis, in the main MR analyses
(IVWmethod), 82 and four genetically determined metabolic traits
were identified as being related to the risk of IgG N-glycosylation
in the one- and two-sample MR studies, respectively (all
P < 0.05). The mean ± SD proportions of power based on the
aforementioned significance statistical results in the one-sample
and two-sample studies were found to be (87.77 ± 15.32)% and
(46.87 ± 9.87)%, respectively (Table S5). After application of the
pleiotropic bias test (MR-Egger intercept: P > 0.05 ; MR-PRESSO
global test: PFDR > 0.05), 72 metabolic trait–glycan associations
were retained in the reverse one-sample MR study (all P < 0.05),
including one putatively causal metabolic trait for GP1 (HDL-C),
five for GP2 (FPG, SBP, HDL-C, etc.), two for GP3 (LDL-C and TC),
four for GP4 (FPG, LDL-C, etc.), two for GP5 (FPG and SBP), five
for GP6 (FPG, HDL-C, etc.), two for GP7 (FPG and DBP), two for
GP8 (HDL-C and TG), three for GP9 (FPG, HDL-C, and LDL-C), two
for GP10 (FPG and TG), three for GP11 (HDL-C, LDL-C, and TG), four
for GP12 (FPG, DBP, etc.), four for GP13 (FPG, SBP, etc.), four for
GP14 (FPG, HDL-C, etc.), one for GP15 (FPG), four for GP16 (FPG,
TG, etc.), five for GP17 (BMI, FPG, etc.), five for GP18 (FPG, HDL-C,
etc.), two for GP19 (BMI and TG), three for GP20 (FPG, DBP, and



Fig. 3. Causal associations of IgG N-glycosylation with metabolic traits from the primary analysis (IVW) in the forward MR estimates. In one-sample MR analysis for
(a) glycans and TC, (b) glycans and HDL-C, (c) glycans and LDL-C, (d) glycans and TG, (e) glycans and BMI, (f) glycans and BP, and (g) glycans and FPG; in two-sample MR
analysis for (h) glycans and metabolic traits. P < 0.05 was considered statistically significant.
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HDL-C), one for GP21 (TG), five for GP22 (BMI, DBP, etc.), one for
GP23 (TC), and two for GP24 (HDL-C and TG) (Figs. 4(a)–(g) and
Tables S18–S25 in Appendix A). In addition, four genetically deter-
mined metabolic traits were retained that were associated with
IgG N-glycans in the reverse two-sample MR study (all P < 0.05),
including one putatively causal metabolic trait for GP3 (HDL-C),
one for GP9 (HDL-C), one for GP16 (TC), and one for GP20 (LDL-
C) (Fig. 4(h) and Tables S18–S25).

Furthermore, to further control the FDR, the number of meta-
bolic trait–glycan associations was reduced to 57 in the reverse
one-sample MR analysis (PFDR < 0.05), including four putatively
causal metabolic traits for GP2 (FPG, HDL-C, etc.), one for GP3
(LDL-C), four for GP4 (FPG, LDL-C, etc.), two for GP5 (FPG and
SBP), four for GP6 (FPG, HDL-C, etc.), two for GP7 (FPG and DBP),
two for GP8 (HDL-C and TG), two for GP9 (FPG and HDL-C), one
for GP10 (TG), two for GP11 (HDL-C and TG), four for GP12 (FPG,
DBP, etc.), four for GP13 (FPG, SBP, etc.), four for GP14 (FPG,
HDL-C, etc.), one for GP15 (FPG), three for GP16 (DBP, HDL-C,
and TG), three for GP17 (BMI, FPG, and LDL-C), five for GP18
(FPG, HDL-C, etc.), one for GP19 (TG), three for GP20 (FPG, DBP,
and HDL-C), one for GP21 (TG), one for GP22 (TG), one for GP23
(TC), and two for GP24 (HDL-C and TG) (Tables S18–S25). Similar
to the condition of the forward two-sample MR, no metabolic
trait–glycan association was observed in the reverse two-sample
MR study (PFDR > 0.05) (Table 3 and Tables S18–S25). Effect esti-
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mates were broadly consistent between the IVW method and the
sensitivity analyses based on robust MR methods in the one-
sample MR (WM method, MR-Egger regression, and MR.RAPS
method) and two-sample MR settings (WM method and MR-
Egger regression) (Table 3 and Tables S18–S25).

In addition, in the reverse one-sample MR setting, we observed
that the number of metabolic trait–glycan associations was
reduced from 57 (i.e., the aforementioned univariate MR results)
to 41 based on the multivariable MR analysis (Table S16 and
Fig. S6 in Appendix A). More specifically, upon controlling for pleio-
tropic bias and FDR, the results based on the multivariate MR
method identified 12 new metabolic trait–glycan associations
compared with those of the univariate MR analysis, including
two putatively causal metabolic traits for GP7 (SBP and HDL-C),
two for GP11 (FPG and TC), one for GP12 (SBP), one for GP13
(HDL-C), one for GP14 (TG), two for GP15 (SBP and HDL-C), one
for GP17 (HDL-C), one for GP20 (SBP), and one for GP22 (FPG)
(Fig. S3(b)). Notably, the number of meaningful results between
IgG N-glycans and metabolic traits obtained by the multivariate
MR method was generally lower than that of the aforementioned
univariate analysis in the bidirectional one-sample MR settings,
but most of them could be replicated (Figs. 3 and 4 and Figs. S2
and S6).

According to the results of the meta-analysis between the one-
and two-sample MR, 45 potential associations of metabolic traits



Table 1
Causal association of IgG N-glycans with metabolic traits in the forward one-sample MR analysis.

GPs and metabolic traits Number of SNPs IVW_Beta (SE) IVW PFDR WM_Beta (SE) WM P MR.RAPS_Beta (SE) MR.RAPS P MR-Egger_Beta (SE) MR-Egger P MR-PRESSO global test P (PFDR)

GP1 ? BMI 164 –0.107 (0.016) 1.40 � 10–9 –0.116 (0.022) 1.26 � 10–7 –0.104 (0.016) 7.52 � 10–11 –0.146 (0.031) 2.78 � 10–6 0.749 (0.989)
GP12 ? BMI 45 –0.106 (0.034) 1.01 � 10–2 –0.107 (0.045) 1.66 � 10–2 –0.102 (0.033) 2.03 � 10–3 –0.046 (0.072) 5.26 � 10–1 0.403 (0.941)
GP17 ? BMI 58 –0.165 (0.028) 1.73 � 10–7 –0.190 (0.040) 1.89 � 10–6 –0.176 (0.029) 1.23 � 10–9 –0.101 (0.061) 9.76 � 10–2 0.249 (0.907)
GP22 ? BMI 267 –0.038 (0.011) 7.02 � 10–3 –0.045 (0.017) 9.97 � 10–3 –0.032 (0.012) 1.06 � 10–2 –0.016 (0.029) 5.82 � 10–1 0.929 (0.989)
GP1 ? FPG 164 –0.046 (0.016) 2.40 � 10–2 –0.063 (0.021) 2.76 � 10–3 –0.039 (0.016) 1.18 � 10–2 –0.078 (0.030) 9.75 � 10–3 0.872 (0.989)
GP5 ? FPG 82 –0.075 (0.023) 7.02 � 10–3 –0.083 (0.032) 8.51 � 10–3 –0.071 (0.024) 2.37 � 10–3 –0.076 (0.046) 9.62 � 10–2 0.662 (0.985)
GP13 ? FPG 58 –0.140 (0.027) 6.89 � 10–6 –0.139 (0.038) 2.27 � 10–4 –0.139 (0.028) 1.11 � 10–6 –0.132 (0.046) 3.82 � 10–3 0.919 (0.989)
GP20 ? FPG 79 –0.112 (0.023) 1.58 � 10–5 –0.117 (0.031) 1.68 � 10–4 –0.102 (0.024) 1.77 � 10–5 –0.144 (0.053) 6.60 � 10–3 0.985 (0.998)
GP13 ? SBP 58 –0.119 (0.028) 2.89 � 10–4 –0.108 (0.040) 7.67 � 10–3 –0.117 (0.029) 5.15 � 10–5 –0.179 (0.051) 4.18 � 10–4 0.234 (0.907)
GP17 ? SBP 58 –0.102 (0.028) 2.03 � 10–3 –0.084 (0.039) 2.96 � 10–2 –0.093 (0.029) 1.35 � 10–3 –0.073 (0.051) 1.51 � 10–1 0.622 (0.985)
GP20 ? SBP 79 –0.154 (0.023) 1.45 � 10–9 –0.144 (0.033) 1.69 � 10–5 –0.161 (0.024) 4.53 � 10–11 –0.170 (0.080) 3.40 � 10–2 0.447 (0.941)
GP2 ? DBP 39 0.110 (0.032) 4.89 � 10–3 0.073 (0.049) 1.36 � 10–1 0.115 (0.036) 1.55 � 10–3 0.105 (0.045) 2.09 � 10–2 0.878 (0.989)
GP12 ? DBP 45 –0.086 (0.031) 2.98 � 10–2 –0.089 (0.044) 4.23 � 10–2 –0.091 (0.032) 4.57 � 10–3 –0.010 (0.078) 9.02 � 10–1 0.564 (0.985)
GP13 ? DBP 58 –0.091 (0.027) 5.80 � 10–3 –0.078 (0.038) 3.94 � 10–2 –0.092 (0.028) 1.17 � 10–3 –0.085 (0.050) 8.63 � 10–2 0.812 (0.989)
GP17 ? DBP 58 –0.109 (0.028) 8.63 � 10–4 –0.097 (0.037) 9.42 � 10–3 –0.109 (0.028) 1.03 � 10–4 –0.073 (0.060) 2.21 � 10–1 0.815 (0.989)
GP19 ? DBP 24 –0.112 (0.040) 2.80 � 10–2 –0.131 (0.058) 2.29 � 10–2 –0.127 (0.044) 4.31 � 10–3 –0.202 (0.122) 9.82 � 10–2 0.828 (0.989)
GP20 ? DBP 79 –0.145 (0.021) 8.68 � 10–10 –0.149 (0.032) 4.38 � 10–6 –0.153 (0.024) 9.64 � 10–11 –0.142 (0.048) 3.46 � 10–3 0.408 (0.941)
GP7 ? HDL-C 28 0.110 (0.040) 2.84 � 10–2 0.131 (0.053) 1.40 � 10–2 0.109 (0.040) 6.13 � 10–3 0.040 (0.071) 5.73 � 10–1 0.660 (0.985)
GP17 ? HDL-C 58 0.079 (0.024) 7.04 � 10–3 0.058 (0.037) 1.18 � 10–1 0.081 (0.028) 3.47 � 10–3 0.074 (0.050) 1.40 � 10–1 0.559 (0.985)
GP20 ? HDL-C 79 –0.080 (0.022) 2.89 � 10–3 –0.093 (0.031) 2.96 � 10–3 –0.085 (0.023) 2.67 � 10–4 –0.145 (0.050) 3.77 � 10–3 0.876 (0.989)
GP22 ? HDL-C 267 –0.079 (0.011) 4.70 � 10–10 –0.074 (0.017) 7.39 � 10–6 –0.083 (0.012) 2.65 � 10–12 –0.082 (0.032) 1.16 � 10–2 0.448 (0.941)
GP3 ? LDL-C 43 0.179 (0.033) 1.63 � 10–6 0.178 (0.049) 2.62 � 10–4 0.189 (0.035) 9.07 � 10–8 0.167 (0.067) 1.31 � 10–2 0.326 (0.907)
GP4 ? LDL-C 31 0.122 (0.042) 2.35 � 10–2 0.134 (0.061) 2.68 � 10–2 0.108 (0.045) 1.61 � 10–2 0.019 (0.084) 8.16 � 10–1 0.320 (0.907)
GP12 ? LDL-C 45 –0.132 (0.033) 8.18 � 10–4 –0.125 (0.045) 5.49 � 10–3 –0.138 (0.034) 5.15 � 10–5 –0.087 (0.098) 3.73 � 10–1 0.888 (0.989)
GP21 ? LDL-C 36 0.109 (0.042) 4.11 � 10–2 0.136 (0.053) 1.04 � 10–2 0.144 (0.037) 1.07 � 10–4 0.229 (0.111) 3.97 � 10–2 0.002 (0.128)
GP22 ? LDL-C 267 –0.049 (0.012) 1.00 � 10–3 –0.045 (0.017) 9.49 � 10–3 –0.048 (0.013) 1.62 � 10–4 –0.043 (0.038) 2.56 � 10–1 0.990 (0.998)
GP2 ? TG 39 0.094 (0.033) 2.40 � 10–2 0.100 (0.049) 4.14 � 10–2 0.089 (0.036) 1.27 � 10–2 0.117 (0.063) 6.12 � 10–2 0.587 (0.985)
GP5 ? TG 82 0.061 (0.021) 2.40 � 10–2 0.062 (0.032) 5.41 � 10–2 0.060 (0.023) 9.96 � 10–3 0.083 (0.044) 5.97 � 10–2 0.537 (0.982)
GP10 ? TG 26 0.149 (0.044) 5.61 � 10–3 0.120 (0.062) 5.16 � 10–2 0.156 (0.044) 3.48 � 10–4 0.049 (0.145) 7.37 � 10–1 0.355 (0.934)
GP14 ? TG 18 –0.208 (0.057) 2.31 � 10–3 –0.188 (0.081) 2.02 � 10–2 –0.227 (0.059) 1.20 � 10–4 –0.039 (0.183) 8.30 � 10–1 0.220 (0.907)
GP22 ? TG 267 0.035 (0.012) 2.27 � 10–2 0.028 (0.016) 8.56 � 10–2 0.053 (0.012) 8.23 � 10–6 0.053 (0.030) 7.09 � 10–2 0.521 (0.981)
GP3 ? TC 43 0.171 (0.034) 7.53 � 10–6 0.166 (0.049) 6.75 � 10–4 0.179 (0.035) 3.66 � 10–7 0.142 (0.069) 4.07 � 10–2 0.299 (0.907)
GP4 ? TC 31 0.226 (0.058) 1.01 � 10–3 0.297 (0.063) 2.55 � 10–6 0.222 (0.045) 1.08 � 10–6 0.216 (0.113) 5.71 � 10–2 0.365 (0.934)
GP12 ? TC 45 –0.084 (0.033) 4.77 � 10–2 –0.089 (0.046) 5.37 � 10–2 –0.085 (0.034) 1.20 � 10–2 –0.057 (0.060) 3.43 � 10–1 0.533 (0.982)
GP21 ? TC 36 0.142 (0.044) 7.61 � 10–3 0.179 (0.055) 1.05 � 10–3 0.168 (0.037) 6.88 � 10–6 0.239 (0.108) 2.75 � 10–2 0.003 (0.144)
GP22 ? TC 267 –0.057 (0.013) 9.92 � 10–5 –0.060 (0.017) 5.46 � 10–4 –0.060 (0.013) 2.09 � 10–6 –0.051 (0.037) 1.64 � 10–1 0.940 (0.989)

Bold font indicates statistical significance at P < 0.05 based on pleiotropy bias (MR-Egger intercept: P > 0.05; MR-PRESSO global test: PFDR > 0.05); P < 0.05 was considered statistically significant.
PFDR: adjusted for FDR using the BH method.
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Table 2
Overlapping potential causal associations of metabolic traits with IgG N-glycans between one- and two-sample MR studies.

Metabolic traits and GP One-sample MR Two-sample MR

Number of SNPs IVW_Beta IVW SE IVW P IVW PFDR Number of SNP IVW_Beta IVW SE IVW P IVW PFDR

Forward analysis
GP11 ? BMI 18 0.106 0.051 3.74 � 10–2 1.15 � 10–1 5 0.010 0.005 3.25 � 10–2 5.32 � 10–1

GP13 ? BMI 58 –0.063 0.026 1.64 � 10–2 6.69 � 10–2 14 0.011 0.005 2.38 � 10–2 5.08 � 10–1

GP1 ? FPG 164 –0.046 0.016 4.63 � 10–3 2.40 � 10–2 35 –0.006 0.002 7.28 � 10–3 4.82 � 10–1

Reverse analysis
HDL-C ? GP9 100 –0.071 0.022 1.47 � 10–3 5.52 � 10–3 41 –0.306 0.151 4.30 � 10–2 9.01 � 10–1

Bold font indicates statistical significance at P < 0.05 based on pleiotropy bias (MR-Egger intercept: P > 0.05; MR-PRESSO global test: PFDR > 0.05); IVW P and IVW PFDR for the
association between the metabolic traits and IgG N-glycans, and a value < 0.05 was considered statistically significant.
IVW PFDR: adjusted for FDR in IVW results using the BH method.

Fig. 4. Causal associations of metabolic traits and IgG N-glycosylation from the primary analysis (IVW) in the reverse MR estimates. In one-sample MR analysis for (a) TC and
glycans, (b) HDL-C and glycans, (c) LDL-C and glycans, (d) TG and glycans, (e) BP and glycans, (f) BMI and glycans, and (g) FPG and glycans; in two-sample MR analysis for
(h) lipids and glycans. P < 0.05 was considered statistically significant.
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with IgG N-glycans were identified (P < 0.0021) in the reverse MR
analysis (Table S26 in Appendix A). Notably, there was only one
overlapping potential causal association of metabolic traits with
IgG N-glycans between the one- and two-sample reverse MR stud-
ies (P < 0.05; Table 2). Genetically determined HDL-C was identi-
fied to be negatively associated with GP9 (fixed-effects model-
Beta with SE: –0.071 (0.022) and –0.306 (0.151)) in both the
one- and two-sample MR settings, which was confirmed by the
results of the meta-analysis (fixed-effects model-Beta with 95%
CI: –0.0759 (–0.1186, –0.0332)) (Table S26).
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3.4. Functional informatics

Although it is widely hypothesized that genetic variants
influence glycosylation, the molecular regulatory mechanism of
IgG N-glycosylation is not fully understood. In this research, IgG
N-glycan-QTL SNPs were annotated to 553 unique located genes
(Tables S2 and S27 in Appendix A). A GO enrichment analysis,
which was intended to identify molecular function, biological
process, and cellular component pathways, suggested that the
identified genes were involved in 20 GO terms (Fig. 5), such as



Table 3
Causal association of metabolic traits with IgG N-glycans in the reverse one-sample MR analysis.

Metabolic traits and GPs Number of SNPs IVW_Beta (SE) IVW PFDR WM_Beta (SE) WM P MR.RAPS_Beta (SE) MR.RAPS P MR-Egger_Beta (SE) MR-Egger P MR-PRESSO global
test P (PFDR)

BMI ? GP17 21 –0.145 (0.049) 1.18 � 10–2 –0.160 (0.069) 2.05 � 10–2 –0.149 (0.051) 3.52 � 10–3 –0.114 (0.166) 4.93 � 10–1 0.376 (0.999)
FPG ? GP2 165 0.040 (0.015) 2.77 � 10–2 0.048 (0.023) 3.51 � 10–2 0.051 (0.017) 2.24 � 10–3 0.021 (0.034) 5.49 � 10–1 0.783 (0.999)
FPG ? GP4 165 0.146 (0.016) 1.58 � 10–18 0.124 (0.022) 3.26 � 10–8 0.155 (0.016) < 1.00 � 10–4 0.159 (0.043) 1.92 � 10–4 0.938 (0.999)
FPG ? GP5 165 –0.058 (0.018) 5.14 � 10–3 –0.070 (0.024) 3.60 � 10–3 –0.051 (0.018) 3.89 � 10–3 –0.010 (0.039) 7.91 � 10–1 0.916 (0.999)
FPG ? GP6 165 0.166 (0.015) 2.00 � 10–25 0.153 (0.021) 1.85 � 10–13 0.181 (0.015) < 1.00 � 10–4 0.196 (0.047) 3.04 � 10–5 0.809 (0.999)
FPG ? GP7 165 –0.069 (0.018) 4.68 � 10–4 –0.086 (0.024) 3.60 � 10–4 –0.063 (0.018) 4.22 � 10–4 –0.064 (0.037) 8.53 � 10–2 0.744 (0.999)
FPG ? GP9 165 0.065 (0.018) 1.04 � 10–3 0.086 (0.025) 4.60 � 10–4 0.062 (0.018) 4.51 � 10–4 0.100 (0.044) 2.22 � 10–2 0.427 (0.999)
FPG ? GP12 165 –0.108 (0.016) 8.06 � 10–11 –0.124 (0.024) 1.52 � 10–7 –0.103 (0.017) 2.96 � 10–9 –0.102 (0.042) 1.41 � 10–2 0.928 (0.999)
FPG ? GP13 165 –0.144 (0.017) 1.54 � 10–16 –0.140 (0.024) 5.37 � 10–9 –0.146 (0.018) 2.22 � 10–16 –0.113 (0.056) 4.29 � 10–2 0.948 (0.999)
FPG ? GP14 165 –0.135 (0.014) 9.74 � 10–21 –0.132 (0.021) 4.41 � 10–10 –0.138 (0.015) < 1.00 � 10–4 –0.151 (0.044) 6.55 � 10–4 0.911 (0.999)
FPG ? GP15 165 –0.098 (0.017) 7.17 � 10–8 –0.100 (0.025) 5.07 � 10–5 –0.107 (0.018) 1.64 � 10–9 –0.079 (0.056) 1.57 � 10–1 0.433 (0.999)
FPG ? GP17 165 –0.077 (0.016) 5.70 � 10–6 –0.085 (0.024) 3.60 � 10–4 –0.072 (0.018) 4.37 � 10–5 –0.092 (0.040) 2.01 � 10–2 0.951 (0.999)
FPG ? GP18 165 –0.121 (0.015) 2.17 � 10–14 –0.118 (0.022) 6.20 � 10–8 –0.123 (0.016) 5.77 � 10–15 –0.141 (0.039) 2.97 � 10–4 0.796 (0.999)
FPG ? GP20 165 –0.098 (0.017) 3.67 � 10–8 –0.090 (0.024) 1.74 � 10–4 –0.091 (0.018) 3.68 � 10–7 –0.045 (0.049) 3.57 � 10–1 0.957 (0.999)
SBP ? GP5 16 –0.223 (0.058) 5.88 � 10–4 –0.255 (0.073) 4.75 � 10–4 –0.232 (0.058) 5.51 � 10–5 –0.098 (0.156) 5.30 � 10–1 0.833 (0.999)
SBP ? GP13 16 –0.197 (0.054) 1.14 � 10–3 –0.236 (0.075) 1.57 � 10–3 –0.198 (0.057) 5.54 � 10–4 –0.311 (0.192) 1.05 � 10–1 0.628 (0.999)
DBP ? GP7 14 –0.154 (0.059) 2.88 � 10–2 –0.168 (0.082) 3.92 � 10–2 –0.143 (0.065) 2.84 � 10–2 –0.228 (0.140) 1.03 � 10–1 0.677 (0.999)
DBP ? GP12 14 –0.144 (0.051) 1.72 � 10–2 –0.203 (0.079) 1.01 � 10–2 –0.142 (0.064) 2.62 � 10–2 –0.112 (0.127) 3.79 � 10–1 0.793 (0.999)
DBP ? GP13 14 –0.120 (0.050) 4.91 � 10–2 –0.129 (0.081) 1.12 � 10–1 –0.122 (0.065) 6.08 � 10–2 –0.152 (0.112) 1.73 � 10–1 0.854 (0.999)
DBP ? GP16 14 0.245 (0.078) 5.88 � 10–3 0.280 (0.089) 1.63 � 10–3 0.234 (0.065) 3.14 � 10–4 0.301 (0.142) 3.43 � 10–2 0.081 (0.999)
DBP ? GP20 14 –0.159 (0.066) 4.90 � 10–2 –0.226 (0.088) 9.90 � 10–3 –0.178 (0.065) 5.86 � 10–3 –0.141 (0.173) 4.17 � 10–1 0.139 (0.999)
HDL-C ? GP2 100 0.245 (0.023) 2.11 � 10–25 0.266 (0.030) 1.99 � 10–18 0.264 (0.023) < 1.00 � 10–4 0.303 (0.066) 4.10 � 10–6 0.879 (0.999)
HDL-C ? GP6 100 0.191 (0.019) 8.23 � 10–23 0.189 (0.028) 1.58 � 10–11 0.218 (0.020) < 1.00 � 10–4 0.251 (0.035) 4.68 � 10–13 0.475 (0.999)
HDL-C ? GP8 100 –0.058 (0.021) 2.03 � 10–2 –0.059 (0.032) 6.03 � 10–2 –0.058 (0.023) 1.21 � 10–2 –0.128 (0.051) 1.28 � 10–2 0.847 (0.999)
HDL-C ? GP9 100 –0.071 (0.022) 5.52 � 10–3 –0.074 (0.032) 1.99 � 10–2 –0.080 (0.024) 7.60 � 10–4 –0.051 (0.044) 2.47 � 10–1 0.951 (0.999)
HDL-C ? GP11 100 –0.075 (0.022) 2.17 � 10–3 –0.076 (0.030) 9.99 � 10–3 –0.067 (0.022) 2.18 � 10–3 –0.104 (0.039) 7.87 � 10–3 0.923 (0.999)
HDL-C ? GP14 100 –0.21 (0.021) 8.23 � 10–23 –0.227 (0.029) 3.30 � 10–15 –0.237 (0.021) < 1.00 � 10–4 –0.318 (0.052) 7.11 � 10–10 0.134 (0.999)
HDL-C ? GP16 100 0.090 (0.023) 3.13 � 10–4 0.091 (0.032) 5.16 � 10–3 0.097 (0.024) 3.57 � 10–5 0.144 (0.057) 1.26 � 10–2 0.574 (0.999)
HDL-C ? GP18 100 –0.147 (0.019) 3.56 � 10–13 –0.153 (0.029) 1.83 � 10–7 –0.167 (0.021) 2.22 � 10–15 –0.203 (0.038) 7.50 � 10–8 0.671 (0.999)
HDL-C ? GP20 100 –0.065 (0.023) 1.41 � 10–2 –0.054 (0.032) 9.02 � 10–2 –0.067 (0.024) 4.94 � 10–3 –0.130 (0.046) 4.90 � 10–3 0.980 (0.999)
HDL-C ? GP24 100 0.104 (0.024) 6.54 � 10–5 0.096 (0.031) 2.26 � 10–3 0.110 (0.024) 3.79 � 10–6 0.084 (0.051) 9.59 � 10–2 0.978 (0.999)
LDL-C ? GP3 25 0.104 (0.037) 1.88 � 10–2 0.107 (0.056) 5.71 � 10–2 0.110 (0.044) 1.20 � 10–2 0.109 (0.076) 1.50 � 10–1 0.880 (0.999)
LDL-C ? GP4 25 0.166 (0.035) 1.44 � 10–5 0.149 (0.053) 5.28 � 10–3 0.170 (0.041) 4.26 � 10–5 0.209 (0.084) 1.30 � 10–2 0.872 (0.999)
LDL-C ? GP12 25 –0.138 (0.041) 3.26 � 10–3 –0.158 (0.060) 7.94 � 10–3 –0.144 (0.044) 9.40 � 10–4 –0.106 (0.098) 2.78 � 10–1 0.414 (0.999)
LDL-C ? GP14 25 –0.138 (0.035) 3.40 � 10–4 –0.146 (0.050) 3.34 � 10–3 –0.151 (0.039) 8.64 � 10–5 –0.227 (0.151) 1.33 � 10–1 0.895 (0.999)
LDL-C ? GP17 25 –0.099 (0.041) 4.90 � 10–2 –0.122 (0.060) 4.13 � 10–2 –0.106 (0.044) 1.57 � 10–2 –0.118 (0.102) 2.46 � 10–1 0.262 (0.999)
LDL-C ? GP18 25 –0.172 (0.036) 8.87 � 10–6 –0.158 (0.052) 2.35 � 10–3 –0.164 (0.040) 3.89 � 10–5 –0.264 (0.080) 9.51 � 10–4 0.701 (0.999)
TG ? GP2 287 0.066 (0.012) 1.85 � 10–7 0.065 (0.017) 1.50 � 10–4 0.066 (0.012) 4.25 � 10–8 0.068 (0.027) 1.21 � 10–2 0.624 (0.999)
TG ? GP4 287 0.068 (0.012) 2.20 � 10–7 0.051 (0.016) 1.74 � 10–3 0.080 (0.012) 8.31 � 10–12 0.116 (0.035) 8.44 � 10–4 0.144 (0.999)
TG ? GP6 287 0.108 (0.011) 8.23 � 10–23 0.094 (0.015) 9.57 � 10–10 0.108 (0.011) < 1.00 � 10–4 0.139 (0.029) 1.65 � 10–6 0.380 (0.999)
TG ? GP8 287 –0.064 (0.012) 1.45 � 10–6 –0.059 (0.018) 9.23 � 10–4 –0.075 (0.013) 4.29 � 10–9 –0.097 (0.027) 3.37 � 10–4 0.517 (0.999)
TG ? GP10 287 0.077 (0.012) 7.26 � 10–9 0.085 (0.017) 8.64 � 10–7 0.076 (0.012) 4.95 � 10–10 0.075 (0.035) 3.09 � 10–2 0.173 (0.999)
TG ? GP11 287 0.125 (0.012) 4.23 � 10–23 0.129 (0.017) 4.76 � 10–14 0.120 (0.012) < 1.00 � 10–4 0.130 (0.029) 1.03 � 10–5 0.123 (0.999)
TG ? GP12 287 –0.052 (0.012) 1.10 � 10–4 –0.058 (0.017) 8.76 � 10–4 –0.043 (0.013) 6.77 � 10–4 –0.055 (0.030) 6.45 � 10–2 0.764 (0.999)
TG ? GP13 287 –0.086 (0.012) 4.37 � 10–11 –0.087 (0.017) 6.21 � 10–7 –0.084 (0.013) 5.92 � 10–11 –0.114 (0.046) 1.25 � 10–2 0.990 (0.999)
TG ? GP16 287 0.065 (0.013) 1.47 � 10–6 0.061 (0.018) 5.50 � 10–4 0.073 (0.013) 1.55 � 10–8 0.114 (0.033) 6.71 � 10–4 0.961 (0.999)
TG ? GP18 287 –0.059 (0.011) 5.20 � 10–7 –0.062 (0.016) 6.30 � 10–5 –0.057 (0.011) 4.89 � 10–7 –0.084 (0.031) 7.11 � 10–3 0.772 (0.999)
TG ? GP19 287 –0.032 (0.012) 2.17 � 10–2 –0.041 (0.017) 1.80 � 10–2 –0.035 (0.013) 6.63 � 10–3 –0.086 (0.029) 3.15 � 10–3 0.995 (0.999)
TG ? GP21 287 0.117 (0.012) 1.39 � 10–20 0.108 (0.018) 8.68 � 10–10 0.121 (0.013) < 1.00 � 10–4 0.086 (0.027) 1.17 � 10–3 0.996 (0.999)
TG ? GP22 287 0.049 (0.013) 7.66 � 10–4 0.048 (0.018) 6.40 � 10–3 0.065 (0.013) 5.47 � 10–7 0.072 (0.036) 4.68 � 10–2 0.776 (0.999)
TG ? GP24 287 0.033 (0.012) 2.16 � 10–2 0.024 (0.018) 1.66 � 10–1 0.028 (0.013) 2.96 � 10–2 0.011 (0.036) 7.60 � 10–1 0.971 (0.999)
TC ? GP2 19 0.137 (0.047) 1.37 � 10–2 0.150 (0.067) 2.46 � 10–2 0.135 (0.050) 6.79 � 10–3 0.144 (0.096) 1.34 � 10–1 0.394 (0.999)
TC ? GP4 19 0.187 (0.044) 1.10 � 10–4 0.194 (0.064) 2.52 � 10–3 0.187 (0.049) 1.54 � 10–4 0.273 (0.085) 1.24 � 10–3 0.731 (0.999)
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chemical synaptic transmission, regulation of transmembrane
transport, cell junction organization, receptor localization to
synapse, and regulation of membrane potential.

Some of the tagged genes are known to encode glycosylation
transferases, including EXT2, GMDS, ST6GAL1, B4GALT1, and UTS2,
which are involved in the N-glycan biosynthesis/complex type. In
Table S28 in Appendix A, the results show that most of the genes
are involved in positive regulation of chemical synaptic transmis-
sion, cellular component morphogenesis, cell junction organiza-
tion, and actin filament-based processes (7.62%, 7.62%, 7.06%, and
7.25%, respectively), indicating that these genes—such as MCTP2,
RIMS1, ITSN1, GRIN3A, DLGAP2, DLGAP1, TTN, ACTC1, ANTXR1,
HOMER1, PTK2B, MYCBP2, PRKN, IFT172, and PTPRD—might play
important roles in modifying IgG glycosylation. Further functional
experiments are needed to reveal the molecular regulatory mech-
anism of the above pathways in IgG N-glycosylation. Our research
might prove valuable in helping subsequent studies prioritize can-
didate genes of IgG N-glycosylation for in-depth functional follow-
up studies.
4. Discussion

This study adopted a novel analytical framework in which bidi-
rectional one- and two-sample MR analyses integrating GWASs
and IgG N-glycan-QTLs data enabled the identification of causal
associations between IgG N-glycosylation and metabolic traits in
East Asians. In fact, a one-sample MR study is usually underpow-
ered in a setting with small effect sizes and may result in a type
II error. Although a two-sample MR study with a large sample size
is unlikely to suffer from the aforementioned bias, it may present
bias in terms of population stratification. To address these issues,
one- and two-sample MR methods were used in the current study
in order to comprehensively investigate causality. Suggestive evi-
dence for bidirectional causality between IgG N-glycans and meta-
bolic traits in the current study might have been supported by the
one- and two-sample MR results based on the data from a previous
glycan-related study [33] and a large-scale GWAS in a Japanese
population [43]. However, the relationship between each pair of
IgG N-glycans and metabolic traits was not completely consistent
in the different settings of MR analyses. In the forward MR analysis,
the one-sample MR provided potential evidence that IgG N-glycans
were associated with BMI, FPG, BP, and lipid traits. This result was
confirmed in the two-sample setting, further evidencing the causal
relationship between IgG N-glycans and metabolic traits. Further-
more, the number of meaningful associations was generally found
to be lower in the multivariate MR analysis than in the univariate
analysis in the bidirectional one-sample MR setting; however,
most of them could be replicated. The multivariate MR analysis
further identified some new metabolic trait–glycan/(glycan–
metabolic trait) associations, indicating that an inflammatory
molecule (CRP) may mediate the causality between IgG
N-glycans and metabolic traits to some extent.

The main function of IgG—which is largely affected by glycosy-
lation—is regulation of the systemic inflammation balance at mul-
tiple levels, and the alteration of IgG N-glycans plays a crucial role
in the pro- or anti-inflammatory process [6,45]. An imbalance
between pro- and anti-inflammatory activities leads to the activa-
tion of multiple signal transduction pathways, the production of
inflammatory cytokine chemokines, and cell migration, which in
sequence cause the development of metabolic dysfunction
[46,47]. In addition, due to the key role of IgG N-glycans in signal
transduction [48], the levels of IgG N-glycans directly and objec-
tively reflect the metabolism status. A previous study showed that
the plasma N-glycome could represent alterations in metabolic
activity in humans [48], and our forward MR results further



Fig. 5. Characteristics of the enriched GO terms.
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demonstrate that IgG N-glycans may have causal effects on meta-
bolic processes.

Significant associations between metabolic traits and IgG N-
glycans were also observed in the reverse MR analysis in both
the one- and two-sample settings, which indicates that metabolic
traits may also have causal effects on the IgG N-glycosylation pro-
cess. Glycosylation is reflected at the molecular level in a wide
range of genetic influences and environmental exposures
[29,49,50]. Alternative IgG N-glycosylation plays a prominent role
in complement activation by modulating complement-dependent
cytotoxicity and antibody-dependent cellular cytotoxicity (ADCC),
which indicates that altered IgG N-glycosylation could be a part
of the molecular mechanism underlying pro-inflammation [7,45].
Chronic inflammation—an important hallmark of metabolic
dysfunction—can regulate metabolic function and trigger
metabolic disorders [51–53]. Metabolic dysfunction involves
insulin resistance, abnormal lipid metabolism, an impaired
immune response affecting both innate and adaptive immunity,
and regulation of cytokine secretion, which can produce and
secrete a variety of inflammatory molecules, including
interleukin-1 receptor-associated kinase 1 and tumor necrosis
factor-a [51,53]. Inflammatory molecules might in turn regulate
the IgG N-glycosylation process. The findings of the reverse MR
suggest that metabolic traits might affect IgG N-glycosylation,
which influences the immune and inflammatory function of IgG.

The study showed that three pairs of glycan–metabolic trait
associations (i.e., GP11 ? BMI, GP13 ? BMI, and GP1 ? FPG)
and one pair of metabolic trait–glycan associations (i.e.,
HDL-C ? GP9) were statistically significant in the bidirectional
one- and two-sample MR estimates, respectively. Interestingly,
the results of the meta-analysis provided further evidence of
potential bidirectional causal associations between glycans and
metabolic traits (i.e., GP11 ? BMI and HDL-C ? GP9). The results
showed that the effect size of the aforementioned one-sample
MR was generally larger than that of the two-sample MR, which
might be caused by the fact that there were more IVs included in
the one-sample MR than in the two-sample MR setting. To be
specific, the findings showed completely consistent evidence for
higher levels of IgG N-glycans (GP11) leading to higher levels of
BMI and for higher levels of IgG N-glycans (GP1) leading to lower
levels of FPG in the forward one- and two-sample MR analyses.
In the reverse one- and two-sample MR analyses, completely con-
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sistent evidence was presented showing that lower levels of HDL-C
lead to higher levels of IgG N-glycans (GP9). IgG N-glycans contain
typical biantennary complexes—namely, fucose, galactose, bisect-
ing GlcNAc, and sialic acid—which can inhibit or activate IgG Fcc
receptors by regulating the binding affinity of IgG, thereby deci-
sively modulating the pro- and anti-inflammatory activities of
IgG [54,55]. Fucosylation (GP1, GP9, and GP11) and galactosylation
(GP9 and GP11) play vital roles in the inflammatory activities of
IgG, and highly fucosylated IgG presents a reduced magnitude of
ADCC leading to an anti-inflammatory status of the body. The
inverse correlation found between galactosylated and/or core-
fucosylated IgG glycoforms (GP1 and GP9) and metabolic traits
(FPG and HDL-C) in the present study was somewhat expected
and was consistent with the alterations of IgG N-glycosylation pre-
sented in studies on hypertension [14], T2DM [16], and dyslipi-
demia [13].

Metabolic trait components include BMI, FPG, BP, and lipids,
with the corresponding abnormal conditions being obesity,
T2DM, hypertension, and dyslipidemia. These abnormal conditions
have been documented as modifiable risk factors for cerebrovascu-
lar and cardiovascular diseases (CVDs) and are related to an
increased risk of CVDs [56]. In addition, abundant evidence sug-
gests that the inflammatory function of IgG N-glycans is a risk fac-
tor for many chronic diseases and accompanies the development of
specific health issues, including obesity, hypertension, T2DM,
metabolic syndrome, dyslipidemia, and ischemic stroke [12–
15,42,48,57]. The forward MR in the present study confirmed that
GPs have a potential causal effect on metabolic traits. Conversely,
the causal associations between metabolic traits and GPs found
in the reverse MR suggest that IgG N-glycans are likely to be driven
by metabolic traits. Therefore, the effects of the bidirectional asso-
ciation that was found between IgG N-glycans and metabolic traits
might be attributed to Explanation 3—that is, that there is bidirec-
tional causality between IgG N-glycosylation and metabolic traits
through independent biological pathways—further suggesting that
reciprocal regulation and coexistence between IgG N-glycans and
metabolic traits might accelerate the progression of CVDs.

The comprehensive IgG N-glycan-QTL resources utilized in our
study present plentiful information about genetic effects on IgG
N-glycans. Apart from some identified IgG N-glycan-QTL tagging
genes that are known to be glycosylation enzymes regulating
translational initiation, some novel loci tagging genes are involved
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in glycosylation via metabolic mechanisms rather than directly. For
example, INSR, which encodes a member of the receptor tyrosine
kinase family of proteins, regulates glucose uptake and release
and activates the insulin signaling pathway [58]. In addition, some
genes are involved in the regulation of the lipid metabolism path-
way, such as elongation of very long-chain fatty acid (ELOVL) elon-
gase 6 gene (ELOVL6) [59] and lipase C, hepatic type gene (LIPC)
[60]. These novel genes are very biologically relevant in metabolic
disorders, which suggests mechanisms for the regulation of IgG N-
glycans and indicates that certain network connections need to be
validated in in vitro functional studies.

The present bidirectional MR further dissected the directionally
causal association between IgG N-glycans and metabolic traits,
which may allow networks of related phenotypes. Because QTLs
were shown to have a robust effect on exposure, our bidirectional
MR analysis integrating a GWAS and QTL data may have been rela-
tively less affected by bias, and the use of multiple independent
QTL variants as IVs may have increased the proportion of the vari-
ance in exposures (i.e., IgG N-glycans or metabolic traits). Never-
theless, this study has several limitations, and the findings
should be interpreted with caution. Firstly, there is inevitable con-
cern that the small sample size in the one-sample MR analysis is
likely to underpower the detection of genetic associations for IgG
N-glycosylation, as judged by the latest studies in European popu-
lations. Admittedly, the one- and two-sample MR have their own
strengths and limitations. Thus, one- and two-sample MR analyses
were performed to confirm our findings, and the results were com-
plementary, suggesting that the finding is robust. In addition, com-
pared with recently published studies [61,62], the statistical
powers of the present study were acceptable, at 82.56% and
71.42% in the one- and two-sample forward MR analyses, respec-
tively, and 87.77% and 46.87% in the one- and two-sample reverse
MR settings, respectively. The number of IgG N-glycan-QTL SNPs
used in the one-sample MR analysis (n = 1167) was larger than that
used in the two-sample MR analysis (n = 348), which might result
in the statistical power being greater in the one-sample MR study
than in the two-sample MR study. Secondly, for the limited sample
size of IgG N-glycan-QTLs (n = 536), a relatively relaxed threshold
of 1 � 10–5 was used for the selection of IVs in the one-sample MR
analysis, which may have led to biased estimates—especially a
weak IV bias. To reduce weak IVs, the MR.RAPS results were also
reported to make the results more robust [41]. Thirdly, the
research data used in this study were obtained from Xuanwu
Hospital, Capital Medical University, Beijing, China and Biobank
Japan, which were a community-based survey and a patient-
based cohort study, respectively. This choice of data may have
led to potential selection bias when subjects were included in this
study, which may have affected the results of the study to some
extent.

In this study, only the suggestive causal associations of three
metabolic traits with four IgG N-glycans detected in the one-
sample MR round were considered to be statistically significant
in the two-sample MR, and two pairs of causality were confirmed
by meta-analysis. A possible explanation for the phenomenon that
the one-sample MR results were not fully confirmed by the two-
sample MR results is that bias estimation was caused by popula-
tion stratification in the two-sample MR study or by false positives
in the one-sample MR study. Although we analyzed data based on
the same studies in obtaining both SNP-IgG N-glycosylation and
SNP-metabolic trait estimates while adjusting for the same covari-
ates, other unrecognized or unmeasured confounding factors still
cannot be completely excluded. Moreover, although pleiotropy
was assessed by MR-Egger and MR-PRESSO analysis, the possibility
of residual pleiotropic effects cannot be completely excluded. In
addition, we only involved East Asian participants in the current
study, so population stratification had little effect on the result.
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Nevertheless, our findings may be limited in their generalization
to other ancestry groups. Therefore, it is necessary to conduct lar-
ger MR studies in multiethnic populations in order to examine cau-
sal inferences to further validate and replicate the association
between IgG N-glycans and metabolic traits for personalized health
monitoring and the prevention of metabolic-associated diseases.
Finally, one of the challenges presented by all MR analyses is to
completely eliminate an alternative direct causal effect—in this
case, for IgG N-glycosylation and metabolic traits determined by
both diverse environmental exposures and genetic variants.

5. Conclusions

In summary, the comprehensively bidirectional MR results pre-
sented here suggest potential bidirectional causality between IgG
N-glycans and metabolic traits, and vice versa. According to our
result, this causality might apply bidirectional regulation based
on independent pathogenic mechanisms or pathways. The compre-
hensive IgG N-glycan-QTL resources used in this study and the
potential causal metabolic traits uncovered herein delineate for
the first time a richness of detail in relation to the regulation of
IgG N-glycosylation, which may provide a theoretical basis for
the future development and application of glycomedicine in meta-
bolic diseases. A large-scale genome-wide scan for genetic variants
of IgG N-glycan-related metabolites and further investigation to
understand the molecular regulatory mechanism of IgG N-
glycan-dependent metabolites in the development of CVDs are
required.
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associated with N-glycosylation of human immunoglobulin G show pleiotropy
with autoimmune diseases and haematological cancers. PLoS Genet 2013;9(1):
e1003225.

[51] Grandl G, Wolfrum C. Hemostasis, endothelial stress, inflammation, and the
metabolic syndrome. Semin Immunopathol 2018;40(2):215–24.

[52] Rayyan Assi H, Ziv A, Dankner R. The metabolic syndrome and its components
are differentially associated with chronic diseases in a high-risk population of
350 000 adults: a cross-sectional study. Diabetes Metab Res Rev 2019;35(4):
e3121.

[53] McCracken E, Monaghan M, Sreenivasan S. Pathophysiology of the metabolic
syndrome. Clin Dermatol 2018;36(1):14–20.

[54] Maverakis E, Kim K, Shimoda M, Gershwin ME, Patel F, Wilken R, et al. Glycans
in the immune system and The Altered Glycan Theory of Autoimmunity: a
critical review. J Autoimmun 2015;57:1–13.

[55] Raju TS. Terminal sugars of Fc glycans influence antibody effector functions of
IgGs. Curr Opin Immunol 2008;20(4):471–8.

[56] O’Donnell MJ, Xavier D, Liu L, Zhang H, Chin SL, Rao-Melacini P, et al.; the
INTERSTROKE Investigators. Risk factors for ischaemic and intracerebral
haemorrhagic stroke in 22 countries (the INTERSTROKE study): a case-
control study. Lancet 2010;376(9735):112–23.

[57] Kifer D, Louca P, Cvetko A, Deriš H, Cindrić A, Grallert H, et al. N-glycosylation
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