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a b s t r a c t

DNA is considered to be not only a carrier of the genetic information of life but also a highly pro-
grammable and self-assembled nanomaterial. Different DNA structures are related to their biological
and chemical functions. Hence, understanding the physical and chemical properties of various DNA struc-
tures is of great importance in biology and nanochemistry. However, the bulk assay ignores the hetero-
geneity of DNA structures in solution. Single-molecule methods are powerful tools for observing the
behavior of individual molecules and probing the high heterogeneity of free energy states. In this review,
we introduce single-molecule methods, including single-molecule detection and manipulation methods,
and discuss how these methods can be conducive to measuring the molecular properties of single-/
double-stranded DNA (ss/dsDNA), DNA higher-order structures, and DNA nanostructures. We conclude
by providing a new perspective on the combination of DNA nanotechnology and single-molecule meth-
ods to understand the biophysical properties of DNA and other bio-matter and soft matter.

� 2022 THE AUTHORS. Published by Elsevier LTD on behalf of Chinese Academy of Engineering and
Higher Education Press Limited Company. This is an open access article under the CC BY-NC-ND license

(http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

In biological and chemical studies, the traditional biochemical
bulk assay has been widely used to uncover the molecular proper-
ties, functions, and mechanisms of biomacromolecules, including
DNA, RNA, and protein [1–4]. However, the bulk assay only pro-
vides an average value, as it ignores individual differences between
molecules. To comprehensively understand molecular properties
and mechanisms, single-molecule methods have emerged. These
methods are powerful tools for analyzing and studying molecules
in highly heterogeneous systems. Single-molecule methods gener-
ally include single-molecule detection methods and single-
molecule manipulation methods. In detail, single-molecule detec-
tion techniques (i.e., single-molecule fluorescence [5], nanopores
[6], single-molecule super-resolution (SM-SR) microscopy [7])
can be used to observe and track in real time the rapid transition
process between different states of a biomolecule during fluores-
cence changes; while single-molecule manipulation techniques
(i.e., magnetic tweezers [8], optical tweezers [9], and atomic force
microscopy (AFM) [10]) can be used to directly manipulate a mole-
cule in order to detect the dynamic processes of the molecule
under tension. The applied force on the biomolecule can decrease
the transition energy barrier, which accelerates the conformation
transition rate and shortens the detection timescale. Another ben-
efit of single-molecule manipulation is that these methods can
mimic the forces generated in vivo, thereby determining and quan-
tifying the effects of forces on physiological and pathological pro-
cesses [11,12]. Hence, single-molecule methods reveal the precise
dynamics of biochemical or biophysical reactions by analyzing
the kinetic and thermodynamic information of a single biomacro-
molecule such as DNA.

As a fundamental biomacromolecule in vivo, DNA plays a vital
role in the storage of genetic information. Based on the interactions
between base pairs, strands of DNA form the special spatial struc-
ture of DNA molecules that affects the function of DNA. These DNA
spatial structures are commonly classified by the complexity of the
DNA structure (Fig. 1). According to the Watson–Crick base-pair
principle, a single-stranded DNA (ssDNA) oligonucleotide (primary

http://crossmark.crossref.org/dialog/?doi=10.1016/j.eng.2022.10.009&domain=pdf
http://creativecommons.org/licenses/by-nc-nd/4.0/
https://doi.org/10.1016/j.eng.2022.10.009
http://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:peiyufeng1992@foxmail.com
mailto:sjie@sjtu.edu.cn
https://doi.org/10.1016/j.eng.2022.10.009
http://www.sciencedirect.com/science/journal/20958099
http://www.elsevier.com/locate/eng


Y. Liu, T. Bian, Y. Liu et al. Engineering 24 (2023) 276–291
structure) forms a double-stranded DNA (dsDNA) helix due to
interactions between A–T and C–G in vivo [13]. A DNA strand can
also form more special spatial structures—such as the G-
quadruplex (G4) [14], the i-motif [15], three- or four-way junctions
[16,17], and the triplex [18]—via inter- or intra-strand interactions
[19]. These structures are known as DNA secondary structures.
DNA can also form tertiary structures, such as supercoiled DNA
[20] and nucleosomal DNA [21]. Aside from these biological
function-related structures, DNA can form artificial higher-order
nanostructures, such as DNA origami and DNA bricks [22–25].
The DNA structures mentioned above have various chemical and
physical properties. Detecting the properties of DNA structures is
important in understanding the biological or chemical functions
of DNA.

To date, many methods have been developed for detecting dif-
ferent DNA structures. Based on the optical activities of DNA, ultra-
violet (UV)–visible spectroscopy [26–28] and circular dichroism
(CD) spectroscopy [29–31] have been used to detect DNA confor-
mation changes and interactions with ligands [32]. In addition,
nuclear magnetic resonance (NMR), X-ray diffraction, and cryo-
electron microscopy (cryo-EM) techniques are frequently used to
determine the static or dynamic structure of DNA [29,33,34]. To
detect larger scale static DNA nanostructures, transmission elec-
tron microscopy (TEM) and AFM are applied to observe shapes
and morphologies. During the past two decades, single-molecule
methods have provided new insights into measurements of the
chemical and physical properties of DNA structures.

In this review, we classify DNA structures into primary, sec-
ondary, tertiary, and higher-order structures. We then outline the
basic principles of single-molecule techniques and their applica-
tion to characterizing different DNA structures. Finally, we discuss
the advantages of single-molecule techniques and their future
development.

The primary structure of DNA is ssDNA. Based on inter- and
intra-strand interactions, DNA can also form complex spatial struc-
tures and topologies, known as secondary and tertiary structures.
Fig. 1. The DNA primary structure and different higher-order structures. The DNA primar
strand interaction, DNA can also form complex spatial structures and topologies, which
DNA artificial nanostructures. B-DNA: B-form DNA.

277
The term ‘‘higher-order DNA structures” refers herein to artificial
DNA nanostructures.
2. Single-molecule techniques

2.1. Single-molecule manipulation techniques

With the continuous development of single-molecule manipu-
lation techniques, these techniques continue to increase in num-
ber. At present they include the biomembrane force probe [35],
flow-induced stretching [36,37], microneedle manipulation [38],
AFM, optical tweezers, and magnetic tweezers. The last three
methods are the most commonly used, and are the focus of this
review (Table 1).

2.1.1. Atomic force microscopy–single-molecule force spectroscopy
(AFM–SMFS)

AFM–SMFS can be used to manipulate individual molecules and
measure intramolecular interaction forces (Fig. 2(a)). In this tech-
nique, the surface is modified with substrate molecules, while tar-
get molecules that can bind to the substrate molecules are
modified on the tip of the AFM–SMFS cantilever. Moving the tip
so that it can bind to the substrate molecules and then shrinking
the tip at a constant speed will cause deflection of the cantilever.
The elasticity of the cantilever obeys Hooke’s law, so the force
applied on the tethered molecule can be calculated by the deflec-
tion and the spring constant of the cantilever. From this, the
force-extension curve (FEC) can be obtained.

2.1.2. Magnetic tweezers
The basic principle of magnetic tweezers is that magnetic particles

placed in a magnetic field gradient experience the same force as the
magnetic field gradient. In general, two magnets must be used
together, generating tension and torque. This pair of magnets is sus-
pended above the sample flow channel, which exposes the magnetic
y structure refers to the single-stranded DNA (ssDNA). Based on the inter- and intra-
are secondary structures and tertiary structures. The high-order structure refers to



Fig. 2. Schematic overview of single-molecule manipulation used to detect DNA
structures. (a) AFM–SMFS; (b) magnetic tweezers; (c) optical tweezers.

Table 1
Comparison of single-molecule manipulation techniques.

Methods Force range (pN) Major applications Advantages Disadvantages

AFM > 10 Monovalent or multivalent
ligand-receptor interactions

Functions of both applying force and imaging;
high spatial resolution (nanometer scale)

Probes are expensive and
fragile, and should be modified

Magnetic tweezers 0.1–100.0 DNA elasticity; DNA topology High throughput; prone to applying torque Low spatial and temporal
resolution

Optical tweezers 0.1–100.0 Force strength of molecular
interactions

Higher spatial and temporal resolution; DNAmolecules
can be moved between different solutions

Low throughput
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field below. Inside the flow channel, biomacromolecules are con-
nected between the bottom of the flow channel and the small mag-
netic beads. The magnetic beads are manipulated by an external
magnetic field, thereby controlling the target molecules attached to
the beads. Below the flow channel, there is a microscope objective
connected to a charge-coupled device (CCD) camera that transfers
the observed image to the CCD camera; then, the CCD converts the
image into an electrical signal and transmits it to the computer. When
a parallel beam of light hits the magnetic beads, light scattering
occurs. The scattered light interferes with the unscattered light, caus-
ing concentric circles to form around the image captured by the cam-
era (Fig. 2(b)). Magnetic tweezers have several advantages, such as a
strong force and ease of operation; moreover, the force provided by
magnetic tweezers can be adjusted in the range of 0.1–100.0 pN [39].

2.1.3. Optical tweezers
A focused beam of light acting on objects with an index of

refraction higher than the index of refraction of the surrounding
medium can generate an optical gradient force. This principle
was discovered by Ashkin in 1970 [40]—a discovery that promoted
the emergence and maturity of optical tweezers technology [41].
Optical tweezers use a beam of light to capture particles
(Fig. 2(c)); and the light must produce the lowest point of potential
and form an optical trap. When the barrier of the optical trap is
greater than the kinetic energy of an object, the object will be sta-
bly bound in the optical trap. Light refracts when it hits the parti-
cle. Due to the change in photon momentum, the particle is subject
to a reaction force. The resultant force of multiple light rays binds
the particle in the center. At this time, the particle can be moved by
moving the light field, to realize the function of manipulating the
beads like tweezers. Biological macromolecules can also be
manipulated by connecting them to particles captured in optical
traps. The position of the directional moving beam can control
the distance between the two ends of the biomacromolecule, so
it can accurately apply the same force to the biomacromolecule
as the particle movement direction. Particle sizes ranging from
about 20 nm to a few microns can be stably captured [42–45].

2.2. Single-molecule detection techniques

Single-molecule detection techniques can be applied to deter-
mine the dynamic characteristics and interactions of biomolecules
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by detecting and imaging individual molecules in solution and
recording the behavior of single molecules in real time [46].

2.2.1. AFM imaging
Another major application of AFM is imaging. When AFM is

used as an imaging tool, the basic working principle is that the
tip approaches the sample until interaction forces between the
tip and the sample cause deformation of the cantilever. The surface
profile of the sample can then be reconstructed by recording the
deformation of the cantilever. When scanning the sample, the user
can measure the vertical position of the tip by means of a laser
reflected from the cantilever to the position-sensitive photodetec-
tor. AFM imaging resolution can reach atomic levels: up to 2.00 nm
for lateral resolution and 0.01 nm for longitudinal resolution.

2.2.2. Single-molecule fluorescence techniques
The basic principle of single-molecule fluorescence is to detect

the light emitted by a fluorophore attached to the studied mole-
cule. The fluorescent group in the ground state absorbs light from
an external light source, is excited, and emits fluorescent light in
1 � 10�9–1 � 10�7 s [47]. In single-molecule fluorescence, fluores-
cent molecules can be attached to DNA, detected, and monitored
within a short time [48]. Using single-molecule fluorescence tech-
niques, it is possible to characterize the different conformational
states of higher-order DNA structures [49]. Single-molecule fluo-
rescence techniques are widely used for probing different confor-
mations of secondary DNA structures.

In single-molecule fluorescence resonance energy transfer
(smFRET) techniques, two differently colored dyes are positioned
at specific locations on the host molecule (Fig. 3(a)). Fluorescence
resonance energy transfer (FRET) is based on a quantum interac-
tion mechanism between two fluorescent dyes that are close to
each other. When the distance between the donor and the acceptor
is close enough and the donor is excited by an external light source,
the acceptor emits part of the light through a nonradiative reso-
nance energy transfer mechanism between the donor and the
acceptor. The efficiency of the energy transfer depends on the dis-
tance between the donor and the acceptor:

EFRET ¼ 1

1þ ðr=R0Þ6

where R0 is the donor–acceptor distance with an FRET efficiency of
50%, and r is the donor–acceptor distance. The research field of
smFRET is expanding, and smFRET can be used in enzymatic reac-
tions and molecular folding and conformational transitions.

2.2.3. Nanopore technology
As a novel platform for single-molecule detection, nanopore

technology can distinguish the differences between adenine (A),
thymine (T), cytosine (C), guanine (G), and other mononucleoside
bases. Nanopore technology has the advantages of high resolution
and high throughput. An insulating membrane separates the elec-
trolyte chambers into cis and trans chambers, with one nanosized
pore connecting the two chambers (Fig. 3(b)). When an electric
field is applied at two ends of a nanopore, occupation of the
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nanoscale pore by the target molecule leads to a blockage that dis-
turbs the ionic current through the pore, resulting in a measurable
signal. These signals contain information about the structure,
dynamics and others of the target molecules [50,51]. As materials,
nanopores can be divided into biological nanopores [52,53] and
solid-state nanopores [54,55], and they have contributed to prob-
ing different DNA higher-order structures.

2.2.4. SM-SR microscopy
Conventional fluorescence microscopy is limited by diffraction,

which defines the achievable resolution. SM-SR technology has
enabled fluorescence microscopy to achieve a spatial resolution of
approximately 20 nm by an order of magnitude. In this technology,
fluorophores behave as point sources, and their image corresponds
to the point-spread function (PSF) of the microscope. Controlling
the emitting concentration allows all fluorophores emitted at the
same time to be avoided; then, each molecule can be analyzed in
the microscope image. The final super-resolution image can be
reconstructed by locating the position of each single molecule
through PSF (Fig. 3(c)) [56,57]. SM-SR microscopy has become
one of the most efficient imaging methods at the nano-
scale and is widely used in the field of DNA nanotechnology [58,59].

As the first far-field microscopic imaging technology to break
the optical diffraction limit, stimulated emission depletion (STED)
microscopy is a major category of SM-SR techniques. The basic
principle of STED is to irradiate the sample with two laser beams
at the same time. One laser beam is used to excite the fluorescent
molecules, bringing the fluorescent molecules in the center to an
excited state. After excitation, the fluorescent molecules undergo
vibrational relaxation to the lowest state. Meanwhile, another
beam quenches the excited fluorescent molecules outside the cen-
tral region, causing the excited fluorescent molecules to return to
the ground state through STED without the spontaneous emission
of fluorescence. In this way, a final high-resolution image is
obtained beyond the diffraction limit [60].

2.3. The combination of single-molecule detection and manipulation
methods

For developing the temporal and spatial resolution, combining
single-molecule detection with a manipulation method introduces
Fig. 3. Schematic overview of single-molecule detection used to detect DNA structure
fluorescence; t1, t2: different time point.
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complementary advantages and provides more details in detecting
DNA conformational changes. These methods show promising
potential for the kinetic or thermodynamic analysis of dynamic
DNA. Early efforts to combine optical trapping with single-
molecule fluorescence were first demonstrated by Funatsu et al.
[61] to directly detect the interactions between a kinesin molecule
and a microtubule. After that, it became more common to apply a
combination of optical/magnetic tweezers and single-molecule flu-
orescence or FRET to DNA measurements [62,63], such as nucleo-
some unwrapping [64] and determining the conformational
diversity of G4 [65]. The combination of optical tweezers with flu-
orescence microscopy and confocal microfluidics has been widely
used. This technique subjects individual molecules to different
reaction mixtures and provides information such as identity, con-
formational dynamics, and spatial dynamics [66,67]. In addition,
Lee et al. [68] developed a method combining an optical trap with
three-color FRET for measuring the structural transition or folding/
unfolding dynamics of more complex samples (e.g., Holliday junc-
tions and double hairpins).
3. Single-molecule techniques for characterizing different DNA
structures

3.1. DNA primary structure

The primary structure of DNA is ssDNA, which is formed by
arranging deoxynucleotides with phosphodiester bond linkages,
without hydrogen (H)-bonding interactions. ssDNA is an important
intermediate in biological processes, such as DNA replication, tran-
scription, and repair [69–71]. In vivo, ssDNA undergoes dynamic
conformational changes due to its flexibility; thus, measurements
of these mechanical properties may provide clues to understanding
the folding structures of DNA. Because of the high flexibility of
ssDNA, the conformations of ssDNA can be described only statisti-
cally in a bulk assay. The mechanical properties of ssDNA have
been widely explored by means of single-molecule methods [72]
such as smFRET, fluorescence correlation spectroscopy, and force
spectroscopy. Using these methods, the persistence length (an
important parameter characterizing flexibility [73]) of ssDNA was
found to range from 1.5 to 5.0 nm, influenced by the DNA
sequence, contour length, and concentrations of cations in the
s. (a) smFRET; (b) nanopore; (c) SM-SR microscopy. TIRF: total internal reflection
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buffer [74]. However, most of these measurements were conducted
using long ssDNA (>100 nucleotides (nt)), as it is more difficult to
detect shorter ssDNA. Recently, a study investigated the flexibility
of DNA with less than 14 nt, using smFRET. The results showed that
ssDNA is flexible even when it is shorter than the persistence
length [69].

Two factors affect the elasticity of ssDNA: base-stacking inter-
actions and the sugar pucker conformational transition. A previous
study measured and analyzed the elasticity of two ssDNA
homopolydeoxynucleotides—namely, poly(dA) and poly(dT)—by
means of AFM [72]. Compared with poly(dA), which was found
to have an expected entropic elasticity behavior, poly(dT) showed
two overstretching transitions in the FEC at about 23 and 113 pN,
caused by base-stacking interactions and sugar pucker conforma-
tional transitions (from the C30-endo pucker to the C20-endo
pucker), respectively. The sugar pucker conformational transition
was also found in long ssDNA with a random sequence [75], and
the energy difference between the two sugar pucker conformations
was found to be 2–1674 J�mol�1.

Temperature may also affect the extension of ssDNA. When
ssDNA is stretched by a relatively low force (<10 pN), the exten-
sion of the ssDNA increases as the temperature increases, due to
secondary structure formation. In contrast, when the stretching
force is greater than 10 pN, the extension of ssDNA decreases with
increasing temperature, indicating that temperature plays an
important role in the elasticity of ssDNA [76,77].

As mentioned earlier, the interaction between a nanopore and a
DNA strand produces changes in the ion current passing through
the nanopore, making nanopores useful for DNA sequencing. As
the most promising third-generation sequencing technology,
nanopore technology offers several advantages such as high accu-
racy, low cost, and long read length.
3.2. DNA secondary structure

3.2.1. Double-strand DNA
3.2.1.1. Elasticity, unzipping, and shearing force of dsDNA. Watson,
Crick, and Franklin discovered the double-helix structure of DNA in
1953 [78,79]. Since then, the chemical and physical properties of
double-helix DNA have attracted great attention, especially the elas-
ticity of dsDNA. Previous studies have shown that the freely jointed
chain (FJC) model and freely rotating chain (FRC) model are best sui-
ted to describe the elasticity of ssDNA [80–82]. The FRC model is
essentially the same as the FJC model, except that the former fixes
the bond angles between nearest neighbor monomers [83].

x ¼ L � ð1� kBT
2F � lbÞ

where kB is the Boltzmann constant, x is the average extension of
the chain at a given stretching force F, lb is the rotating unit length
of the polymer chain, T is the absolute temperature, and L is the
contour length.

For dsDNA, the force-extension relationship becomes nonlinear
under large forces. This behavior can be explained by the FJC
model, while the wormlike chain (WLC) model is suitable for med-
ium forces [84,85]. In the classical FJC model, the chain is repre-
sented as inelastic segments that are freely jointed [86]; in the
absence of external forces, the directions of these segments are
irrelevant [37]. In this model, the elastic response of the molecules
is pure entropy [87]:

x
L
¼ coth

Flk
kBT

� �
� kBT

Flk

where lk is the Kuhn length.
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As an alternative model, the WLC (as the name suggests) is a
polymer molecule that is viewed as a long, thin worm; the configu-
ration of the polymer chain is a spatial curve that can be bent at
every point along the whole chain. The WLC model was proposed
in 1949 [88] and was applied to describe the elastic response of
a single dsDNA molecule in 1995 [89]. The force F is related to
the fractional extension (x/L) as follows [89]:

F ¼ kBT
A

1

4 1� x
L

� �2 �
1
4
þ x
L

2
664

3
775

where A is the persistence length.
To extend the range of the formula’s applicability, Wang et al.

[90] added a stretch modulus to modify the formula; the force F
is now related to the fractional extension (x/L) by the following:

F ¼ kBT
A

1

4 1� x
L
þ F
K0

� �2 �
1
4
þ x
L
� F
K0

2
6664

3
7775

where K0 is the elastic modulus.
In 1992, Smith et al. [37] measured the elasticity of a single

dsDNA molecule, in what was the first single-molecule study of
nucleic acids. They simulated the movement of the DNA molecules
attached to the beads under hydrodynamic and magnetic forces. To
date, single-molecule manipulation techniques have been increas-
ingly applied in nucleic acid research, and important progress has
been achieved in this technology. In such techniques, one end of a
dsDNA molecule is attached to a glass surface, while the other end
is connected to a magnetic bead. DNA molecules are linked to dif-
ferent surfaces via specific reactions such as biotin–streptavidin or
digoxin/anti-digoxin antibody. At stretching forces lower than
5 pN, DNA shows an elastic response dominated by entropic
effects; at forces greater than 5 pN, enthalpic contributions play
a key role. Previous studies have shown that torsion-
unconstrained B-form DNA(B-DNA) undergoes an overstretching
transition when a shearing force of approximately 65 pN is applied
[38,91], leading to an approximately 1.7-fold elongation of its orig-
inal contour length. At 150 pN, DNA splits into single strands and
completely recombines when relaxed [92].

Essevaz-Roulet et al. [93] and Bockelmann et al. [94] performed
the mechanical separation of a single bacteriophage k DNA mole-
cule and found that DNA mechanical unzipping occurred in the
range of 10–15 pN. The change in force was found to be highly cor-
related with the DNA guanine/cytosine (GC) content, with the GC-
rich region having a higher unzipping force than the adenine/
thymine (AT)-rich region. This result is consistent with the findings
of Rief et al. [92]. For poly(dG–dC) and poly(dA–dT) DNA strands,
the unzipping forces are FG–C = 20 pN and FA–T = 9 pN. Based on
the equilibrium measurement under different stretching forces,
the unzipping/rezipping free energy and kinetics can be obtained
[95].

3.2.1.2. Interaction between base pairs. In a DNA double helix, H-
bonds connect the base pairs on the two strands, which helps with
inter-strand stabilization, while base-stacking interactions occur
between adjacent base pairs, providing both inter- and intra-
strand stabilization (Fig. 4(a)) [96]. If the stacking free energy
between two bases is too high or too low, the genome will be
over-stable or unstable, which will affect the unwinding of the
DNA during replication or transcription, leading to genetic instabil-
ity [97].

As early as 2004, the Sattin et al. [98] explored stacking interac-
tion forces and obtained the force contribution of A–T or G–C base



Fig. 4. Overview of single-molecule methods used to explore the interaction
between base pairs. (a) Stacking interaction between base pairs. Reproduced from
Ref. [99] with permission. (b) Schematic illustration of probing the base stacking
forces using optical tweezers and DNA origami structures. Orange tether represents
a single strand, red and blue represent terminal base pairs. Reproduced from Ref.
[99] with permission. (c) Schematics of exploring the interaction between
nucleotides by AFM. PEG: polyethylene glycol; H1: dsDNA helical structure.
Reproduced from Ref. [100] with permission.

Fig. 5. Holliday junction dynamics probed with smFRET experiments. (a) Schematic
of branch migration and conformational transition of Holliday junctions. Cy5 and
Cy3 fluorophores are terminally attached to two arms, respectively. (b) Optical
tweezers assay for probing the conformational transitions of Holliday junctions.
Holliday junction is tethered to the surface through biotin. Reproduced from Ref.
[107] with permission. (c) Schematic of DNA force clamp. Connect the molecular
system of interest (red rectangle) with the two anchor points of DNA force clamp. F:
force Connect the molecular system of interest (red rectangle) with the two anchor
points of DNA force clamp. Reproduced from Ref. [108] with permission.
(d) Conformational transitions of the Holliday junction under force. Reproduced
from Ref. [108] with permission.
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pairs. They found that, although the number of H-bonds of A–T and
G–C were different, these forces were approximately equal. In
addition, they reported that base stacking contributes more to
dsDNA interactions than H-bonding. Kilchherr et al. [99] further
explored the stacking forces (Fig. 4(b)) between DNA base pairs
using optical tweezers. They prepared four base-pair stacking con-
figurations created by the bases A and T and used optical tweezers
to measure the force-extension data. After calculation, the free
energy increments of each stack were found to be between –3.4
and –14.23 kJ�mol�1—information that now guides the design of
DNA-based devices.

Long-range (15–25 nm) interaction also occurs between base
pairs. Using AFM, Luo et al. [100] calculated the long-range interac-
tion between dissociated complementary base pairs (Fig. 4(c)) and
found that that of A–T was (2.3 ± 0.2) pN and that of C–G was
(3.5 ± 0.2) pN; these forces are attributed to the interactions of
multiplex H-bonds of ordered water structures between nucleo-
tides. This result may be important for understanding the DNA
hybridization process.

3.2.2. The Holliday junction
The Holliday (four-way) junction is a four-stranded DNA

intermediate in DNA recombination, which can undergo conforma-
tional transition and branch migration under specific conditions
(Fig. 5(a)). In the absence of metal ions, Holliday junctions adopt
a conformation of four helices pointing to square corners [101].
At Mg2+ concentrations exceeding about 50 lmol�L�1, Holliday
junctions exist as two different isoforms, both of which have a
characteristic X-shaped architecture [102]. With an increase in
Mg2+ concentration, the transition between the two conformations
(ISO-I and ISO-II) becomes slower [103,104], and the rate of branch
migration decreases rapidly [105,106]. Similarly, an external force
can affect the conformational transitions of Holliday junctions.
Using a technique that combined smFRET and optical tweezers,
Hohng et al. [107] showed that the conformations of Holliday junc-
tions are biased at 0.5 pN or lower (Fig. 5(b)). Nickels et al. [108]
designed a DNA self-assembled force clamp (Fig. 5(c)) and showed
that an external force can be applied to make Holliday junctions
continuously switch between the two stacking conformations,
ISO-I and ISO-II (Fig. 5(d)). These results illustrate the unique
advantages of smFRET in exploring conformational changes
between two Holliday junction states. Since single-molecule tech-
niques can be used to observe the intermediates and isomerization
of a Holliday junction in real time, these techniques can be applied
to explore internal characteristics and mechanical stretching. Thus,
they are of paramount significance for future work in analyzing
complex folds in biological systems and designing and validating
complex DNA nanocomponents.

3.2.3. The DNA G4, i-motif, and triplex
G4s are four-stranded DNA secondary structures composed of

folded guanine-rich nucleic acid sequences [109]. A G-quartet is
a structural unit of G4s, and two or more layers of quartets form
quadruplexes by means of p–p stacking. Scientists first identified
G4s in cancer cells in 1962, finding that their stabilization can
effectively inhibit the proliferation of tumor cells [110]. G4 folding
topologies are believed to be divided into three types—namely,
hybrid-stranded structures, antiparallel-stranded structures, and
parallel-stranded structures (Fig. 6(a)) [111]—which are deter-
mined by two factors: the glycosidic conformations and the rela-
tive strand orientations [112]. The mechanical stability of these
structures can be explored via magnetic tweezers. Cheng et al.
[113] found that all non-parallel-stranded G4s show an unfolding
force peak < 40 pN, while parallel-stranded G4s show an unfolding
force peak in the range of 40–60 pN, indicating that parallel-
stranded G4s have high mechanical stability. When the human
281
telomere G4 is induced by K+, it exists in a mixed conformation
[114]. The conformational change kinetics of G4 can usually be
detected by means of smFRET [115–117]. Long and Stone [118]
found that in situ refolding leads to a dynamic distribution of the
telomere DNA G4 conformation. The length and sequence of the
loop also affect the G4 conformation and dynamics. Recently, the
conformational dynamics of the G4 structure were also observed
in the presence of Na+. Noer et al. [119] identified at least four FRET
states, which indicates that telomere G4s polymorphism does not
only occur in the presence of K+ ions. As a label-free single-
molecule method, nanopores have also been employed to monitor
the folding/unfolding dynamics of G4 [55,120,121]; they exhibit



Fig. 6. Stretching of G4 using magnetic tweezers. (a) Three G4 folding topologies.
Reproduced from Ref. [113] with permission. (b) Experimental set up of magnetic
tweezers measurements. (c) The force-extension curves. The red arrow points to G4
unfolding. Reproduced from Ref. [123] with permission.
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potential for higher spatial and temporal resolution than other
methods.

You et al. [122] has made efforts to explore the mechanical
properties of the G4 with magnetic tweezers (Figs. 6(b) and (c)).
They reported three folding states of telomeric G4, which have dis-
tinctly different mechanical stabilities and lifetimes. You et al.
[123] studied the DNA G4 formed in the promoter region of onco-
gene c-myc and found that the unfolding rate of its main species is
slow, which may be the reason for the gene-silencing function of c-
myc G4 [122,124]. Another G-rich region—namely, the P1 promoter
of the human B-cell lymphoma 2 (Bcl-2) gene—was also investi-
gated. In this region, multiple G4 structures can be formed. Two
major species, Bcl2-2345 and Bcl2-1245, were also studied due
to their complex folding/unfolding kinetics [125]. Through an
exploration of the folding/unfolding dynamics, the researchers
found that the mechanical stability of Bcl2-2345 G4 was lower
than that of Bcl2-1245 G4. This information may guide the design
of G4-targeted small molecules that can regulate Bcl-2 gene
expression in the future. Compared with canonical G4s, non-
canonical G4s have been less explored. Zhang et al. [126] reported
that G4-forming sequences with bulges can form a fully folded G4
(high mechanical stability) and partially folded intermediates (low
mechanical stability), which depend on the lengths and positions
of the bulges.

The KIT gene is located on human chromosome 4q12–13 and
belongs to the proto-oncogene, which encodes the stem/mast cell
Fig. 7. The mechanical properties of i-motif probed using optical tweezers and smFRET.
DNA origami structures. DNA constructs with the i-motif are connected at the terminal
DNA nanocircles (i-Cir96 and i-Cir75). Green and red indicate Cy3 and Cy5 fluorophores
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growth factor receptor gene c-kit. Abnormalities in the c-kit gene
may lead to abnormal cell increases and tumors [127]. There are
three different G4 structures within the proximal promoter of KIT
gene: kit*, kit1, and kit2 [128]. Previous studies have shown that
the G4 formed at these sites will affect gene expression [129].
Understanding the conformational characteristics and mechanical
properties of these G4 structures and deeply exploring their regu-
latory role in DNA structure is of great significance for taking them
as potential drug targets. Buglione et al. [130] found that the for-
mation of a G4 did not affect the FEC. When a fixed negative tor-
sional stress was imposed (negative supercoiling = –40), wild
type c-kit was extended under a low force (F = 0.3 pN, forming
plectonemes), but mutated c-kit was not. Under a high force
(F > 1 pN, forming denaturation bubbles), the curves of mutated
c-kit and wild type c-kit almost coincide, close to the dsDNA exten-
sion curve under relaxation; in other words, the existence of a
supercoil has a great influence on the mechanical properties of
DNA in the c-kit region.

Similar to the G4, the i-motif has been simulated since the
1990s, but it has gradually attracted the attention of scientists in
recent years. The i-motif is a four-chain structure formed by two
parallel double strands by inserting hemiprotonated cytosine base
pairs (C/C+) [131], it is widely found in genomic DNA [132,133] and
stabilized in slightly acidic pH [134]. Several findings have demon-
strated that i-motif sequences play a vital role in a variety of bio-
logical processes such as the regulation of gene expression and
replication [135–137]. Dhakal et al. [138] was the first to explore
the mechanical properties of the i-motif at the single-molecule
level (Fig. 7(a)). These researchers determined that the i-motif
had rupture forces of 22–26 pN. Using combined smFRET and
self-assembled DNA nanostructures (Fig. 7(b)), Megalathan et al.
[139] demonstrated that the human telomere sequence remains
unstructured at pH 9.0 and adopts a fully folded i-motif sequence
structure at pH 5.5. However, at a weakly acidic pH (pH 6.5), the
sequence undergoes switching kinetics between the i-motif, par-
tially folded state, and fully unfolded state. Topological constraint
has also been shown to affect the folding and conformational
dynamics of the i-motif. On this basis, Megalathan et al. [140]
investigated the effect of molecular crowding on the stability of
i-motifs embedded in nanocircles. To simulate the real topology
of i-motif structures in chromatin in vivo, the researchers con-
structed ligated DNA nanocircles i-Cir96L (where ‘‘L” means
ligated) (Fig. 7(b)). Polyethylene glycol (PEG) was used to mimic
molecular crowding. Compared with that in unligated i-Cir96
nanocircles, the i-motif in ligated constructs formed only at pH
5.5, while the former showed significant folding at pH 6.5 and a
large fraction of the partially folded state at pH 7.0 and 7.4
[139,141], indicating that the ligated nanocircles became hard so
that DNA bending destabilized the i-motif. In the presence of
PEG, even at pH 7.4, the i-motif showed a high FRET state, indicat-
ing that PEG can stabilize the i-motif.
(a) Optical tweezers assay for stretching the i-motif. (b) Schematics of four different
position of a DNA duplex (T-i-motif) or embedded in DNA duplexes (i-duplex) and
, respectively. Reproduced from Ref. [139] with permission.
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The a-hemolysin protein nanopore was applied by the Ding
et al. [142] to study the folds of the i-motif structure for the first
time. By encapsulating the i-motif structure into a nanocavity, they
reported a method for analyzing the lifetimes of the i-motif. The
results showed that the folding lifetime of the i-motif decreased
with increasing pH. Xi et al. [143] further found that changing
the loop sequence and length did not affect the formation of the
i-motif structure, although a longer loop length decreased the ther-
mal stability of the i-motif. Without force, Jonchhe et al. [144]
measured the half-life of the i-motif to be about 3 s at neutral
pH using microfluidic channels. These methods are novel platforms
for researching single-molecule kinetics.

A DNA triplex forms when a pyrimidine or purine base forms a
Hoogsteen pair with the purines of Watson–Crick base pairs and
occupies the main groove of a DNA double helix, and triplex-
forming oligonucleotides form intermolecular triplex strands with
the target sequence ondsDNA (Fig. 8(a)) [18]. A triple helixmayhave
many different compositions and geometries [145]. Ling et al. [146]
reported a DNA triplex with 30 triads and determined that the force
for rupturing the double strand and the third strand was approxi-
mately 42.6 pN. Lee et al. [147] investigated the formation of a
DNA triplex by means of smFRET (Fig. 8(b)). When the pyrimidine–
motif triplex was in a weak basic condition (pH 8.5), the single-
strand tail was not folded. With an increase in acidity, the low FRET
efficiency peak disappeared and a new peak appeared at high FRET
efficienc, indicating the formation of a parallel triplex. The presence
of Mg2+ can also help the formation of a triplex, whether a purine–
motif triplex or a pyrimidine–motif triplex. Further insight into the
dynamics of forming a triplex came from Li et al. [148], who used a
single-molecule rescue-rope-strategy and found that the formation
of a DNA triplex also depended on theDNA sequence. TheAAmutant
(changing themotif of TTAGGG toAAAGGG) contributes to the prob-
ability of the formation of a DNA triplex structure.

3.3. DNA tertiary structure

3.3.1. DNA topology
The DNA double helix causes torsional stress in the process of

replication and transcription, which creates supercoils and causes
topological changes. The DNA topology is described by the linking
number (Lk), where Lk = twist (Tw) + wrist (Wr) [149], and where
Tw refers to the number of helix turns in DNA and Wr is the num-
ber of times the double helix crosses itself (i.e., the number of
supercoils). This intertwined structure is called a plectoneme
[150]. In general, both negative and positive supercoils are gener-
ated in vivo. As the replisome advances, positive supercoils accu-
Fig. 8. DNA triplex. (a) Four base arrangements in DNA triplexes. Reproduced from Ref. [
the left) and purine–motif triplex (right). Once it is folded, two fluorophores approach, r
with permission.
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mulate in front of the replication fork, which causes the
replisome to rotate to relax the supercoils, allowing the two
daughter DNA strands to become entangled [151]. When DNA
transcription occurs, positive supercoiled DNA is produced before
the transcription bubble and negative supercoiled DNA is produced
after the transcription bubble [152]. Such a locally entangled DNA
strand is necessary for transcriptional activation [153].

Single-molecule magnetic tweezers have become an effective
tool for studying supercoiled DNA, because they can easily intro-
duce superhelical turns by applying rotation to the beads using
magnets. When negative torsional forces are applied to DNA, the
torsional stress is usually stored in plectonemes rather than twists
at low forces (< 0.5 pN). As the force increases, the DNA will start to
twist, and the change causes DNA denaturation to form left-
handed structures [154,155]. When the force increases to 2 pN,
the negative torsional force is completely absorbed by the dena-
tured structure, and the DNA length does not change [156]. Strick
et al. [154] tested six DNA sequences with different GC contents
(Fig. 9(a)) and obtained an extension supercoiling density curve
(Fig. 9(b)). Below 0.5 pN, the curve was similar to each other; above
0.5 pN, because of partial melting of the DNA, the DNA length
increased, and the increased length of different sequences was dif-
ferent. DNA molecules with a higher GC content showed greater
DNA extension. Kim et al. [157] explored the B-form DNA to Z-
form DNA (B–Z) transition kinetics of thymine guanine (TG)
repeats; their smFRET results showed that TG repeats are sensitive
to torsion and tension. The rates and rate constants of the B–Z tran-
sition were also calculated. In a previous work, Lee et al. [63] cal-
culated the forward rate (KBZ = 0.051 s�1), reverse rate
(KZB = 0.070 s�1), and equilibrium constant (Keq = KBZ/KZB = 0.73)
of the GC repeat B–Z transition at 37 �C. In contrast, the transition
rate of TG repeats is much higher, which shows that the free
energy barrier between the two states is lower [156].

It is difficult to apply torsion to DNA with conventional optical
tweezers. To overcome this challenge, Forth et al. [150], Sheinin
et al. [158], and Deufel et al. [159] captured a nanofabricated
quartz cylinder with optical tweezers, tethered the detected bio-
molecules between the bottom of the cylinder and the glass slides,
manipulated the cylinder to stretch, twisted the biomolecules, and
obtained the torsional modulus of DNA (Fig. 10(a)). Such an
advanced device is called an angular optical trap (AOT). The
researchers twisted a single-substrate DNA and braided a braided
substrate DNA (i.e., braided two strands of DNA together) [160].
The results showed that, for naked DNA, the torsional modulus of
ssDNA is three times higher than the torsional modulus of braided
DNA, while for chromatin, the torsional modulus of braided
147] with permission. (b) Molecular constructs of pyrimidine–motif triplex (two on
esulting in a high FRET efficiency that can be observed. Reproduced from Ref. [147]



Fig. 9. Applying torsion to explore DNA B–Z transition by single-molecule magnetic tweezers. (a) The schematics of single-molecule measurement on DNA supercoiling by
magnetic tweezers. The supercoiling density–extension curve shows different DNA structures (denatured, underwound, or plectonemes). At a characteristic force (Fchar),
negative supercoiling induces local melting of the dsDNA. r: supercoiling density. Reproduced from Ref. [156] with permission. (b) The curves show the DNA extension as a
function of supercoiling density under different forces. When the force is increased to 1.2 pN, all sequences with different GC contents show an asymmetric curve (asym.),
with negative supercoiling being absorbed into DNA melting and positive supercoiling being absorbed into plectonemes. The final GC content of the 6 different DNA
constructs were 77%, 58%, 42% (asymmetric distribution of GC along the molecule), 42% (symmetric distribution of GC along the molecule), 39%, and 38%. Z: the DNA
extension; LC: contour length. Reproduced from Ref. [156] with permission.
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chromatin is five times higher than the torsional modulus of single
chromatin. In other words, when replication occurs on naked DNA,
the supercoils produced by the replication will be mainly dis-
tributed behind the replisome (where the substrate is softer)
(Fig. 10(b)), while the opposite occurs for the chromosome.

3.3.2. Nucleosome and chromatin
In eukaryotes, the genome is organized as chromatin, which is

composed of DNA and histones. The basic unit of chromatin is
the nucleosome, where 147 base pairs of DNA are wrapped around
histone octamers (H2A, H2B, H3, and H4) for approximately 1.7
turns [161,162]. Chromatin is involved in all DNA metabolic pro-
cesses, including transcription, replication, repair, and recombina-
tion. The potential of AFM for exploring the behavior and
properties of individual chromatin strands has been demonstrated
[163–165]; the formation of a higher-order chromatin structure
can also be shown by AFM imaging [163]. Recently, Kilic et al.
[166] revealed chromatin fiber interconversion kinetics using
smFRET and found that heterochromatin protein 1a maintains
chromatin in a compact and dynamic state.

Single-molecule methods permit the observation of individual
nucleosomes under stressed and torsional conditions, which is
important for simulating physiological processes in vivo. Previous
single-molecule studies have shown that nucleosomes will
undergo a transition from partially unwrapped to fully unwrapped
at forces of 15–25 pN [167–169]. When a force of approximately
10 pN was applied to the DNA template, the chromatin assembly
process slowed down significantly [170]. Magnetic tweezers have
Fig. 10. Exploring DNA topology by angular optical trap (AOT). (a) Schematic diagram o
modulus (left) of single (red) and braided substrate (blue) reveals the difference betwee
naked DNA distributes supercoiling mainly to the behind of the replisome, while replicati
where kB is Boltzmann constant and T is the temperature. Reproduced from Ref. [160] w
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been exploited to monitor nucleosome assembly on topologically
constrained DNA molecules (Fig. 11(a)). Gupta et al. [171] found
that positive supercoiling in the range of 0.025–0.051 will preclude
nucleosome formation. Monoubiquitination at lysine 119 of his-
tone H2A (ubH2A) can influence the stability of nucleosomes.
Using magnetic tweezers, Xiao et al. [172] compared the
unwrapped force of DNA with those of the H2A nucleosome and
ubH2A nucleosome (Fig. 11(b)). They found that the ubH2A
nucleosome underwent two-step unfolding at much higher forces.
ubH2a can increase nucleosome stability by preventing DNA peel-
ing from the histone octamer. Facilitates chromatin transcription
(FACT) is a histone H2A–H2B dimer chaperone [173] that can facili-
tate the progression of polymerases on chromatin [173] and
improve the fidelity of transcription [174]. FACT has also been
shown to mediate nucleosome assembly and disassembly at the
single-molecule level [175]. Recently, Wang et al. [176] directly
studied the effect of ubH2A on FACT functions. By manipulating
nucleosomes, ubH2A was discovered to regulate the dual functions
of FACT in different ways. The function of FACT in nucleosome
assembly is not affected by H2A ubiquitination; however, ubH2A
greatly restricts the binding of FACT to nucleosomes, thus inhibit-
ing its nucleosome disassembly activity.

4. The combination of single-molecule methods and DNA
nanotechnology for detecting DNA structures

DNA nanoassemblies are widely used in nanomaterials,
biomolecular sensing, imaging, and drug delivery [177–180]. Due
f AOT. Reproduced from Ref. [160] with permission. (b) The histogram of torsional
n DNA and chromatin substrates in the process of replication (right). Replication on
on on chromatin is mainly located in front of the replisome. The kBT is 4.14 � 10�21 J,
ith permission.



Fig. 11. Assembly and disassembly of nucleosomes probed using magnetic tweezers. (a) Assembly of the nucleosome using magnetic tweezers. A single dsDNA molecule is
tethered between a magnetic bead and substrate surface, and then a mixture of core histone and histone chaperone Nap1 is added. The formation of nucleosomes is
determined by monitoring the shortening in DNA extension (DZ) of the magnetic beads. Reproduced from Ref. [171] with permission. (b) The force–extension curves of H2A-
nucleosome and ubH2A-nucleosome. Reproduced from Ref. [172] with permission.
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to their high resolution, single-molecule techniques can be used to
characterize the mechanical properties of individual nano-objects.
Thus, the combination of single-molecule methods with DNA
nanotechnology fills a research gap. There are numerous explicit
reviews of DNA nanotechnology [181–183]. Here, we focus on
two topics: ① using DNA nanostructures as static platforms to
manipulate and observe single molecules; and ② studies of the
structural dynamics of DNA nanostructures.

4.1. DNA origami nanocages

In 1991, Chen et al. [184] were the first to report the synthesis
of closed polyhedral objects using DNA, after which DNA nano-
cages with different functionalities, shapes, and sizes were gradu-
ally constructed [185–187]. These nanocages exhibit extreme
stability, making them useful for single-molecule studies.
Nanoconfinement can increase the stability of the secondary struc-
ture of DNA or proteins due to entropic effects, such as G4s and i-
motifs. Shrestha et al. [188] used optical tweezers to explore the
mechanics of G4s in DNA origami nanocages (Fig. 12(a)). They first
used a medium nanocage construct (9 nm � 9 nm in cross-section)
and found that the unfolding force of the G4s was significantly
higher than the same sequence without a nanocage. Different
nanocage sizes also affected the folding of G4s, with smaller sizes
resulting in greater unfolding forces. Jonchhe et al. [189] found that
the DNA hairpin acts in the opposite way (Fig. 12(b)). Previous
studies have shown that the increase in the unfolding barrier of
G4s in nanoconfinement is due to the hydration of water molecules
in the transition process [190]. The abnormal phenomenon of hair-
pin DNA inside a nanocage is attributed to reduced water activity.
In addition, the researchers suggested that the interaction of
cations with the negatively charged origami surface was also
responsible for compromising the stability of the dsDNA.

4.2. DNA origami frame

Compared with magnetic tweezers and optical tweezers, AFM
can directly image biomolecules. AFM makes it possible to directly
observe the dynamic movement of enzyme–dsDNA interactions,
although it is laborious to control the orientation of DNA strands
[191]. To solve this challenge, Rajendran et al. [191] and Sannohe
et al. [192] created an observation platform based on DNA origami,
termed the ‘‘DNA frame,” which could carry substrate dsDNAs
(Fig. 13(a) [193]). The researchers combined DNA origami with
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high-speed AFM to visualize changes in DNA conformation [194].
In the presence of K+, the two dsDNA bridges in the DNA frame dis-
tinctly showed an X-type structure, indicating the formation of G4s
(Fig. 13(b)). In contrast, G4 broke without K+. Intermediate states
were also observed in the DNA frame, such as the G-hairpin and
G-triplex (Fig. 13(b)). To summarize, the DNA origami frame can
be used to observe the formation and destruction of the G4, which
is the first direct visualization of the solution-state structure of
intermediates in the G4 folding pathway. Later, Feng et al. [195]
reported that nucleosomes were rejected when they were in close
proximity, whereas the two nucleosomes at the distal end can
remain in stable contact for long periods of time. The DNA frame
has also been employed to visualize the B–Z conformational tran-
sition of dsDNA [196] and DNA structural changes [197]. Thus, an
assembled DNA frame provides an effective platform to explore
DNA and chromatin structures in vitro.

4.3. Structural dynamics of the DNA nanostructure

Single-molecule force spectroscopy permits deep exploration of
the assembly of DNA nanostructures. Optical tweezers experi-
ments show that the effective density of the Holliday junction
determines the mechanical stability of a DNA origami structure.
Under the action of an external force, the mechanical isomerization
of two conformations of DNA nanotubes can be observed [198]. Bae
et al. [199] reported a strategy based on magnetic tweezers to con-
trol the mechanical folding of DNA origami. The scaffold DNA was
mechanically stretched to remove the secondary structure, and
short strands were then introduced. Subsequently, the force was
quenched, and displacement between the staple strands caused
the folding of the DNA nanostructure. The entire folding process
occurred within ten minutes. These investigations demonstrate
the superiority of single-molecule force spectroscopy in probing
the mechanical properties of DNA nanostructures.

Single-molecule FRET studies can monitor the reversible recon-
figuration of DNA nanostructures. Saccà et al. [200] designed a
reconfigurable DNA nanochamber, which changed the inner cavity
size within DNA origami structures. Many recent studies have used
DNA nanostructures as drug-delivery carriers. The DNA tetrahe-
dron is a stable nanostructure for drug delivery. Goodman et al.
[201] reported the conversion of a closed tetrahedron (high FE)
to an open tetrahedron (low FE)—a process that can initiate the
drug-release mechanism. A DNA box with a hollow cavity is
another typical example. The lid can open depending on the



Fig. 12. Design of DNA nanocages. (a) Top: schematic of the nanocage containing a G4-forming sequence. Bottom: A G4 sequence is ligated with two dsDNA handles, the two
ends are labeled with digoxigenin and biotin. Reproduced from Ref. [188] with permission. (b) Schematic of the nanocage containing a hairpin. Reproduced from Ref. [189]
with permission.
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specific oligonucleotide, and this process can be measured by FRET
spectroscopy [202]. With a combination of Brownian dynamics
simulations and smFRET microscopy, Jepsen et al. [203] found that
Mg2+ concentration affects the structural rigidity of the DNA box.
These studies provide insight into improving the stability of DNA
nanostructures and optimizing their functions.
5. Conclusions and prospects

In conclusion, the inter- and intra-strand interactions of DNA
lead to the formation of higher-order structures of DNA. Under-
standing the chemical and biophysical properties of different
DNA higher-order structures is essential in uncovering their bio-
logical functions and for the design and construction of DNA
nanostructures. With the aim of deciphering the properties of
higher-order structures, many static structure-detection methods
such as TEM, cryo-EM, and X-ray diffraction have been used to
determine the structures of DNA. By analyzing the data from the
structure, parameters such as persistence length can be calculated
and obtained. In addition, high-speed AFM imaging and NMR can
directly measure the dynamics of DNA conformational transitions.
However, high-speed AFM imaging requires the sample to be
attached to the surface and thus cannot entirely imitate the liquid
environment. Although NMR can be used to detect the dynamic
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conformational transition, its temporal resolution is a few seconds
[204]; thus, NMR cannot record fast dynamic structural transitions
in real time. In contrast, single-molecule detection and manipula-
tion methods can assist in detecting the conformational changes
of DNA with faster transition kinetics, such as the transition kinet-
ics from the unfolded state to the folded state of hairpin DNA [95].
The high temporal and spatial resolution of single-molecule meth-
ods provides a distinguishable signal to detect conformational
changes. Another advantage of single-molecule manipulation
methods is that these methods can directly stretch and manipulate
a single DNA molecule, which enables detection of the elasticity of
DNA. The applied forces also decrease the transition energy barrier
from different states and accelerate the transition kinetics. Hence,
single-molecule methods provide a powerful detection tool for
detecting higher-order DNA structures.

With the rapid development of single-molecule techniques,
these methods have also been adopted in the field of dynamic
DNA nanotechnology. Combined with single-molecule detection
and strand displacement reactions [205], applications including
the detection of DNA glycosylases [206], characterization of DNA
origami microarrays [207], and DNA navigators [208] have
emerged. We anticipate that more effective single-molecule char-
acterization methods will arise. Recently, Pei et al. [209] intro-
duced a resettable DNA computing method based on single-
molecule magnetic tweezers and a toehold-mediated DNA strand



Fig. 13. Direct observation of DNA conformational changes in DNA origami frame. (a) Two different DNA origami frames. Reproduced from Ref. [193] with permission.
(b) AFM images of the dynamic formation of the G4s (top) and formation of G-hairpin and G-triplex intermediates (bottom). Reproduced from Ref. [193] with permission.
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displacement reaction. Previously, Koirala et al. [210] and Mandal
et al. [211] also presented several DNA detection methods involv-
ing single-molecule optical tweezers. In this direction, we expect
various DNA storage, DNA detection, and DNA computing methods
to be developed in the future.

Although extensive studies of DNA structure have been con-
ducted, the potential and functions of endogenous and exogenous
modified nucleic acids still require further investigation. In vivo,
epigenetic modifications of DNA or DNA lesions may induce gene
silence or mutations and may subsequently influence the fate of
cells [212,213]. Studies have shown that the physical properties
of modified DNA differ from those of DNA. Using magnetic tweez-
ers detection, Yang et al. [214] suggested that the methylation of
cytosine may enhance dsDNA condensation. McCauley et al.
[215] provided biophysical evidence of the oxidation of a guanine
base (oxoG)-induced mutation effects by means of a hairpin unzip-
ping assay using optical tweezers. Artificial nucleic acids (also
called xeno nucleic acids (XNA)) such as a-L-threofuranosyl nucleic
acid (TNA), locked nucleic acid (LNA), and 20-deoxy-20-fluoro-b-D-
arabinonucleic acid (FANA) have also emerged in preclinical stud-
ies [216–218]. XNA can resist enzyme digestion in vivo; thus, the
high biological stability of XNAs provides a fresh perspective on
nucleic acid therapy, including RNA-mediated interference (RNAi),
antisense oligonucleotides (ASO), and aptamers [219]. DNA confor-
mational structures can be changed by altering the nucleotide into
XNAs, and the stability of the structures can be affected by the spe-
cial interactions between XNAs. Recent studies demonstrated that
20-deoxy-20-fluoro-arabinonucleosides (e.g., 20F-araG) substitution
stabilizes the propeller parallel G4, while 20F-araC modification
stabilizes the i-motif [220,221]. Single-molecule methods can pro-
vide more information for probing the mechanical properties and
conformational changes of different structures of oligonucleotides
containing XNAs, which is of great significance for understanding
how XNAs work in vivo.

However, obtaining an XNA strand is more difficult than obtain-
ing DNA. There are two efficient methods for the synthesis of XNA
strands: solid-phase synthetic and enzymatic approaches [222].
For solid-phase synthesis, the XNA amidites are expensive and
not readily available, and the efficiency of the synthesis may be
287
much lower. In contrast, enzymatic synthesis can obtain much
longer XNA strands. However, it is necessary to evolve a natural
enzyme to specifically recognize the XNA (e.g., mutated Tgo poly-
merase Tgo-D4K for FANA extension) [223]. The evolved XNA poly-
merases should have a high synthetic rate and fidelity; thus, their
evolution requires plenty of work screening the proper polymerase
mutant. Therefore, conducting single-molecule experiments for
detecting the structures of XNAs depends on the availability of
XNA strands.

Several challenges remain to be resolved in detecting DNA
structures using single-molecule methods. So far, studies at the
single-molecule level have been carried out in vitro, especially
those involving measurements using single-molecule manipula-
tion methods. We can simulate the in vivo environment as much
as possible; for example, we usually use PEG or dimethyl sulfoxide
(DMSO) to simulate a crowder in vivo [140,224]. Nevertheless, the
gap between in vitro and in vivo research urgently needs to be
filled. Recently, Syrchina et al. [225] manipulated the nucleolar in
the nucleoplasm using optical tweezers. Keizer et al. [226] illus-
trated a genomic locus manipulation technique inside the nucleus
using magnetic forces. These applications exhibit the potential of
manipulating the DNA structure in vivo. Furthermore, not all
single-molecule techniques can be applied with high throughput,
which is a limitation in using single-molecule techniques to solve
practical problems. For optical tweezers, a single beam can be
time-shared via acousto-optical deflectors to create multiple opti-
cal traps, which is an effective way to improve throughput. Devel-
oping high-throughput optical traps remains an important
challenge for single-molecule analysis.

Given the development of single-molecule technologies over
the past few decades, we anticipate that more DNA higher-order
structures will be discovered, while highly accurate and high-
throughput single-molecule characterization methods will emerge.
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