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Surveillance is an essential work on infectious diseases prevention and control. When the pandemic
occurred, the inadequacy of traditional surveillance was exposed, but it also provided a valuable oppor-
tunity to explore new surveillance methods. This study aimed to estimate the transmission dynamics and
epidemic curve of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) Omicron BF.7 in Beijing
under the emergent situation using Baidu index and influenza-like illness (ILI) surveillance. A novel
hybrid model (multiattention bidirectional gated recurrent unit (MABG)–susceptible–exposed–
infected–removed (SEIR)) was developed, which leveraged a deep learning algorithm (MABG) to scruti-
nize the past records of ILI occurrences and the Baidu index of diverse symptoms such as fever, pyrexia,
cough, sore throat, anti-fever medicine, and runny nose. By considering the current Baidu index and the
correlation between ILI cases and coronavirus disease 2019 (COVID-19) cases, a transmission dynamics
model (SEIR) was formulated to estimate the transmission dynamics and epidemic curve of SARS-CoV-
2. During the COVID-19 pandemic, when conventional surveillance measures have been suspended tem-
porarily, cases of ILI can serve as a useful indicator for estimating the epidemiological trends of COVID-19.
In the specific case of Beijing, it has been ascertained that cumulative infection attack rate surpass 80.25%
(95% confidence interval (95% CI): 77.51%–82.99%) since December 17, 2022, with the apex of the out-
break projected to transpire on December 12. The culmination of existing patients is expected to occur
three days subsequent to this peak. Effective reproduction number (Rt) represents the average number
of secondary infections generated from a single infected individual at a specific point in time during
an epidemic, remained below 1 since December 17, 2022. The traditional disease surveillance systems
should be complemented with information from modern surveillance data such as online data sources
with advanced technical support. Modern surveillance channels should be used primarily in emerging
infectious and disease outbreaks. Syndrome surveillance on COVID-19 should be established to following
on the epidemic, clinical severity, and medical resource demand.

� 2023 THE AUTHORS. Published by Elsevier LTD on behalf of Chinese Academy of Engineering and
Higher Education Press Limited Company. This is an open access article under the CC BY-NC-ND license

(http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

In recent years, emerging infectious diseases have been a per-
sistent threat, causing harm to human life, health, economic devel-
opment, and social order [1], and posing a potential risk to
humankind. Disease surveillance is a fundamental element for
preventing and controlling diseases and is also a requirement for
ending the pandemic. Therefore, establishing a surveillance and
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early-warning system is advantageous for detecting diseases ear-
lier, thereby allowing for prompt response measures [2], which
can diminish the peak of the epidemic and reduce the impact on
health.

The global coronavirus disease 2019 (COVID-19) has high-
lighted the inadequacies of traditional surveillance systems. With
the policy of no longer considering infected individuals as the pri-
mary surveillance subjects, the reported cases cannot accurately
reflect the actual infection rate, thus posing a challenge to tradi-
tional epidemic prevention and control. Nevertheless, the severity
of the disease, the effects of symptoms on health, and the need for
medical resources are still essential information that must be
tracked. In this regard, it is necessary to reform traditional surveil-
lance systems and pay attention to new types of surveillance,
which may serve as a supplement to existing systems. The applica-
tion of big data and the advancement of modern technology can
help significantly in this regard.

The World Health Organization (WHO) proposed in May 2021
to develop a new model for surveillance of emerging threats, the
Global Hub for Pandemic and Epidemic Intelligence [3]. This model
aims to integrate traditional and modern big data surveillance
methods, such as artificial intelligence, to combine different data
sources and conduct interdisciplinary collaboration, thus increas-
ing the availability of various data and connections. This project
will make a significant leap forward in data analysis to aid
decision-making [4]. Furthermore, media surveillance based on
network search engines can make up for the shortcomings of tradi-
tional surveillance, especially in backward areas with underdevel-
oped surveillance networks or in periods of unstable surveillance
due to major events and major infectious diseases. Studies have
shown that Baidu, Daum, Twitter, Wikipedia, and other social
media (including search engines) can be used to detect the preva-
lence of influenza, Zika virus [5], dengue fever [6], avian influenza
[7], and hand, foot, and mouth disease [8].

Baidu is the most-used search engine in China. As of December
2021, the number of users is approximately 829 million, and 80.3%
of them use search engines [9]. By July 2021, its monthly active
users had exceeded 600 million, making it the largest search
engine in the country with comprehensive coverage and usage.
Thus, Baidu is an ideal choice to surveil the development of the epi-
demic due to its large population and widespread use, especially in
Beijing. Given the prevalence of the Baidu search engine and the
relatively stable usage habits of the population, this study verifies
its effectiveness in surveilling the epidemic situation.

In the current global context, COVID-19 has been declared an
end to the public health emergency of international concern [10].
The pathogenicity has weakened, vaccination rates have increased,
and experience in prevention and control has accumulated. In
China, the goal is to reduce influences on healthcare while consid-
ering economic and social impacts, given limited medical treat-
ment and social prevention and control resources. To this end,
greater attention should be paid to risk surveillance of key popula-
tions and treatment of severe and critical illnesses. Symptom
surveillance can provide insight into the epidemic of infectious dis-
eases and is an essential indicator of disease focus, which can also
increase the demand for medical resources.

‘‘In dealing with a complex crisis, we should establish upfront
which dimension to prioritise, and adapt more quickly to changing
situations to not allow the perfect to become the enemy of the
good.” as the White paper on Singapore’s response to COVID-19: les-
sons for the next pandemic summarized [11]. When faced with an
emergency outbreak, it becomes necessary to adopt innovative
approaches to overcome the limitations of traditional surveillance
methods. This study examined the use of modern surveillance
channels alongside conventional methods in emergency situations
to evaluate the scale of COVID-19 infection. The results provide a
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valuable methodological reference for future infectious disease
surveillance, utilizing real-world observations of the pandemic to
inform surveillance strategies.
2. Methods

2.1. Data sources

This study used the daily number of influenza-like illness (ILI)
cases in Beijing and the daily proportion of ILI among the
outpatients (ILI%) as the dependent variables and the daily Baidu
index as an independent variable. The research period was from
July 1, 2013, to December 9, 2022. The ILI data were collected from
419 sentinel hospitals in 21 districts of Beijing, with a total of
1 275 742 samples. The Baidu index was formulated using six key-
words, including fever, pyrexia, cough, sore throat, anti-fever med-
icine, and runny nose, which were sourced from both mobile and
personal computer platforms.

WHO and the Centers for Disease Control and Prevention (CDC)
define an ILI as an acute respiratory illness with a temperature of at
least 100 �F (38 �C) and associated cough, with onset within the
past ten days [12]. For the 2021–2022 influenza season, case
definitions no longer require ‘‘no other known etiology other than
influenza” [13]. The ILI definition issued by the Department of
Disease Control and Prevention of the National Health Commission
of China is: fever (body temperature � 38 �C) accompanied by
either cough or sore throat [14]. These definitions of ILI only differ
slightly in body temperature, and the composition of symptoms is
the same. Additionally, no etiological tests are conducted to
confirm the diagnosis of ILI, which includes the current pandemic
of COVID-19.

Data sharing statement: The Baidu search data in this study are
publicly available, the influenza virological surveillance data in
Beijing were retrieved from a previously published study [15].

2.2. Data preprocessing

Data standardization involves the process of adjusting the val-
ues in a dataset to a specific scale, thereby enabling different vari-
ables to be compared with one another while also eliminating the
impact of varying magnitudes. This technique can enhance data
quality, streamline data processing, improve model precision,
expedite model convergence, reduce model training duration,
and enhance the stability and reliability of the model.

In the current study, the data underwent pre-processing utiliz-
ing Min–Max scaling of the following aggregation. The normaliza-
tion method adopted was off-difference, where the data
underwent linear scaling based on the maximum and minimum
values to ensure that the scaled data values fall within the range
of [0, 1]. This range was deemed suitable for observation and train-
ing purposes. The normalized thermal distribution of each feature
is presented in Fig. 1.

2.3. Establishment of the dataset

(1) Training: July 1, 2013 to May 28, 2018 (1793 days).
(2) Validation: May 28, 2018 to March 24, 2019 (300 days).
(3) Testing: March 24, 2019 to March 23, 2020 (365 days).
(4) Prediction: October 10, 2022 to December 9, 2022 (60 days).
(5) Estimation: November 22, 2022 to January 20, 2023 (60 days).

2.4. Modeling

This study employed a composite model that combined deep
learning and a transmission dynamics model to predict the



Fig. 1. Thermal distribution of each feature after standardization. To ensure equitable inclusion in model training, we normalize multi-source data using a Min–Max scale
within the range of [0, 1]. In the corresponding visual representation, lighter colors are indicative of values closer to 0, while darker colors signify values approaching 1, as
illustrated in the legend.
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COVID-19 epidemic. First, we used the multiattention bidirectional
gated recurrent unit (MABG) model to predict the current ILI% and
ILI case. Given the multidimensional nature of our data, we devel-
oped a prediction model based on the multiattention mechanism
and bidirectional gated recurrent unit to handle multi-featured
time series. By thoroughly exploring the inherent characteristics
of multi-source heterogeneous data and establishing the connec-
tion between characteristics and results, the MABGmodel was able
to complete the task of time series prediction effectively and
reliably.

When a multi-featured time series was fed to the model, we
first connected it to a bidirectional gated recurrent unit (GRU)
layer, which was good at processing time series and capturing fea-
tures between step intervals in the time series. The bidirectional
GRU (BGRU) is an improved version of the GRU that offers several
advantages, including a higher level of global information utiliza-
tion, prediction capability, and modeling ability. Unlike traditional
recurrent neural networks that can only consider the input of the
current moment and the implied state of the previous moment,
the BGRU can utilize the information of the before and after states
of the current moment. This approach facilitates better global
information capture and more accurate output prediction. The
structure of the BGRU model is illustrated in Fig. 2.

Then, we employed three different attentionmechanismmodules
simultaneously: squeeze and excitation attention [16], channel
Fig. 2. GRU an
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attention, and spatial attention [17]. Combining these three atten-
tion mechanisms, we extracted important information between dif-
ferent features and key information within the same feature. In
addition, to prevent the gradient from disappearing, after concate-
nating the results of different attention modules, we connected the
results with two pooling layers for residual connection and output
the prediction results through the dense layer (Fig. 3).

Finally, the study utilized a classical transmission dynamics
model to estimate the epidemic curve of COVID-19 infection in
Beijing, incorporating predicted results. The transmission dynam-
ics model has various versions, depending on the study’s objec-
tives, and requires defining related parameters to evaluate the
effectiveness of pharmaceutical/non-pharmaceutical interven-
tions. To predict the epidemic trend, essential factors must be con-
sidered. This study aimed to estimate the epidemic trend based on
actual information, utilizing an optimal solution set based on real-
time data. The equation used in this study marked the influence of
different factors, but the focus was not to distinguish the impact of
each factor. Therefore, the index of comprehensive effect was used
as a substitute when seeking the optimal solution. The total popu-
lation, N, was categorized into four classes: susceptible (S), exposed
(E), infected (I), and recovered/removed (R). The governing differ-
ential Eq. (1) was as follows. A continuous time variable model
was established to account for the continuous infection process,
as expressed by the Eq. (1).
d BGRU.



Fig. 3. MABG–susceptible–exposed–infected–removed (SEIR) model structure. Concat: contatenate.
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dS
dt

¼ KN � lS� 1� cð Þ 1� vð ÞdS I
N

dE
dt

¼ 1� cð Þ 1� vð ÞdS I
N
� lþ að ÞE

dI
dt

¼ aE� lþ cð ÞI
dR
dt

¼ cI � lR

N ¼ Sþ Eþ I þ Rþ vN
b ¼ 1� cð Þ 1� vð Þd

ð1Þ

where Eq. (1) are subject to the initial conditions S(0), E(0), I(0), and
R(0). The parameters are defined as: t: time; K: per-capita natural
birth rate; l: per-capita natural death rate; c: the effectiveness of
public health social measures; v: the effectiveness of all kinds of
pharmaceutical interventions; d: the probability of disease trans-
mission per contact (dimensionless) times the number of contacts
per unit time; a: rate of progression from exposure to infectious
(the reciprocal is the latent period); c: recovery or death rate of
infectious individuals (the reciprocal is the infectious period). In
this study, we did not distinguish the effects of c, v , and d, but con-
sidered their effects together, denoted by the rate per unit of time at
which the susceptible become infected b; which could be calculated
by R0 depend on Eq. (2).

R0 ¼ ba
lþ að Þ lþ cð Þ ð2Þ
Fig. 4. Assessing the scale of COVID-19 infections based on ILI. The relationship
between ILI and COVID-19 patients.
2.5. Assessing the scale of COVID-19 infections in comparison to ILI

In the past, surveillance of ILI in China did not include patients
with COVID-19 infections. However, this study took into account
those with ILI among the existing COVID-19-infected patients
(Fig. 4). In addition to those with ILI symptoms, COVID-19 infection
also includes asymptomatic cases. Therefore, based on the MABG
model’s predictions of ILI, the excess ILI was calculated in combina-
tion with the historical baseline levels of ILI. This allowed for the
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subtraction of the non-ILI population to derive the number of ILI
populations infected with COVID-19. Then, based on the propor-
tion of asymptomatic infections of Omicron, the adjustment was
made to obtain a rough estimate of the scale of COVID-19. The pro-
portion of asymptomatic infections concerning overall infections
was subject to variables such as age distribution, general health
status, underlying health conditions, and vaccination coverage.
As per previous systematic reviews, meta-analyses [18,19], and
official reports [20,21], the asymptomatic proportion ranged from
25.3% to 40.0%. This study was established based on an assumed
a symptomatic proportions of 30.0%.

2.6. Study assumptions

(1) Assuming that the motivation of search behavior remains
relatively constant once symptoms of ILI are present.
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(2) The definition of ILI encompasses the primary symptoms of
COVID-19.

(3) The assuming is that the current policy is maintained
without considering the potential policy alterations as the
epidemic peak approaches.

(4) The prevalence of other ILI diseases did not differ from
historical levels.

3. Results

3.1. Model validation

This study was validated by comparing the predicted and actual
values from May 28, 2018 to March 24, 2019 (Fig. 5). The R2 values
(a value between 0 and 1, quantifies the proportion of the variance
in the dependent variable that is predictable from the independent
variables in the model) of ILI cases and ILI% were 0.6540 and
0.6057, the explained variance scores (EVSs) were 0.6596 and
0.6069, the mean absolute errors (MAEs) were 0.1145 and
0.5629, and the mean squared errors (MSEs) were 0.0298 and
0.5688, respectively (Table 1 [22]).
Fig. 5. Prediction of ILI using the Baidu index. (a) The number of ILI cases at Beijing

Table 1
Comparison of the ILI% and ILI case between different models.

Model category R2 EVS

ILI% ILI case ILI% IL

ES 0.1801 0.5532 0.5747 0.
RF 0.5360 0.2337 0.5530 0.
XGB 0.4329 0.2499 0.5467 0.
LSTM 0.5128 0.5788 0.5223 0.
BGRU 0.5752 0.6075 0.5801 0.
Informer [22] 0.3066 0.1341 0.3601 0.
MABG 0.6057 0.6540 0.6069 0.

ES: exponential smoothing; RF: random forest; XGB: extreme gradient boosting; LSTM:
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3.2. ILI estimation results based on the Baidu index

Analysis of the Baidu index and ILI data concerning the
emergence of COVID-19 since January 2020 revealed that ILI cases
and ILI% had surpassed the historical baseline levels from Decem-
ber 1, 2022 (p < 0.05). Furthermore, the number of ILI cases surged
in November and December, prior to the government’s historic pol-
icy adjustments on December 7, 2022. These findings suggest that
the epidemic had already reached a large scale before the official
policy changes were enacted (Fig. 6(a)).
3.3. Comparison of ILI% and ILI cases among different models

We also compared the MABG model with other standard tradi-
tional statistical models, machine learning, and deep learning
models using four metrics R2 (Eq. (3)), EVS (Eq. (4)), MAE
(Eq. (5)), and MSE (Eq. (6)). The calculation methods of the four
metrics are shown below. The results are shown in Table 1, from
which we can see that the MABG model we used outperforms
other models in most evaluation metrics.
Sentin

I case

5533
2468
4247
5794
6076
3307
6596

long sh
el Hospital. (b) The percentage of ILI cases at Beijing Sentinel Hospital.

MAE MSE

ILI% ILI case ILI% ILI case

0.1002 0.0806 0.0194 0.0124
0.6366 2.0300 0.9252 9.1966
0.0896 0.0941 0.0127 0.0171
0.633 0.1314 0.7029 0.0362
0.5896 0.1239 0.6128 0.0338
0.5874 0.9668 0.7975 2.6335
0.5629 0.1145 0.5688 0.0298

ort-term memory.



Fig. 6. Based on the Baidu search engine and ILI surveillance to simulate the COVID-
19 epidemic curve in Beijing. (a) Existing and new infections per day. The black
points are the estimated case by the MABG model, and the blue lines represent new
infections per day while the orange line represents existing patients per day.
(b) Cumulative infection attack rate per day. (c) Rt from November 28, 2022 to
January 20, 2023.

Table 2
Parameters for SEIR model to estimate epidemic curve of COVID-19 infection in
Beijing.

Parameter Value

N 21 893 095
K 0.635%
l 0.539%
b 1.00a

a 0.50a

c 0.25a

a These parameters were inferred optimal solutions based on the results of the
MABG model.
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R2 y; by� � ¼ 1�
Pn

i¼1 yi� byi� �2

Pn
i¼1 yi� �yi

� �2 ð3Þ
EVS y; by� � ¼ 1� Var y� by� �
Var yð Þ ð4Þ
MAE y; by� � ¼ median y1� cy1��� ���; . . . ; yn� cyn�� ��� �
ð5Þ
MSE y; by� � ¼ 1
nsamples

Xnsamples�1

i¼0

yi� byi� �2
ð6Þ

where y is the actual observed values of the dependent variable; by is
the predicted or estimated values of the dependent variable based
on the model; n is the total number of data points or observations
in the dataset; i is an index that represents each individual data
point in the dataset, ranges from 1 to n.
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3.4. Model application on the epidemic curve estimation of COVID-19
infection in Beijing

The present study utilized a variation susceptible–exposed–
infected–removed (SEIR) model to analyze the epidemiological
characteristics of COVID-19 in Beijing. The parameters were calcu-
lated based on the infections estimated through the ILI model. The
resident population of Beijing is 21 893 095 [23], with over 80%
having received the COVID-19 vaccination booster [24]. The birth
rate of Beijing in 2021 is 0.635%, and the death rate is 0.539%
[25]. Approximately 30.0% of the population is assumed to be
asymptomatic during infections. The transmission dynamics of
COVID-19 were modeled to simulate the epidemic curve in Beijing.
The relevant parameter settings are shown in Table 2. The results
of the variation SEIR model suggest that the epidemic’s peak is
expected to occur on December 12, with about 1.66 (95% confi-
dence interval (95% CI): 1.61–1.72) million new infections at peak
time. The outbreak is expected to conclude in early January. The
peak of existing patients’ curve, which refers to the increase in
new infections and decrease in recoveries/deaths, is expected to
occur on December 15 with more than 5.47 (95% CI: 5.22–5.73)
million existing patients at peak time (Fig. 6(a)). The duration
between the peak of new infections and the peak of existing
patients is estimated to be three days. We estimated that the
cumulative infection attack rate was 80.25% (95% CI: 77.51%–
82.99%) on December 17, and 97.50% (95% CI: 97.00%–98.00%) on
January 15, 2023 (Fig. 6(b)). The overall trend of corresponding
estimated effective reproduction number (Rt) kept fluctuating
dropping, and it remained below 1, 0.92 (95% CI: 0.90–0.95), since
December 17, 2022 (Fig. 6(c)).
4. Discussion

This research investigated the implementation of the Baidu
index to predict the magnitude of ILIs at sentinel hospitals in Bei-
jing, aiming to supplement traditional surveillance and provide
novel insights for countries and regions behind in global surveil-
lance. Additionally, the estimation of the size of the population
infected by COVID-19 in cities with policy changes was also exam-
ined. The findings showed that the number of ILIs in Beijing has
surpassed the historical average since December, a trend which
could be attributed to the rise in COVID-19 cases. However, an
increase in other respiratory infection cases could not be ruled
out. At 419 sentinel hospitals included in the study, the number
of people with ILI cases and related symptoms increased rapidly.
Finally, Baidu provided new ideas for the surveillance of this round
of the COVID-19 pandemic.

The positive nucleic acid testing rate [26] and Baidu search data
were both peaked on December 14, providing a valuable cross-
validation of the COVID-19 epidemic trend estimation based on
two distinct data sources. The purpose of COVID-19 nucleic acid
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testing is to detect new cases of infection, and once a positive
result is obtained, frequent testing is unlikely. Therefore, nucleic
acid testing does not reflect the current infected individuals, but
rather identifies newly infected individuals in the early stages of
the disease. In this study, the peak of the positive rate of nucleic
acid testing is compared with the peak of new infections daily.
Since December 8, 2022, the nucleic acid testing strategy has
shifted from population-wide testing to voluntary testing. There-
fore, the absolute values presented in the nucleic acid testing data
cannot represent the number of infections, and they are not
directly comparable to the absolute values of infections in this
study. To a certain degree, the concurrence of peak times provides
empirical validation for the reliability of the study method. It is
important to note that the model should be tailored to the specific
application scenario of the transmission dynamics model, rather
than striving for excessive complexity and detail.

This study aligns with Kathy Leung’s research [27], which
estimated the transmission dynamics of severe acute respiratory
syndrome coronavirus 2 (SARS-CoV-2) Omicron BF.7 in Beijing
from November to December 2022. Both studies indicate that the
infection peaked before mid-December, 2022, with around 92% of
the population infected as of December 22, 2022. But our study
found a 97.50% infection rate (95% CI: 97.00%–98.00%) as of January
15, 2023, notably higher than Kathy Leung’s estimates. This dis-
crepancy may stem from our model’s uniform assumptions about
social interaction, which overlook subgroups like the self-
isolating or those with limited mobility, potentially inflating the
infection rate. However, the maximum values of Rt in this study
(2.79) are lower than them (3.44). This discrepancy may be attrib-
uted to different assumptions, data sources, and model parameter
errors between the two studies. Therefore, the significance and
applicability of the study’s results should be carefully considered
in light of the based data source, research hypothesis, and model
structure. It is important to acknowledge that this model encoun-
ter challenges when attempting to accurately reflect real-world
circumstances.

WHO proposes that traditional surveillance of infectious dis-
eases, such as ILI, includes patients receiving medical services, hos-
pitalized patients, laboratory confirmation, gene sequencing, death
estimation, active surveillance, tracking, and so on. Modern
surveillance techniques such as network information, animal
health, occupational health, policy reports, community-reported
cases, mobile data, public databases, and wearable devices are
being employed to supplement these traditional methods. In par-
ticular, the use of the Baidu index as a supplementary means of
ILI surveillance is an example of this modern surveillance. Studies
have demonstrated that modern surveillance methods, such as
Google Flu Trends (GFT), can detect signs of disease occurrence
earlier than traditional methods, being able to detect the occur-
rence of ILI one week in advance [28]. These Internet-based sys-
tems improve the sensitivity of surveillance for developed
countries and may be more effective for countries with underde-
veloped traditional surveillance systems [8].

The significance of syndrome surveillance lies in its ability to
quantify the magnitude of an outbreak and ascertain the demand
for medical resources and strategize accordingly. The findings of
this study demonstrate that following a surge in new infections,
there was a subsequent surge in the number of existing patients,
posing a significant challenge for the healthcare sector [29]. The
severity of a disease’s symptoms often leads to an increased likeli-
hood of seeking medical treatment. In situations where laboratory
testing is unavailable or unnecessary, it is still important to con-
sider the health and recovery of those infected. Therefore, estimat-
ing the number of ILI cases in a particular area can help assess the
demand for medical resources. However, it is essential to note that
the predicted number of cases refers to the number of people seek-
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ing treatment at sentinel surveillance sites, not the total number of
ILIs in the area. To obtain an accurate representation of the area’s
ILI rate, the hospital’s coverage of services must be taken into
account.

Syndrome surveillance is essential for the control and preven-
tion of influenza at a global level [30]. The aim of these strategies
should be to maximize the health benefits of the population
while avoiding economic disruption. For this purpose, surveil-
lance efforts should be concentrated on symptomatic infected
individuals. A study [31] conducted in Chaoyang District, Beijing,
demonstrated that intensifying influenza surveillance and con-
ducting a comprehensive analysis of the surveillance results
can assist in the timely detection of influenza and enable more
precise measures to be taken. Additionally, public data from the
Baidu search engine can be used to infer the prevalence of respi-
ratory infectious diseases more comprehensively, which can be
utilized to anticipate any potential shortage of medical resources,
thus allowing for timely adjustments to prevention and control
policies.

It is recommended to surveillance the symptoms of COVID-19
based on or in reference to the ILI system of influenza surveillance.
The COVID-19 pandemic is expected to persist [32]. Surveillance of
the symptoms of COVID-19 is essential to comprehend the magni-
tude of the disease, evaluate the epidemic trend, and assess the
demand for medical resources and the burden of the disease. In
the past, ILI surveillance sentinel sites in China [33], the United
States [34], Japan [35], and the United Kingdom [36] have been
instrumental in the surveillance of influenza. The population’s sus-
ceptibility and the burden of the disease associated with COVID-19
are higher than those of influenza. Adjustment of preventive mea-
sures, preparation for a response, and virus mutation all depend on
effective surveillance.

There are some limitations. This study has only estimated the
number of people visiting a doctor or obtaining medication, which
did not reflect the actual number of infections or symptoms. The
SEIR model calculates certain parameters based on assumptions,
which can limit their credibility in accurately representing the real
world. As a result, not all parameters, such as the recovery rate,
may be reliable indicators of real-world dynamics. Also, the SEIR
model also could not incorporate all real-world factors into the esti-
mation model. Various factors, such as weather conditions, traffic
conditions, holidays, and the risk of cross-infection, influence this
behavior. Additionally, this study did not include all Baidu indexes
related to influenza-like cases because the Baidu index is subject
to interference and guidance from numerous sources, thus introduc-
ing certain levels of uncertainty. Furthermore, this study did not dif-
ferentiate between influenza virus infection, COVID-19, rhinovirus
infection, and other specific diseases.
5. Conclusion

The Baidu index effectively gauges the quantity and proportion of
individuals who manifest influenza-like symptoms and subsequently
visit sentinel hospitals or procure medication within a reliable
range. Additionally, Baidu index can be utilized to calculate the
dissemination of a virus and the rate of contagion during a
pandemic.
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