

ARTICLE INFO

Contents lists available at ScienceDirect

Engineering

journal homepage: www.elsevier.com/locate/eng

Research Rare Earth Permanent Magnets-Article

永磁材料稀土减量化的计算设计

Alexander Kovacs^a, Johann Fischbacher^a, Markus Gusenbauer^a, Harald Oezelt^a, Heike C. Herper^b, Olga Yu. Vekilova^b, Pablo Nieves^{c,d}, Sergiu Arapan^{c,d}, Thomas Schrefl^{a,*}

^a Department for Integrated Sensor Systems, Danube University Krems, Wiener Neustadt 2700, Austria

摘要

^b Department of Physics and Astronomy, Uppsala University, Uppsala 75120, Sweden

^c International Research Centre in Critical Raw Materials for Advanced Industrial Technologies, University of Burgos, Burgos 09001, Spain

^d IT4Innovations, VŠB-Technical University of Ostrava, Ostrava-Poruba 70833, Czech Republic

Article history: Received 29 June 2018 Revised 20 December 2018 Accepted 11 March 2019 Available online 21 November 2019	多尺度模拟是研究新型永磁材料的关键工具。从第一性原理出发,我们利用一系列模拟方法计算 出由新型磁性材料构成的永磁体的可能的最大矫顽场和最大磁能积。利用自适应遗传算法,我们 发现了有利于形成永磁体的多种富铁(Fe)磁性相。我们利用从头计算模拟得到的材料本征特性 作为微磁学模拟的输入参数,对具有真实结构的永磁体的磁滞特性进行了微磁模拟。我们利用机 器学习技术对永磁体的微结构进行了优化,从而预测出该磁性相的矫顽力和最大磁能积的理论上
关键词 稀土 永磁体 微磁学	限。我们计算了由几种候选硬磁相构造的永磁体的结构-性能关系,并用[矫顽力(T),最大磁能积(kJ·m ³)]表示,具体结果如下:铁-锡-锑(Fe ₃ Sn _{0.75} Sb _{0.25})永磁体为(0.49, 290);Ll ₀ 型有序相的铁-镍(Ll ₀ FeNi)永磁体为(1,400);钴-铁-钽(CoFe ₆ Ta)永磁体为(0.87, 425);锰-铝(MnAI) 永磁体为(0.53, 80)。

© 2020 THE AUTHORS. Published by Elsevier LTD on behalf of Chinese Academy of Engineering and Higher Education Press Limited Company This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. 引言

永磁体在现代社会中得到了广泛的应用。永磁体[1] 的重要应用市场包括风力发电、混合动力和电动汽车、 电动自行车、空调、声音传感器以及硬盘驱动器。随着 环境友好型交通运输业和能源发电行业对永磁体需求的 不断增长[2],人们一直在寻求减少稀土含量或可作为 备选的高效利用稀土或无稀土的硬磁相。某些备选的硬 磁相性能介于铁氧体和高性能Nd₂Fe₁₄B磁体之间[3]。

在本研究中,我们从第一性原理出发,概述了如何 预测虚拟磁体的磁性。本文所研究的材料建模工作流程 是一个具有参数传递特征的传统多尺度模拟实例。为了 计算永磁体的磁滞特性,我们将几个物理模型联合在一 起,如将遗传算法与密度泛函理论相结合,用以指导寻 找稳定的单轴铁磁相。这个过程可以由材料数据库的数 据挖掘辅助完成。然后,我们应用密度泛函理论计算自 发磁化、磁晶各向异性和交换积分等内禀磁性。将结果 输入到原子自旋动力学模型,我们可以计算出磁化强 度、各向异性常数和交换积分常数的温度特性。然后将 这些与温度相关的属性用作微磁学模拟的输入参数。数 值优化工具有助于调整微观结构,从而在给定的内禀磁 性下使矫顽力或磁能积达到最大值。

^{*} Corresponding author.

E-mail address: thomas.schrefl@donau-uni.ac.at (T. Schrefl).

^{2095-8099/© 2020} THE AUTHORS. Published by Elsevier LTD on behalf of Chinese Academy of Engineering and Higher Education Press Limited Company This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/). 英文原文: Engineering 2020, 6(2): 148-153

引用本文: Alexander Kovacs, Johann Fischbacher, Markus Gusenbauer, Harald Oezelt, Heike C. Herper, Olga Yu. Vekilova, Pablo Nieves, Sergiu Arapan, Thomas Schrefl. Computational Design of Rare-Earth Reduced Permanent Magnets. Engineering, https://doi.org/10.1016/j.eng.2019.11.006

另外,我们研究了热起伏对矫顽力的影响[4]。通过 对微磁学模拟结果的分析,我们可以确定相对于材料的 各向异性场,晶粒错取向、退磁场和热起伏等因素对矫 顽力的影响程度的差异。

本文的研究重点是根据预期的矫顽力和磁能积等外 禀磁性预测各种无稀土或少稀土的永磁相可能性。一个 足够高的矫顽力和磁能积是新磁性相应用的关键。这些 性能是永磁体的内禀磁性、微观结构和热起伏之间相互 作用的结果。因此,本文的主要内容是关于磁滞特性 的微磁学模拟结果,这部分将介绍已知的磁性相(L1₀ FeNi、Nd_{0.2}Zr_{0.8}Fe₁₀Si₂、Sm_{0.7}Zr_{0.3}Fe₁₀Si₂),以及用遗传 算法和密度泛函理论预测的磁性相(Fe₅Ge、CoFe₆Ta)。 通过第一性原理模拟(Fe₅Ge、CoFe₆Ta、Fe₃Sn_{0.75}Sb_{0.25}) 和原子自旋动力学(MnAl)计算了部分磁性相的内禀 磁性。

本文所涉及的研究结果主要集中于各种硬磁相预期 性能的微磁学计算领域。关于自适应遗传算法(AGA) 用于搜索新磁相的详细信息,请读者查阅最近的文 章。在这些文章中,我们利用该方法研究了Fe₃Sn [5]、 CoFe₂P [6]和L1₀结构[7]中的磁性相。关于第一性原理 模拟计算磁性的结果见参考文献[8]。Fischbacher等[9] 概述了计算微观组织影响矫顽力和磁能积的微磁学基本 技术。

2.方法

我们将AGA [7]与维也纳从头计算模拟软件包 (VASP)[10]相结合,扫描了稳定的非立方富铁(Fe) 化合物的相空间;利用相对论自旋极化工具包(RSPt) [8]中的全电子赝势线性muffin-tin轨道法计算了材料的 磁性;采用开源三维(3D)多晶结构生成工具Neper[11] 构建了人造微结构。

通过一个Python脚本控制开源计算机辅助设计 (CAD)软件Salome [12],我们引入具有特定厚度的晶 界相,并生成有限元网格。对于这些人造微结构,我 们可以利用预先设定好的非线性共轭梯度法,通过微 磁能最小化方式来计算其退磁曲线[13]。开源优化软件 Dakota [14]可被用于管理更高的矫顽力µ₀H_c和最大磁能 积(BH)_{max}的搜索。因此,我们可以找到给定硬磁相的最 佳结构。我们用M(H_{ext})回线,即磁化强度随外磁场的变 化曲线,来表征磁体的磁性。退磁曲线经过退磁场修正。 在实验中,当样品的磁滞回线不是在闭路情况下被测试 时,我们将采用类似的退磁场修正。接下来,我们将磁 化强度变换为磁感应强度*B*,来获得*B*(*H*_{int})曲线和最大 磁能积。这里的*H*_{int}是样品内部磁场强度。

最后,我们考虑通过热激活方式来降低矫顽力。我 们计算了使形核势垒减小到25 $k_{\rm B}T$ 时的外场临界值,其 中 $k_{\rm B}$ 是玻尔兹曼常数,T是测量温度。由于热起伏,该 系统可以在1 s的等待时间内越过这一能量势垒[15]。我 们采用字符串修正(modified string)算法[16],计算了 T = 300 K时不同外磁场下的形核势垒。通过对由热激 活方法引起的矫顽力的减小量进行计算,我们给出了某 种硬磁相矫顽力[4]的极限值。

3.结果

3.1. 无稀土相

利用AGA遗传算法[7],我们对铁-钴-钽(Fe-Co-Ta)体系的晶体结构相空间进行搜索,以寻找高稳定性 的非立方晶系的晶体结构。对于CoFe₆Ta而言,我们对 每个分别包含有8个和16个原子体系的晶胞进行了两次 模拟。我们确定了各种非立方稳定相。一些最稳定的非 立方相分别是四方晶系(空间群115)、三角晶系(空 间群160)、正交晶系(空间群38)和正交晶系(空间 群63, 其中晶格参数a和b值是非常接近的), 它们的体 系生成焓分别为-0.07033 eV/原子、-0.06353 eV/原子、 -0.06025 eV/原子和-0.05929 eV/原子。这些理论计算 的数据和结果可以在Novamag数据库[17]以及相应的参 考文献[18-21]中找到。其中,基态能量最低的体系出 现在单斜晶系(空间群8),其形成焓为-0.07488 eV/原 子[22]。这些结果与使用AGA遗传算法的高通量密度泛 函理论(在绝对零度温度下)的计算结果相一致,其中 所有采用广义梯度近似(GGA)的计算结果都使用了相 似的默认设置。为了更详细地分析这些相的稳定性,我 们建议计算有限温度下的自由能,具体的表达式包含了 电子的自由能项、声子的自由能项和磁相互作用的自由 能项[23]。在空间群号为63和160的体系中, CoFe₆Ta表 现出了单轴磁晶各向异性特性。这些相体系的完整理论 研究工作正在进行中,并计划在不久的将来对其进行专 题报道,所以在这里我们仅选择性地提及了部分初步结 果。通过使用RSPt代码[8],我们计算出空间群号为63 的CoFe₆Ta的各向异性常数(K)和自发磁化强度($\mu_0 M_s$), 分别为 $K = 1 \text{ MJ·m}^{-3} 和 \mu_0 M_s = 1.82 \text{ T}$ 。

图1显示了CoFe₆Ta体系不同纳米结构的微磁学模拟

图1.不同纳米结构的CoFe₆Ta的B-H的曲线关系。纳米结构化是获得高矫顽力的关键因素。矫顽力随着晶粒长径比的增大而增大。柱状晶、等轴晶和片状晶晶粒长径比分别为4.3:1、1:1和0.47:1。

B(H_{int})曲线。对于具有柱状晶、等轴晶和片状晶的纳米 结构,它们的晶粒体积大致相同,分别为34 nm × 34 nm × 146 nm、56 nm × 56 nm × 56 nm和72 nm × 72 nm × 34 nm。磁体的宏观形状是边长为300 nm的立方体。 当非磁性晶界相的体积分数为18%时,最大磁能积为 425 kJ·m⁻³。

具有非立方单轴晶体结构的富铁基材料是无稀土 永磁体的理想候选材料。由于它们具有六方晶体结构 和高自发磁化强度的特点,所以我们考虑采用Fe₃Sn 基化合物作为无稀土永磁材料。然而, Fe₃Sn在模拟 和实验过程中均显示出易面各向异性[24]。用锑(Sb) 替代锡(Sn)会将易面各向异性转变为单轴各向异 性。实验结果表明, Fe₃Sn₀₇₅Sb₀₂₅的单轴各向异性常数 $K = 0.33 \text{ MJ·m}^{-3}$ 、自发磁化强度为 $\mu_0 M_s = 1.52 \text{ T}$ [25]。 将这些特性分配给平均晶粒大小为50 nm的人造晶粒。 我们所使用的主相交换积分常数 $A = 10 \text{ pJ·m}^{-1}$ 。分割主 相晶粒的弱铁磁晶界 (gb) 相的磁化强度为 $\mu_0 M_{seb} = 0.81$ T、交换积分常数为 A_{gb} =3.7 pJ·m⁻¹。使用以上参数进行 的反磁化过程的微磁学模拟结果(图2 [25])显示,由 于晶界处的畴壁钉扎作用,多畴态在不可逆翻转过程后 仍保持稳定。计算出的最大磁能积由矫顽力决定。仅 当纳米结构化永磁体的晶粒尺寸小于50 nm时,永磁 体的磁能积才能达到290 kJ·m⁻³的最大值。不幸的是, Fe₃Sn_{0.75}Sb_{0.25}不稳定。我们尝试通过添加少量锰(Mn) 来稳定Fe₃Sn₀₇₅Sb₀₂₅相的做法是可行的。但是,由于电 子结构和价电子数的变化,锰掺杂Fe₃Sn_{0.75}Sb_{0.25}体系又

图2. Fe₃Sn_{0.75}Sb_{0.25}磁体中的畴壁-微观结构相互作用。(a) 晶粒结构; (b) 在内磁场 $\mu_0 H_{int} = 0.49$ T时,由于晶界处的畴壁钉扎作用,花状磁 畴态①分裂为双磁畴态②。该图经美国物理学会许可,转载自参考文 献[25], ©2019。

显示出易面各向异性[25]。

3.2. 微观结构优化

为了计算微观结构对磁滞回线特性的影响,我们改 变了晶粒尺寸、晶粒形状、晶界相厚度和晶界相中的磁 化强度。利用软件工具Dakota [14],我们设计了模拟的 样品空间结构。

我们采用无量纲单位处理,以便得到微观结构特征 对矫顽力影响的一般性趋势。矫顽力的单位用各向异性 场的单位2 $K/(\mu M_{0s})$ 进行表示。晶界磁化强度以硬磁主 相的磁化强度 $M_{s,bulk}$ 为单位进行测算。晶粒尺寸和晶界 厚度以硬磁材料的特征长度,即布洛赫参数 $\delta_0 = (A/K)^{1/2}$, 为单位进行表述。通过改变由L1₀ FeNi(块状)、MnAl 和Nd_{0.2}Zr_{0.8}Fe₁₀Si₂(表1)[25–30]体系构成的磁体微观结 构,得到如图3、图4所示的结果。微磁学模拟所采用的 晶粒结构如图3(c)所示。由于我们采用了无量纲单位 制,所以晶界相、晶粒尺寸和晶粒纵横比对其他硬磁相 矫顽力的影响可以从给出的数据中得到。

为了分析晶界性质对矫顽力和最大磁能积的影响, 我们在多晶结构模型中考虑了晶界相的厚度和磁化强 度。在磁体尺寸不变的情况下,晶界相厚度的变动范围 设定为1.1 δ_0 ~4.4 δ_0 。晶界相磁化强度的变化范围为0.05 $M_{s,bulk}$ 至0.55 $M_{s,bulk}$ 。根据公式 $A_{gb} = A_{bulk}(M_{s,gb}/M_{s,bulk})^2$,晶 界相的交换积分常数与磁化强度的平方成正比[31],因 此,晶界相从几乎无磁性相变化到铁磁性相。模拟过程 中的多晶结构如图3所示,平均晶粒尺寸为37 δ_0 。

表1 各向异性常数 (K)、自发磁化强度 (μ₀M_s)和图5模拟计算中采用的交换积分常数 (A)

Phase	$K (MJ \cdot m^{-3})$	$\mu_0 M_{\rm s} ({\rm T})$	$A (pJ \cdot m^{-1})$	References
Fe ₅ Ge	0.23	1.8	14.7	
L1 ₀ FeNi (Si substrate)	0.38	1.5	10	[26]
$Fe_{3}Sn_{0.75}Sb_{0.25}$	0.33	1.52	10	[25]
CoFe ₆ Ta	1	1.82	14.9	[21]
L1 ₀ FeNi (bulk)	1.1	1.38	10	[27]
MnAl	0.7	0.8	7.6	[28]
$(Nd_{0.2}Zr_{0.8})Fe_{10}Si_2$	1.16	1.12	10	[29]
$(Sm_{0.7}Zr_{0.3})Fe_{10}Si_2$	3.5	1.08	10	[30]

图3. 矫顽力(a)和磁能积(b)随晶界特性的变化关系;(c)模拟中的晶粒结构。

图4. 晶粒尺寸和晶粒形状的影响。等高线表示矫顽场与晶粒尺寸和晶粒长径比的变化关系。不同的区域表示晶界相厚度为 δ_0 的不同饱和磁化强度条件下的模拟结果。

显然,最大矫顽力是在一个薄且几乎无磁性的晶界 相条件下达到的。不论是晶界厚度的增加还是晶界磁化 强度的增加都会减弱矫顽力。晶界相的磁化强度对总磁 化强度是有贡献的。因此,最大磁能积出现在当晶界较 薄且晶界处磁化强度中等的条件下。我们可以得出结 论,即使是铁磁性晶界相,只要厚度足够小,也可以获 得性能良好的磁滞回线特性。例如,当晶界相的磁化强 度约为硬磁主相的一半时,晶界厚度为2 δ_0 时的矫顽力 可以达到 $0.4 \times 2K/(\mu_0 M_s)$ 。

弱软磁晶界相可以看作一种软磁缺陷。一些微磁学 研究表明,磁化翻转起始于这样的晶界[32]。模拟结果 表明,矫顽力随着晶界相自发磁化强度的增加而减小。 此外,矫顽力随着晶界相厚度的增加而减小。虽然具有 弱软磁晶界相的多晶磁体的微观结构更为复杂,但利 用其得到的研究结果与Richter报道的结果相类似[33]。 Richter的研究工作表明一维微磁学模型中软磁缺陷尺寸 与成核场有相似的依赖关系。反向畴壁的形核能随软磁 缺陷厚度的减小而增加。在晶界相较薄的磁体中,晶核 的畴壁向硬磁主相扩展,并且畴壁能量将增大。因此, 晶界相较薄的磁体具有较高的矫顽力。

接下来,我们对模型进行了修改。在晶界厚度为δ₀ 不变的情况下,我们改变晶界相的磁化强度、晶粒尺寸 和晶粒的长径比。我们将长径比大于1:1的晶粒定义为 细长的针状晶粒,将长径比小于1:1的晶粒定义为片状 晶粒。

图4显示了晶界相不同磁化强度时磁体的矫顽力随 晶粒尺寸和长径比的变化规律。对于几乎无磁性的晶界 相,矫顽力随长径比的增大而增强。这意味着针状晶粒 的磁体比片状晶粒的磁体具有更高的矫顽力。当晶界相 的磁化强度增加时,晶粒尺寸和长径比对矫顽力的增强 效应将减弱。对于*M_{s,gb}* = 0.4 *M_{s,buk}*,矫顽力几乎不会随 着长径比的变化而变化。当晶界相的磁化强度较大时, 这种变化趋势正好相反,即片状晶粒的矫顽力比针状晶 粒的略高。晶粒尺寸效应对矫顽力的影响在片状晶粒中 更为明显。

图3中的结果还表明,几乎无磁性的晶界(0.05 *M*_{s,bulk})可以获得最高的矫顽力。而且,这个矫顽力比自发磁化强度为0.55 *M*_{s,bulk}的晶界相时的强4.5倍。图4表明,矫顽力随晶粒尺寸的减小而增加。我们可以得出结论,晶粒尺寸小且互相解耦的磁体具有最强的矫顽力。实际上,在图4左上图的左上点,我们可以发现最强矫顽力,即*M*_{s,gb} = 0.02 *M*_{s,bulk}。在这里,我们采用的是一个纳米结

构系统,其晶粒尺寸小于20δ₀,且晶粒之间无交换作用。

3.3. 矫顽力的极限值

我们可以利用数值微磁学模拟分离出导致磁体的矫 顽力相对于各向异性场减小的效应。我们在不考虑静磁 场的条件下计算了退磁曲线。如果计算出的矫顽力低于 各向异性场,那么这一定是由于晶粒错取向或软磁第二 相引起的。在第二步中,我们考虑静磁相互作用,并再 次模拟退磁曲线。此时矫顽力减弱的原因一定是退磁效 应引起的。最后,我们可以对系统如何从一个亚稳态越 过最低能垒的过程进行模拟,从而可以给出矫顽力的温 度依赖特性[4]。

在接下来的分析中,我们假设不存在软磁第二相。 小立方体的边长为40 nm,外磁场的方向偏离小立方体 的易轴方向1°。减弱各向异性场的因素为:①取向差、 ②退磁效应和③热起伏。本文计算的矫顽力是一个理想 的结构,即晶粒尺寸非常小(40 nm)并且没有缺陷。 因此,该矫顽力是给定硬磁相的矫顽力的上限。

我们将此方法应用于无稀土或少稀土磁体的几个候选相结构。对于每个相,我们分别给出了错取向、退磁效应和热起伏条件下的各向异性场(图5)。模拟计算中用到的内禀磁性见表1。我们在温度为300 K的情况下,通过原子自旋动力学计算获取了MnAl的各向异性常数、自发磁化强度和交换积分常数。Fe₅Ge是AGA预测的富铁二元相。Fe₅Ge、Fe₃Sn_{0.75}Sb_{0.25}和CoFe₆Ta的各向异性常数和自发磁化强度是在温度为0 K时,通过第一原理模拟获得的。Fe₅Ge和CoFe₆Ta的交换积分常数

图5. 矫顽力的极限值。不同永磁体候选相中矫顽力的数值。图中的符号代表矫顽力。星号表示各向异性场;X符号表示无静磁场的微磁学模拟结果;加号表示有静磁耦合的微磁学模拟结果;圆形符号表示具有热起伏的微磁学模拟结果。请注意(Sm,Zr)Fe₁₀Si₂的µ₀H轴的刻度不同。

与自发磁化强度的平方 $(A = cM_s^2)$ 成正比,其中c通过 α -Fe的 M_s 和A计算得到。L1₀ FeNi、 $(Nd_{0.2}Zr_{0.8})Fe_{10}Si_2$,和 $(Sm_{0.7}Zr_{0.3})Fe_{10}Si_2$ 的内禀参数是温度为300 K时的实验数 据,该数据来源于文献。如果交换积分常数值没有可获 取来源,我们采用 $A = 10 \text{ pJ·m}^{-1}$ [34]。

计算结果清楚地表明,大多数无稀土的磁体的矫顽 力很难大于1 T。对于FeNi(块状),我们假定其具有高 度均匀的化学有序度,但是实验合成的L1₀ FeNi颗粒可 能含有局部化学有序度减弱的斑块。这些相应的磁晶各 向异性减弱的局部斑块会使矫顽力变差。类似地,孪晶 或反相晶界等晶体缺陷会降低MnAl磁体[35]的矫顽力。 锆(Zr)元素替代的ThMn₁₂结构的稀土永磁体具有较低 的稀土含量。此外,较高的ThMn₁₂结构的磁晶各向异 性场,特别是(Sm,Zr)Fe₁₀Si₂磁体的磁晶各向异性场,足 以得到一个合理的矫顽力。在考虑热起伏的情况下,对 于(Nd_{0.2}Zr_{0.8})Fe₁₀Si₂和(Sm_{0.7}Zr_{0.3})Fe₁₀Si₂,我们计算得到 的矫顽力是磁晶各向异性场的70%(图5中的圆点代表 的结果)。

4. 结论

在本研究中,我们展示了如何利用材料模拟进行下 一代少稀土永磁体的计算设计。根据以上结果,我们可 以得出以下结论:

(1)纳米结构化是获得具有中等磁晶各向异性的无稀土化合物的高矫顽力的关键因素。

(2) 矫顽力随着晶界相的磁化强度和晶界相厚度的 增加而降低。

(3)然而,即使是中等铁磁性晶界相,只要晶界足 够薄,也可以获得优良的永磁性能。

(4) 晶粒的形状仅对几乎无磁性的晶界十分重要。 晶粒形状在铁基铁磁性晶界相的系统中的作用并不大。

(5) 热起伏可能会大幅度减弱矫顽力。因此,即使 在完美的结构中,矫顽力也会远远弱于各向异性场。

Acknowledgements

This work was supported by the EU H2020 project NOVAMAG (686056) and the Austrian Science Fund FWF (I3288-N36). Sergiu Arapan and Pablo Nieves acknowledge the European Regional Development Fund in the IT4Innovations National Supercomputing Center—path to exascale project (CZ 02.1.01/0.0/0.0/16-013/0001791) within the Operational Programme Research, Development and Education, and IT4Innovations computational resources allocated within projects OPEN-11-33, OPEN-14-23, and OPEN-17-14.

Compliance with ethics guidelines

Alexander Kovacs, Johann Fischbacher, Markus Gusenbauer, Harald Oezelt, Heike C. Herper, Olga Yu. Vekilova, Pablo Nieves, Sergiu Arapan, and Thomas Schrefl declare that they have no conflict of interest or financial conflicts to disclose.

References

- Constantinides S. Permanent magnets in a changing world market. Magn Mag 2016;Spring: 6–9.
- [2] Nakamura H. The current and future status of rare earth permanent magnets. Scr Mater 2018;154:273–6.
- [3] Coey JMD. Permanent magnets: plugging the gap. Scr Mater 2012;67(6):524– 9.
- [4] Fischbacher J, Kovacs A, Oezelt H, Gusenbauer M, Schrefl T, Exl L, et al. On the limits of coercivity in permanent magnets. Appl Phys Lett 2017;111(7):072404.
- [5] Nieves P, Arapan S, Hadjipanayis GC, Niarchos D, Barandiaran JM, Cuesta-López S. Applying high-throughput computational techniques for discovering next-generation of permanent magnets. Phys Status Solidi C 2016;13(10– 12):942–50.
- [6] Nieves P, Arapan S, Cuesta-López S. Exploring the crystal structure space of CoFe₂P by using adaptive genetic algorithm methods. IEEE Trans Magn 2017;53(11):1–5.
- [7] Arapan S, Nieves P, Cuesta-López S. A high-throughput exploration of magnetic materials by using structure predicting methods. J Appl Phys 2018;123(8):083904.
- [8] Wills JM, Alouani M, Andersson P, Delin A, Eriksson O, Grechnyev O. Fullpotential electronic structure method: energy and force calculations with density functional and dynamical mean field theory. Berlin: Springer-Verlag; 2010.
- [9] Fischbacher J, Kovacs A, Gusenbauer M, Oezelt H, Exl L, Bance S, et al. Micromagnetics of rare-earth efficient permanent magnets. J Phys Appl Phys 2018;51(19):193002.
- [10] Kresse G, Joubert D. From ultrasoft pseudopotentials to the projector augmented-wave method. Phys Rev B 1999;59(3):1758–75.
- [11] Quey R, Renversade L. Optimal polyhedral description of 3D polycrystals: method and application to statistical and synchrotron X-ray diffraction data. Comput Methods Appl Mech Eng 2018;330:308–33.
- [12] Salome-platform [Internet]. Guyancourt: OPEN CASCADE SAS; c2005–2019 [cited 2018 Feb 1]. Available from: http://www.salome-platform.org/.
- [13] Exl L, Fischbacher J, Kovacs A, Oezelt H, Gusenbauer M, Schrefl T. Preconditioned nonlinear conjugate gradient method for micromagnetic energy minimization. Comput Phys Commun 2019;235:179–86.
- [14] Adams BM, Bohnhoff WJ, Dalbey KR, Eddy JP, Eldred MS, Gay DM, et al. Dakota, a multilevel parallel object-oriented framework for design optimization, parameter estimation, uncertainty quantification, and sensitivity analysis: version 5.0 user's manual. Livermore: Sandia National Laboratories; 2009. Report No.: SAND2010-2183.
- [15] Gaunt P. Magnetic viscosity in ferromagnets: I. phenomenological theory. Philos Mag 1976;34(5):775–80.
- [16] Carilli MF, Delaney KT, Fredrickson GH. Truncation-based energy weighting string method for efficiently resolving small energy barriers. J Chem Phys 2015;143(5):054105.
- [17] Nieves P, Arapan S, Maudes-Raedo J, Marticorena-Sánchez R, Brío N D, Kovacs A, et al. Database of novel magnetic materials for high-performance permanent magnet development. Comput Mater Sci 2019;168: 188–202.

- [18] Material features: NOVAMAG_theory_ICCRAM_Co2Fe12Ta2_#115_1 [Internet]. Burgos: ADMIRABLE Group; c2018 [cited 2018 Nov 1]. Available from: http://crono.ubu.es/novamag/show_item_features?mafid=1574.
- [19] Material features: NOVAMAG_theory_ICCRAM_Co1Fe6Ta1_#160_1 [Internet]. Burgos: ADMIRABLE Group; c2018 [cited 2018 Nov 1]. Available from: http:// crono.ubu.es/novamag/show_item_features?mafid=1545.
- [20] Material features: NOVAMAG_theory_ICCRAM_Co1Fe6Ta1_#38_1 [Internet]. Burgos: ADMIRABLE Group; c2018 [cited 2018 Nov 1]. Available from: http:// crono.ubu.es/novamag/show_item_features?mafid=1534.
- [21] Material features: NOVAMAG_theory_ICCRAM_Co2Fe12Ta2_#63_1 [Internet]. Burgos: ADMIRABLE Group; c2018 [cited 2018 Nov 1]. Available from: http:// crono.ubu.es/novamag/show_item_features?mafid=1579.
- [22] Material features: NOVAMAG_theory_ICCRAM_Co4Fe24Ta4_#8_1 [Internet]. Burgos: ADMIRABLE Group; c2018 [cited 2018 Nov 1]. Available from: http:// crono.ubu.es/novamag/show_item_features?mafid=1551.
- [23] Lizárraga R, Pan F, Bergqvist L, Holmström E, Gercsi Z, Vitos L. First principles theory of the hcp–fcc phase transition in cobalt. Sci Rep 2017;7(1):3778.
- [24] Sales BC, Saparov B, McGuire MA, Singh DJ, Parker DS. Ferromagnetism of Fe₃Sn and alloys. Sci Rep 2014;4(1):7024.
- [25] Vekilova OY, Fayyazi B, Skokov KP, Gutfleisch O, Echevarria-Bonet C, Barandiarán JM, et al. Tuning the magnetocrystalline anisotropy of Fe₃Sn by alloying. Phys Rev B 2019:99(2):024421.
- [26] Kovacs A, Fischbacher J, Oezelt H, Schrefl T, Kaidatzis A, Salikhov R, et al. Micromagnetic simulations for coercivity improvement through nano-structuring of rare-earth free L1₀-FeNi magnets. IEEE Trans Magn 2017;53(11):7002205.
- [27] Niarchos D, Gjoka M, Psycharis V, Devlin E. Towards realization of bulk L10-

FeNi. In: Proceedings of 2017 IEEE International Magnetics Conference (INTERMAG); 2017 Apr 24–28; Dublin, Ireland; 2017.

- [28] Nieves P, Arapan S, Schrefl T, Cuesta-Lopez S. Atomistic spin dynamics simulations of the MnAl τ-phase and its antiphase boundary. Phys Rev B 2017;96(22):224411.
- [29] Gjoka M, Psycharis V, Devlin E, Niarchos D, Hadjipanayis G. Effect of Zr substitution on the structural and magnetic properties of the series $Nd_{1-x}Zr_xFe_{10}Si_2$ with the $ThMn_{12}$ type structure. J Alloys Compd 2016;687:240–5.
- [30] Gabay AM, Cabassi R, Fabbrici S, Albertini F, Hadjipanayis GC. Structure and permanent magnet properties of Zr_{1-x}R_xFe₁₀Si₂ alloys with R = Y, La, Ce, Pr and Sm. J Alloys Compd 2016;683:271–5.
- [31] Kronmüller H, Fähnle M. Micromagnetism and the microstructure of ferromagnetic solids. Cambridge: Cambridge University Press; 2003.
- [32] Zickler GA, Fidler J, Bernardi J, Schrefl T, Asali A. A combined TEM/STEM and micromagnetic study of the anisotropic nature of grain boundaries and coercivity in Nd–Fe–B magnets. Adv Mater Sci Eng 2017;2017:6412042.
- [33] Richter HJ. Model calculations of the angular dependence of the switching field of imperfect ferromagnetic particles with special reference to barium ferrite. J Appl Phys 1989;65(9):3597–601.
- [34] Wang D, Sellmyer DJ, Panagiotopoulos I, Niarchos D. Magnetic properties of Nd(Fe,Ti)₁₂ and Nd(Fe,Ti)₁₂N_x films of perpendicular texture. J Appl Phys 1994;75(10):6232–4.
- [35] Bance S, Bittner F, Woodcock TG, Schultz L, Schrefl T. Role of twin and antiphase defects in MnAl permanent magnets. Acta Mater 2017;131:48–56.