FI SEVIER

Contents lists available at ScienceDirect

Engineering

journal homepage: www.elsevier.com/locate/eng

Research Bridge Engineering—Article

基于拉索安全评估的普通斜拉桥和矮塔斜拉桥结构冗余度对比研究

Khawaja Ali*, Hiroshi Katsuchi, Hitoshi Yamada

Department of Civil Engineering, Yokohama National University, Yokohama 240-8501, Japan

摘要

ARTICLE INFO

Article history: Received 30 January 2020 Revised 10 April 2020 Accepted 6 July 2020 Available online 8 October 2020

关键词

斜拉桥 矮塔斜拉桥 冗余 拉索 安全系数 可靠性分析 本研究基于斜拉桥和矮塔斜拉桥的拉索安全性评估,为比较斜拉桥和矮塔斜拉桥提供了新的观点。 由于二者都使用拉索,人们通常认为这两种类型的桥梁具有相同的结构。但是,国际桥梁设计标 准规定了二者各自的拉索安全系数。为了纠正这一误解,本研究通过考虑各种异常因素和破坏因 素(如过载、钢索损耗和钢索腐蚀)的影响,对在疲劳和极限状态下的拉索的安全系数进行了比较。 本研究的主要目的是解释两种类型桥梁之间的结构差异,并通过采用确定性和非确定性方法来评 估其结构冗余。为了实现这一目标,根据日本现行的拉索设计指南,本文建立了两座桥的三维模 型。在达到桥梁模型的平衡状态之后,以参数化方式对拉索的不同安全系数进行了静态分析。最后, 采用一阶可靠性方法和蒙特卡洛方法确定了拉索的可靠性指标。分析结果表明,在相同的荷载条 件下,斜拉桥和矮塔斜拉桥在不同安全系数下具有不同的结构冗余度。此外,随着拉索的安全系 数的增加,其结构上的冗余大大增加。

© 2021 THE AUTHORS. Published by Elsevier LTD on behalf of Chinese Academy of Engineering and Higher Education Press Limited Company This is an open access article under the CC BY-NC-ND licenses (http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. 引言

由于斜拉桥 (CSB)的结构效率和美观性,结构工 程师一直主张在河道和海峡上架设斜拉桥。CSB的想法 最早出现于建设悬索桥的时候。然而,在19世纪初期, 由于缺乏解决CSB建设分析中的技术和适合建造CSB的 材料,导致早期CSB的失败,并使CSB这一想法暂时被 放弃。19世纪末,在布鲁克林大桥的建造过程中,拉索 又作为悬索桥的辅助构件被引入,目的是增加桥的刚度 以抵抗风振,这突出了在大跨度桥梁中使用拉索的重要 性。第一座现代CSB是由结构工程师先驱Eduardo Torroja于20世纪20年代在西班牙建造的坦皮尤尔渡槽[1]。 在国际上,CSB的发展始于20世纪70年代,但是20世 纪90年代计算机应用的迅速发展使其向前迈出一大步。 桥梁工程师开始对现代CSB有了更好的理解。在其他研 究中,Lozano-Galant和Paya-Zaforteza [2]对结构系统、 移除动荷载对坦皮尤尔渡槽的影响进行了详细分析,以 描述现代CSB设计的演变。

除了上述桥梁之外,由Jacques Mathivat [3]创造的 矮塔斜拉桥(EDB)的概念在过去几十年中也得到了建 筑行业的广泛认可。世界上第一个现代EDB是由Kasuga 等[4,5]设计的小田原港桥(Kasuga是1994年日本东京 住友三井建筑有限公司的总工程师)。CSB和EDB在结 构上似乎相同,因为这两种类型的桥梁都使用拉索将桥 面与桥塔连接起来。但是,由于它们的高宽比不同,它 们的结构性能也不同。许多研究人员[5-8]对此进行分

^{*} Corresponding author.

E-mail address: khawaja-ali-zw@ynu.ac.jp (K. Ali).

^{2095-8099/© 2020} THE AUTHORS. Published by Elsevier LTD on behalf of Chinese Academy of Engineering and Higher Education Press Limited Company. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/). 英文原文: Engineering 2021, 7(1): 111–123

引用本文: Khawaja Ali, Hiroshi Katsuchi, Hitoshi Yamada. Comparative Study on Structural Redundancy of Cable-Stayed and Extradosed Bridges Through Safety Assessment of Their Stay Cables. Engineering, https://doi.org/10.1016/j.eng.2020.07.021

析研究,比较了CSB和EDB的结构系统,他们将EDB 定义为处于CSB和预应力混凝土桥(PCB)之间的一种 混合桥结构。就CSB而言,大部分的静荷载和动荷载由 拉索承担,而PCB则因为没有任何拉索而由刚性梁承 担所有的静荷载和动荷载。有趣的是,EDB部分起源 于CSB和PCB,CSB和PCB的静荷载分布在拉索和梁之 间,而动荷载主要由刚性梁承担。因此,CSB和EDB的 冗余很大程度上取决于拉索的安全性,通常可以通过提 供适当的安全系数来确保其安全性。根据定义,冗余是 结构在任何单个组件发生故障后通过不同路径重新分配 负载的能力。

许多国际桥梁设计标准规定了不同的CSB拉索设 计时的安全系数。例如,日本的公路桥梁规范[9]建议 安全系数设定为2.5,其保持应力为0.4σ_{UTS}(其中,σ_{UTS} 表示极限抗拉强度),与美国和欧洲使用的2.22的安全 系数[10]相比,这说明日本规定了更高的CSB拉索安全 系数值。为了研究日本目前的拉索安全系数的适用性, Ali等[11]考虑了各种荷载条件的影响,对CSB在疲劳极 限状态(FLS)和极限状态(ULS)下的安全系数进行 了参数研究,结果表明当前日本CSB的拉索的安全系数 有很好的适用性。但是,大多数桥梁设计的国际标准都 没有为EDB的拉索提出合适的安全系数。1994年,Kasuga等[4]在对CSB和EDB的拉索的疲劳需求进行比较 研究的基础上,对小田原港桥采用了针对σ_{UTS}的降低安 全系数1.67 [5,12]。这使得拉索中的许用应力较高,为 0.6σ_{UTS},拉索材料的使用率也更高[13]。

在建立拉索安全系数时,通常要考虑以下因素: ①动静荷载应力比;②动荷载应力的发生频率;③次级 应力的影响;④应力不均匀性;⑤与其他构件的安全系 数的平衡;⑥由于疲劳和腐蚀而引起的损坏。最近,日 本对拉索设计规范进行了修订,可以根据动静荷载应力 比去规定安全系数[14]。根据新指南,拉索的设计是基 于拉索的轴向应力进行的,而不是通过确定拉索是属于 CSB还是EDB来进行的。应力比为1.0和0.1时,安全系数分别为2.5和1.67。因此,可以单独设计每根拉索,并单独设置每根拉索的许用应力极限,而无需表明桥的类型[13]。表1为CSB和EDB的拉索设计不同标准中规定的许用应力极限(和安全系数)[14–19]。

但是,关于CSB和EDB的结构冗余仍有争议,尤其 是考虑到当前拉索的安全系数。人们尚不清楚在各种极 端负载条件下,CSB和EDB的冗余可以在何种程度上保 持结构合理。这是因为CSB的拉索充当了提升桥面板的 弹性支撑,而EDB的拉索被认为是布置在预应力混凝土 梁外的外部筋[12]。因此,应当以参数化的方式使用极 限状态设计方法来比较CSB和EDB的各个方面,包括 过载、疲劳和腐蚀对不同安全系数的拉索的需求容量比 (DCR)的影响。

在当前的设计实践中,通过基于经验的评估方法即 在强度和荷载效应之间建立可接受的安全裕度来确定拉 索支撑结构的冗余度[20]。然而,对于使用确定性方法 的普通结构分析,在设计变量中包含不确定性的情况 下,很难清楚地理解桥梁结构的性能并且精确检测其安 全等级。此外,在实践中经常出现的问题是关于拉索的 当前安全系数,以及考虑到经济和安全因素,安全系数 在多大程度上是足够的。因此,考虑各种不确定因素来 评估可靠性才是合理的,即环境条件、动荷载的变化以 及固有的制造不确定因素,如轴向刚度、自重、屈服强 度和拉索的极限强度[21]。许多研究人员已经开发出基 于可靠性对结构进行研究的准则,以评估其当前状况和 经济寿命。Czarnecki和Novak [22]开发了基于时变可靠 性的模型,通过将其理想化为结构构件表面材料的均匀 损耗,来评估受到均匀腐蚀的钢质公路桥梁。 Maljaars 和Vrouwenvelder [23]使用蒙特卡罗(MC)模拟方法计 算包含断裂绳索的拉索的失效概率和可靠性指标,以评 估现有桥梁的疲劳性。Lu等[24]提出了一种准则,该 准则通过考虑疲劳损坏和腐蚀对并联系统中拉索的影

表1 国际标准建议的拉索许用应力极限

Standards	Stay cables of CSBs	Stay cables of EDBs	Refs.
Japan Road Association (JRA; 2017), Japan Prestressed Concrete Engineering	$0.40\sigma_{\rm UTS} (= \sigma_{\rm UTS}/2.50)$	$0.6\sigma_{\rm UTS} (= \sigma_{\rm UTS}/1.67)$	[14,15]
Association (JPCEA; 2002)			
Eurocode (2006)	$0.45\sigma_{\rm UTS} (= \sigma_{\rm UTS}/2.22)$	_	[16]
Post-Tensioning Institute (PTI; 2007)	$0.45\sigma_{\rm UTS} (= \sigma_{\rm UTS}/2.22)$	_	[17]
Service d'etudes techniques des routes et autoroutes (SETRA; 2001)	$0.46\sigma_{\rm UTS} (= \sigma_{\rm UTS}/2.174)$	$0.6\sigma_{\rm UTS}~(=\sigma_{\rm UTS}/1.67)$	[18]
International Federation for Structural Concrete (fib; 2005)	$0.45\sigma_{\rm UTS} (= \sigma_{\rm UTS}/2.22)$	_	[19]

响,对使用中的CSB进行系统可靠性评估。可靠性分析已成为评估桥梁性能和剩余寿命的必不可少的方法。

研究人员开展了一项CSB和EDB的比较研究,即在 各种不利和破坏性条件下,以参数化方式通过对拉索的 安全性评估来测得和比较它们的结构冗余。首先,根据 设计指南中规定的拉索的安全系数,建立了两座桥的三 维(3D)有限元(FE)模型。此后,采用未知荷载因 子的多约束优化技术来计算最佳索力。随后,在FLS和 ULS下进行了静态分析,以根据不同安全系数的拉索 的DCR确定性地评估CSB和EDB的结构冗余。此过程 还研究了过载、拉索损耗和腐蚀以及它们的耦合效应 对拉索安全等级的影响。最后,采用一次可靠度方法 (FORM)和MC方法对拉索的可靠性指标进行了结构 冗余评估。分析结果表明,在相同荷载条件下,对于 拉索的不同安全系数,CSB和EDB表现出不同的结构 冗余性。随着拉索的安全系数的增加,结构冗余会显 著增加。

2. 有限元建模

2.1. 斜拉桥

使用MIDAS Civil (韩国MIDAS信息技术有限公司)桥梁建模软件[25]开发了主跨度为460 m,两侧跨 度为220 m的双平面CSB的3D FE模型。桥梁模型的结 构布局如图1所示。桥梁底板的纵向坡度设计为2%。为 了便于分析,将主梁的横截面简化为具有相等面积和 惯性矩的薄壁箱形截面。钢箱梁的总宽度和深度分别 为21.75 m和3.5 m,有四个行车道。此外,如图2所示, 增加两条1.75 m宽的行人专用道。拉索数量为144,其 在桥面层上以12m的恒定间距放置。参照日本工业标准 委员会 (JIS) G3525 [26], 由平行绞线制成的拉索的极 限抗拉强度假定为1770 MPa,并以改良的扇形进行布 置。这些拉索充当桥面的弹性支撑。因此, 多根拉索增 加了弹性支撑的数量,从而形成了桥面中适度的纵向弯 曲。此外,多根拉索的布置减小了每根拉索受到的力。 使用了高度为140 m (塔架: 115 m;桥墩: 25 m)的H 型塔结构。塔架高度为中心跨度长度的四分之一,以使 CSB-C1和CSB-C36相对于桥纵轴的角度大于25°, 防止 拉索失效。此外,还假定拉索是自动锚固在桥面板上的。 在设定桥梁的连接和边界条件,假定桥墩是固定的,桥 梁主梁由两侧的滚柱支架支撑,从而使桥梁模型能够纵 向移动。此外,以模拟的弹性橡胶轴承为弹性连接件, 将桥梁与下部横梁连接起来。主梁和桥塔被建模为弹性 梁单元,而拉索被建模为桁架单元(仅受拉)。同时使 用了鱼骨建模技术,以通过刚性连接将拉索与桥面脊骨 梁连接。

2.2. 矮塔斜拉桥

与CSB相似,本文使用MIDAS Civil [25]建立了一 个408 m长的双平面EDB的3D FE模型。其中心跨度长 208 m,两侧跨度分别为100 m长,结构布局如图3所示。 如图2所示,预应力混凝土箱梁的总宽度和深度分别为 21.75 m和4.5 m,具有四个行车道,纵向斜率为2%。桥 梁由桥墩和拉索系统(EDB-Cs)支撑。拉索在桥面层 上的锚固点在侧向跨度上间隔5 m,在中心跨度上间隔 6 m。另外,参照JISG3525 [26],假设拉索(由平行绞

图1. 斜拉桥模型的布局。A1和A2指锚碇; P1和P2指主塔; Dj和Rj (j=x,y和z)分别表示平移和旋转自由度; EL表示海拔。

线组成)的极限抗拉强度为2000 MPa。混凝土塔的高度为40 m(塔架: 22 m;桥墩: 18 m),因为是EDB, 塔架的高度为中心跨度的1/9~1/10。混凝土塔梁被建 模为弹性梁单元,而拉索则被建模为桁架单元。因为 EDB-C中的动荷载所引起的应力范围受主梁刚度和桥 墩上支撑的固定性的影响,故假设塔与梁之间存在固 定且整体的连接。当主梁较硬时,与静荷载相比,由 动荷载引起的拉索应力范围较小。为了减小该应力范 围的大小,将EDB的主梁固定在桥墩处。主梁在侧跨 支座和主墩上的固定性对主梁的弯矩和动荷载引起的 拉索应力范围都有很大影响。这是因为EDB上的动荷 载由拉索和主梁共同承担。将梁固定在桥墩上使桥梁 可以抵抗动荷载,从而使得荷载跨度的弯矩从正弯矩 区域变为负弯矩区域,进而使弯矩分布在桥墩上。而 且,固定主梁可以减少位移,尤其是在靠近施加荷载

的跨度区域[8]。

2.3. CSB 和 EDB 设计注意事项

对于CSB和EDB的设计,静荷载和动荷载参考日本 公路桥梁规范[9]。表2和表3分别给出了桥梁构件的材 料和截面特性。表4和表5列出了两个桥梁的设计荷载。 静荷载(包括主梁的自重)、路面荷载和附加荷载被均 匀地施加在整个桥梁模型上。在结构分析中考虑了L型 动荷载,包括作用在10m长度上的10kN·m⁻²集中的动 荷载(S1)和均匀作用在整个长度上的3kN·m⁻²的动荷 载(S2)。另外,在设计主梁时考虑了3kN·m⁻²的动荷 载。EDB通常用短到中等的混凝土箱梁建造,而CSB 则选用中到长的钢箱梁建造。因此,本研究中的CSB和 EDB具有不同的长度、材料和截面特性。但是为便于比 较,两种桥梁模型的荷载条件均被假定为相同。

表2 桥梁构件的材料特性

		Properties						
Bridge Type	Bridge components	Ultimate tensile strength $\sigma_{\rm UTS}$	Yield	Allowable	Modulus of	Poisson's	Material	
		specified compressive strength,	strength, $\sigma_{\rm y}$	strength, $\sigma_{\rm a}$	elasticity, E	ratio, v	density, γ	
		$f_{\rm c}^{\prime}$ (MPa)	(MPa)	(MPa)	(GPa)		$(kN \cdot m^{-3})$	
CSB	Girder and tower (steel)	490	355	210	200	0.30	77	
	Cables (steel)	1770	1300	708	195	0.30	77	
EDB	Girder and tower (concrete)	55		25	35	0.15	24	
	Cables (steel)	2000	1400	1198	195	0.30	77	

表3 桥梁构件的截面特性

		Properties					
Bridge type	Bridge components	Cross-sectional area, A	2nd moment of area about	2nd moment of area about z	Polar moment of inertia, J		
		(m^2)	$y \text{ axis, } I_{yy} (\text{m}^4)$	axis, I_{zz} (m ⁴)	(m^4)		
CSB	Girder	0.60	14.73	5.13	29.03		
	Pylon	1.11	7.96	6.24	4.72		
	Pier	1.11	7.96	6.24	4.72		
	Transverse beam	0.55	2.61	2.14	1.52		
EDB	Girder	13.54	168.62	54.22	683.84		
	Pylon	6.00	4.70	4.50	2.00		
	Pier	12.00	19.44	16.00	9.00		
	Transverse beam	6.00	4.70	4.50	2.00		

y and z denote the lateral and vertical axes of bridge, respectively.

表4 静荷载、路面荷载和附加荷载

Bridge type	Dead loads (self-weight of girder; $kN \cdot m^{-1}$)	Pavement loads $(kN \cdot m^{-1})$	Additional loads $(kN \cdot m^{-1})$
CSB	48.8	35	5
EDB	325.0	35	5

表5 动荷载

Duideo trao	Live loads $(kN \cdot m^{-1})$		
Bluge type	Concentrated load, S1	Uniformly distributed load, S2	Pedestrian load
CSB	97.5	30	10
EDB	102.5	30	10

2.3.1. 斜拉桥的拉索

对于CSB来说,每根拉索的设计条件是动静荷载比 为0.45,许用应力为708 MPa。应用未知荷载因子的多 约束优化技术来调整拉索预应力(PS)。该技术对于使 力矩沿桥面均匀分布并使构件的应力和挠度最小化是有 效的[27]。为了实现CSB在其自身重量下的平衡状态, 计算时执行了多次迭代。随后,计算拉索的相应横截面 积。此外,拉索的设计使得轴向应力约为恒载下的许 用应力的50%~60%,小于静荷载和动荷载下的许用应 力[11]。

2.3.2. 矮塔斜拉桥的拉索

设计具有刚性主梁的EDB的挑战在于将主梁、拉索和下部结构按比例分配,以控制由动荷载引起的拉索应力范围,并利用低疲劳度拉索的较高的许用应力。EDB的拉索的设计是在动静荷载负荷比为0.11、许用应力为1198 MPa的条件下进行的。为了计算EDB-Cs的PS,采用了连续梁法。利用迭代程序确定了静荷载作用下EDB的平衡状态,并相应地优化了拉索的横截面积。设计

EDB时,将内部预应力(*P*_i)也施加到预应力混凝土梁上, 以确保该梁不开裂、挠度最小化并抵抗长期作用和动荷 载引起的弯矩[8]。

2.3.3. 非线性效应

CSB中的拉索的轴向刚度受拉索垂度的影响,而垂 度受拉索中的拉力的影响很大。当拉力增大时,下垂效 应减小,并且轴向刚度相应地增大。解决轴向刚度变化 的一种方便方法是考虑具有等效弹性模量的等效桁架单 元。研究表明,对于CSB拉索断裂的非线性分析,几何 非线性是必不可少的[28,29]。在这项研究对两座桥的静 态分析中,使用了减小的或等效的弹性模量来进行拉伸 强化效果的分析,考虑了几何非线性的影响。由Ernst [30]首次提出来拉索的非线性行为,如下:

$$E_{\rm eq} = \frac{E}{1 + \frac{(wL)^2 AE}{12T^3}}$$
(1)

式中, *E*_{eq}是等效弹性模量的切线值; *E*是弹性模量; *A*是拉索的横截面积; *w*是单位长度的索重; *L*是水平投影长度; *T*是

拉索中的拉力。对于EDB来说,拉索的水平投影长度很短, 在静荷载下拉索的拉力T很大。因此,拉索的弹性模量不受 下垂效应的影响。

2.4. 静态分析

如图4所示,建立了几个动荷载布局,并将其应用 到两个桥梁模型中。目的是研究模式荷载对拉索的轴向 应力的影响,并确定能够引起拉索最大轴向应力时的动 荷载布局。在CSB和EDB的静态分析中使用了以下荷载 组合。

$$\Sigma P_{\text{CSB}} = (\text{DC} + \text{DW} + \text{PS}) + (\text{LL} + \text{IM})$$
(2a)

$$\Sigma P_{\text{EDB}} = (\text{DC} + \text{DW} + \text{PS}) + (\text{LL} + \text{IM}) + P_i \qquad (2b)$$

式中, ΣP 是轴向无因子荷载的总和; DC为静荷载(构件和附件); DW为静荷载(表面磨损和公用设施); LL为动荷载; IM为动荷载余量; P_i 为内部预应力。静态分析结果表明,模式荷载对CSB拉索轴向应力的影响要比对EDB拉索的影响大,如图5和图6所示。对于CSB, CSB-C1分别显示了模式荷载2和3的最大和最小轴向应力,而情况2和7则在拉索CSB-C25-CSB-C27中产生了很大的轴向应力。由于高柔性和低阻尼,轴向应力的变化也很大,这取决于拉索的位置和CSB中的模式荷载。此外,对于CSB-C1,动静荷载应力比(1.25 σ_L /1.05 σ_{DP})估计为1。但是,在EDB中,模式荷载2和7在拉索中产生几乎相同的轴向应力,这是因为位于中

心跨度的动荷载会增加斜撑的锚固力,而侧跨内的动荷载降低了锚固力。EDB-Cl2的最大动荷载应力比为0.08。为了简化这个问题,在本研究中仅选择了模式荷载2来研究两座桥梁的结构冗余。

3. 拉索安全系数评估

3.1. 极限疲劳状态

为了对拉索进行疲劳评估,本文在疲劳设计荷载作 用下进行了移动荷载分析(T荷载: 200 kN)下进行了 移动荷载分析。此后,使用Breslau-Muller原理绘制拉 索内部轴向力的影响线图(ILD),并估算每根拉索的最 大和最小设计变量。随后,根据钢结构疲劳设计建议的 准则,通过施加恒定振幅和完全反向的循环荷载,计算 拉索的交替应力和设计应力范围(Δσ_d)[31]。最后,基 于等效应力范围理论,通过满足以下关系式来评估拉索 的高周疲劳:

$$\gamma(\Delta\sigma_{\rm d}/\Delta\sigma_{\rm R}) \le 1.0$$
 (3)

式中, γ 是基于结构冗余和重要性的安全系数,等于1.0; $\Delta \sigma_{d}$ 是设计应力范围(也称为"最大应力范围"),并且 $\Delta \sigma_{R}$ 是许用应力范围,只需将基本许用应力范围($\Delta \sigma_{CE}$)乘以平均应力的校正因子(C_{R})便可得到 $\Delta \sigma_{R}$,例如:

$$\Delta \sigma_{\rm R} = \Delta \sigma_{\rm CE} \times C_{\rm R} \tag{4}$$

在等式(4)中,截断极限或基本允许应力范围 参考有关拉索设计、测试和安装的建议[17],200万个 负载循环对应的CSB和EDB的拉索分别为159 MPa和 140 MPa。平均应力的校正因子是根据应力比(*R*)计 算得出的,应力比是在负载循环中遇到的最小应力与最 大应力之比,见式(5)。

$$C_{\rm R} = 1.3 \left(\frac{1-R}{1.6-R} \right) \text{ for } R \le -1$$
 (5a)

$$C_{\rm R} = \frac{1-R}{1-0.9R} \text{ for } R > -1$$
 (5b)

图7显示了CSB-C1和EDB-C1中轴向力的ILD,表 明在相同的疲劳荷载条件下,CSB-C1与EDB-C1相比产 生的ILD面积更大。这表明疲劳荷载分别对CSB-C1和 EDB-C1的影响极小。但是,这种趋势对于其他的CSB 拉索和EDB拉索组可能有所不同。另外,疲劳荷载对 CSB和EDB的每根拉索的影响分别在图8和9中进行了 说明。对于CSB,CSB-C17显示出最大DCR,并且由于 可变的轴向应力,沿桥梁长度在拉索的DCR中观察到 了很大的变化。此外,在当前安全系数为2.5时,CSB 拉索的DCR小于1,并且当安全系数从2.5降低到2.0时, 这些参数值线性增加。例如,CSB-C17在2.5和2.0的安 全系数下,DCR的值分别为0.81和1.01。实现小于1的

DCR所需的最小安全系数是2.1。这意味着对于FLS下的CSB拉索,安全系数在2.1~2.5范围内是相当安全的,可以实现所需的结构冗余。然而,如图9所示,即使在

安全系数为1.6的情况下,EDB拉索的疲劳特性也很低,并且DCR小于1。这可以归因于EDB的高刚性。此外, 无论它们相对于桥塔-桥面连接的位置如何,所有拉索 都显示出几乎相同大小的DCR。这些结果确保了EDB 应用1.67的安全系数是足够的,并提供了足够的结构冗 余性,以在疲劳荷载的影响下能保持稳定性。

3.2. 极限状态

在初步设计以及根据FLS进行检查之后,进行ULS 检查固定拉索。因此,必须验证等式(6)[31]。

$$\gamma_{\rm i}(N_{\rm u}/N_{\rm rd}) \le 1.0\tag{6}$$

式中, y_i是结构重要性因子,等于1.0; N_{rd}是拉索的设计抗力; N_u是极限轴向荷载。拉索的设计抗力等于材料的屈服强度乘 以横截面积,而CSB-Cs和EDB-Cs上的极限轴向荷载是使 用等式(7a)和(7b)计算得到,符合美国国家公路和运输 协会(AASHTO)的规定[32]。动荷载采用荷载系数*k*,模 拟桥梁过载的影响。此外,在EDB的情况下,PS和P_i具有 不同的静荷载系数,这对于具有刚性桥面的桥梁而言更为合 理[8]。

$$N_{u,CSB} = 1.25(DC + PS) + 1.5DW + k(LL + IM)$$
 (7a)

 $N_{u,EDB} = 1.25DC + 1.5DW + PS + P_i + k(LL + IM)$ (7b)

3.2.1. 过载的影响

为了研究极限荷载对桥梁结构的影响,AASHTO [32]在极限状态的强度I荷载组合中规定动荷载系数(k) 为1.75,而日本预应力混凝土研究所[33]建议将k设定为 2.5用于计算极限倒塌荷载。因此,本文k的选择范围为

1.75~2.5, 即 k_1 = 1.75, k_2 = 1.9, k_3 = 2.0, k_4 = 2.2 πk_5 = 2.5, 以核验两个桥梁的结构冗余能承受的极限荷载。 图10 (a) 表明, 在 k_1 下, CSB拉索的DCR在安全系数 为2.5时小于1, 而CSB-C1的DCR在 k_1 之下接近1, 这表 明当前的安全系数足以产生 k_1-k_4 下所有CSB拉索的冗 余。同样, CSB拉索的DCR在 k_1 下的安全系数为2.2时, 小于1且裕度很小; 然而, 如图10 (d) 所示, CSB-C1 的DCR在 k_3 下趋近于1, 这表明2.2的安全系数在 $k_1\pi k_2$ 下的所有CSB拉索都具有较低的冗余度, 是安全的。如 图11 (a) 所示, 对于EDB, 在 k_1 下, 安全系数为1.67 的情况下, EDB拉索的DCR小于1, 而拉索EDB-C12– EDB-C16在 k_2-k_5 下超过了极限。这表明当前安全系数在 正常动荷载系数 k_1 下拉索是安全的; 但是, 在过载的情 况下应增加此安全系数, 以免拉索失效。

3.2.2. 拉索损耗的影响

从大跨度斜拉桥的设计角度来看,预应力后张法学 会(PTI)提出了两种荷载施加方法来量化拉索损耗的 动态影响:一种是拟动力学方法,其中进行了等效的静 态分析, 施加一对拟冲击动力, 这是在破裂拉索的顶部 和底部锚固位置施加的静态力的两倍;另一个是非线性 动力分析,其中应用了由拉索断裂引起的动态的力[17]。 许多研究人员采用了两种方法来研究单根拉索损耗对 CSB的局部和全局稳定性及安全性的影响,以便更好地 理解如何使结构冗余充足或抗倒塌[28,34-36]。Mozos 和Aparicio [37,38]对拉索突然失效的CSB的动态响应进 行了参数研究。通过进行动态和简化的静力分析,研究 了十种具有不同拉索样式和布置方法的CSB。此外,桥 梁工程师一直在讨论当因意外事件(如火灾或车辆碰撞) 的发生而导致一根或多根拉索损坏从而导致相邻拉索发 生故障时的影响[39]。拉索的断裂会在拉索所连接的固 定点上产生冲击力。该冲击力大小约等于拉索拉力乘以 拉索损耗动态影响因子,方向按照PTI指南中的规定, 以与拉索拉力相反的方向应用于两个锚固点。该因素取 决于拉索破裂的位置及其类型。在这项研究中,采用拟 动力学方法研究单缆或多缆损耗对CSB和EDB的拉索 DCR 的影响。为此,在两座桥中都选择了最长拉索,其 断裂会在相邻的拉索中引起很大的轴向应力。CSB和 EDB拉索损耗冲击力演示分别如图12和图13所示。

本文对两座桥的不同拉索损耗分布进行了静态分析。图14比较了不同安全系数下单拉索和多拉索突然 损耗时CSB拉索的DCR。图14(a)显示,对于当前的

图10. 过载对CSB-Cs DCR的影响。(a) 安全系数为2.5; (b) 安全系数为2.4; (c) 安全系数为2.3; (d) 安全系数为2.2。

图11. 过载对EDB-Cs的DCR的影响。(a)安全系数为1.67;(b)安全系数为1.75。

安全系数,如果损耗两条拉索(CSB-C35和CSB-C36), CSB-C1的最大DCR(0.88)小于1。同样,在主跨度侧 损耗一条拉索(CSB-C36),对于左跨度侧CSB-C1,其 DCR为0.86,小于1。因此,单拉索损耗事件不会像多 拉索损耗事件那样严重影响CSB的安全性。在主跨度 侧损耗多根拉索会导致斜撑中的应力分布较高,反之亦 然,任何拉索的应力都可能超过许用的极限,从而导致 更多的拉索失效。这种多拉索损耗事件还可以触发整 个CSB的"拉链式"的连续性塌陷。图14还显示,随着CSB-C1的安全系数从2.5降低到2.2,DCR线性增加,并且在损耗两条拉索(CSB-C35和CSB-C36)且安全系数为2.2时,DCR达到了极限。这表明CSB-C1满足ULS要求的安全系数2.5和2.3分别是合理的和边界安全的。图15(a)显示,在EDB的左跨侧损耗两条拉索(EDB-C1和CSB-C2)会产生1.04的DCR,大于1,表明出现了失效。这表明,仅在桥梁处于完整状态的情况下,安全系数1.67才能产生足够的冗余度。所以,在

极端损坏的情况下应增加安全系数,以增强ULS下EDB 的冗余性。图15(b)显示了在安全系数为1.75时拉索 损耗的影响结果。

3.2.3. 腐蚀的影响

在斜拉桥的安全性评估中,除了考虑斜拉桥的疲劳 和极限承载力外,还必须考虑腐蚀对斜拉桥剩余强度的 影响,从而对拉索的安全性进行量化评估。材料的损耗 会降低几何参数,如惯性矩和回转半径,从而导致净横

图14. 拉索损耗对CSB-Cs的DCR的影响。(a) 安全系数为2.5; (b) 安全系数为2.4; (c) 安全系数为2.3; (d) 安全系数为2.2。

图15. 拉索损耗对EDB-Cs的DCR的影响。(a)安全系数为1.67;(b)安全系数为1.75。

截面变小,这可能会增加任何给定负载的应力水平,或 者会增加循环负载的应力范围,从而影响耐疲劳性。除 了疲劳和超载外,腐蚀对结构安全性的影响在文献中已 被广泛讨论。Deng等[40]通过腐蚀-超载耦合效应提出 了桥梁构件均匀腐蚀疲劳设计方法。它涵盖了由单一过 载、单一腐蚀和腐蚀-过载相互作用引起的影响。Jiang 等[41]提出了一个估算拉索在随机交通和风共同作用下 腐蚀疲劳寿命的一般准则,并表明腐蚀和疲劳的耦合效 应大大降低了拉索的寿命。在一定的腐蚀速率下,这会 影响桥梁的整体使用寿命。

参考前人的研究[22,40,42,43],本研究采用简单的 腐蚀模型,在整个拉索长度中引入10%的均匀腐蚀来 改变拉索区域。腐蚀拉索的有效弹性模量(E_{eff})确定为 $E_{eff} = (\overline{A}/A)E$,其中, \overline{A} 表示腐蚀拉索的横截面积,定义 为拉索的总横截面积(A)与腐蚀受损面积(A^*)之间 的差值,即 $\overline{A} = A - A^*$ 。本文研究了10%腐蚀的影响以及 10%腐蚀和拉索损耗对CSB-C1和EDB-C1的DCR的耦 合影响,结果如图16所示,主要针对以下两种情况。

情况1: CSB-C1和EDB-C1受到10%均匀腐蚀而无 拉索损耗。在这种情况下,CSB-C1的DCR在安全系 数为2.3时小于1,这表明安全系数为2.3或更高会产生 合理的冗余。然而,即使安全系数为1.67,EDB-C1的 DCR也大于1,这表明在极端损坏条件下,EDB-Cs需要 更高的安全系数。

情况2:当CSB-C1、EDB-C1受到10%均匀腐蚀 后,CSB-C36、EDB-C22也出现腐蚀。在这种情况下, CSB-C1的DCR估计在安全系数为2.3和2.4时大于1。事 实上,CSB-C1的DCR在腐蚀和拉索损耗耦合作用下的 安全裕度为2.5。这表明当前安全系数对于具有高冗余

图16. 腐蚀和拉索损耗对CSB-C1和EDB-C1的DCR的耦合影响。

的CSB安全设计是足够的。然而,对于EDB,如图16 所示,由于其具有高刚度,单个拉索损耗加上腐蚀的影 响并不显著。

3.3. 可靠性分析

在基于确定性方法的CSB和EDB结构冗余度研究 中,假设结构性能中涉及的所有荷载、机械和材料因素 都是已知的。事实上,这些因素涉及许多不确定的量, 如材料特性和荷载变化。因此,通过对拉索进行可靠的 安全评估,对CSB和EDB结构冗余度进行检查时将不 可避免地采用不确定性方法。在这项研究中,采用了基 于荷载抗力的可靠性模型对FLS和ULS下的拉索进行可 靠性分析,其中假定荷载效应和抗力为线性、不相关且 呈正态分布的随机变量。首先,输入安全系数,以得出 拉索的工作应力,该应力是拉索疲劳强度和极限抗拉强 度的函数。然后,根据工作应力对拉索的疲劳和极限承 载力进行评估,并进一步研究拉索疲劳和极限承载力的 概率分布。根据CSB和EDB上的疲劳荷载和极限设计荷 载,分别推导出拉索的疲劳和极限要求。

借助MC采样技术,使用编程语言软件MATLAB [44]随机生成了100万个荷载和抗力样本。在样本均值 的标准误差在±5%以内的条件下,要达到95%置信水 平和P_f=1×10⁻⁴所需的样本数(N)估计为50000,最 小样本容量为170。根据中心极限定理,样本均值的分 布服从正态分布,即随着样本容量的增大,样本均值的 分布近似于正态分布。荷载和抗力随机变量的统计参数 引用了先前的研究[45-47],并在表6中列出。

为计算拉索的可靠指标和失效概率(P_{f}),本文采 用了FORM法和MC法。在前者中,借助FLS和ULS下 的两个随机变量(C:容量,D:需求)建立了线性极限 N_{f} 状态函数,并对安全裕度(Z)进行评估。随后,通 过耦合方程式确定可靠指标(β),该方程式使用C和D的均值(μ)和方差(σ)概率性地将需求和容量联系起来。

$$\beta = \frac{\mu_{\rm C} - \mu_{\rm D}}{\sqrt{\sigma_{\rm C}^2 + \sigma_{\rm D}^2}} \tag{8}$$

如果标准偏差 $\sigma_c^2 \pi \sigma_D^2$ 的其中一个或两个增加, β 将变小,从而, P_f 增加。同样,如果 $D \pi C$ 的平均值之差减小, β 也将相应地减小。在MC方法的情况下, P_f 近似地定义为:

$$P_{\rm f} = \operatorname{Prob}[g(C, D) \le 0] \text{ and } P_{\rm f} = N_{\rm f}/N$$
 (9a)

式中,g(·)被称为极限状态函数; N_f是未能满足极限状态的样本数; N是与P_f的期望精度相关的样本数。根据失效概率P_f估算结构的可靠指标,表明结构的抗力超过了荷载效应。

$$\beta = -\Phi^{-1}(P_{\rm f}) \tag{9b}$$

式中, Φ⁻¹(·)代表标准正态累积分布函数的反函数。

为了验证结构的安全性,美国陆军工程兵团建议, 估计的可靠指标应至少为:①高于平均水平的目标可 靠指标 (β_{t,1})的下限值3,和(或)②等于良好性能 的目标可靠指标 (β_{t,u})的上限值4 [32,48]。表7分别显 示了基于ULS和FLS下的FORM和MC方法对CSB-C1 和CSB-C17进行可靠性分析的结果。当拉索的安全 系数从2.5降低到2.1时,失效概率增加,并且可靠指 标相应降低。例如,在安全系数为[2.5,2.4,2.3,2.2,2.1] 时,矢量形式的CSB-C1和CSB-C17在ULS和FLS 下的可靠指标分别为[25.04,19.33,13.56,7.74,1.87]和 [15.87,12.57,9.27,5.96,2.64]。但是,由于安全裕度高, 因此使用MC方法计算出的可靠指标在安全系数为2.2或 更高时在数学上是无穷的。这些结果强调了安全系数2.2 的适当性,该安全系数产生的可靠指标高于CSB-C1和 CSB-17中的β_{tu}。

为了进一步研究整个CSB在2.2的安全系数下的冗 余度,在ULS和FLS下确定了沿桥长的所有CSB-Cs的 可靠指标,结果如图17(a)所示。由于高的灵活性,

表6	拉索的随	机变量	的统计	属性
100	卫尔口胆	ルレメ 里	. H J - / L F I	까파니

CSB-Cs的可靠指标沿CSB方向发生了显著的变化。为 使整个CSB拉索系统在FLS和ULS下达到所需的结构冗 余度,需要2.2或以上的安全系数。此外,图17(a)说 明了较长的拉索对疲劳荷载的敏感性不如对极限荷载的 敏感性。然而,如图17(a)所示,在ULS下CSB-C36 的可靠指标要大于CSB-C1的可靠指标。这可以归因于 模式荷载的情况2,其在CSB-C1中比在CSB-C36中能 引起更大的应力,从而导致CSB-C1的可靠指标降低。 此外,疲劳效应对于CSB中位于桥面-桥塔连接附近的 CSB-Cs更为关键。

在EDB情况下,选择了两条具有代表性的拉索 (EDB-C11和EDB-C12),因为这两条拉索承受最大 动荷载与静荷载应力比。这些拉索的可靠性分析结果 强调了当前安全系数1.67的适当性,其可靠指标大于 $\beta_{t,u}$,如表8所示。但是,如果安全系数低于1.67,则 可靠指标为负值,超过ULS。例如,矢量形式的拉 索EDB-C12和EDB-C11的可靠指标在ULS和FLS下分 别为[-7.4,4.12,17.16]和[3.09,6.08,9.58],安全系数为 [1.6,1.67,1.75]。与CSB-Cs相似,在FLS和ULS下也计 算了EDB-Cs沿EDB的可靠指标,结果如图17(b)所示, 表明当前的安全系数1.67产生的可靠指标大于EDB整个 支柱系统的 $\beta_{t,u}$ 。此外,EDB-Cs受极限荷载的影响比疲 劳荷载的影响更大,并且由于其高刚性和高冗余性,在 FLS下沿EDB的EDB-Cs的可靠指标未见明显变化,这 也是因为EDB的拉索被认为是低疲劳的矮塔拉索。

Parameters	Distribution type	Coefficient of variation (%)
Cross-sectional area, A	Normal distribution	10
Ultimate tensile strength, $\sigma_{\scriptscriptstyle \mathrm{UTS}}$	Normal distribution	3
Yield strength, σ_y	Normal distribution	1.5
Dead load, DL	Normal distribution	10
Fatigue/Live load, FL/LL	Normal distribution	19
Fatigue strength, $\Delta \sigma_{\rm CE}$	Normal distribution	3

表7 ULS和FLS下CSB-C1和CSB-C17的可靠性分析

Safety factor	CSB-C1 (ULS, FORM)		CSB-C1 (ULS, MC)		CSB-C17 (FLS, FORM)		CSB-C17 (FLS, MC)	
	β	$P_{\rm f}$	β	$P_{\rm f}$	β	$P_{\rm f}$	β	$P_{\rm f}$
2.5	25.04	0	Inf	0	15.87	5.03×10^{-57}	Inf	0
2.4	19.33	0	Inf	0	12.57	1.41×10^{-36}	Inf	0
2.3	13.56	3.31×10^{-42}	Inf	0	9.27	9.05×10^{-21}	Inf	0
2.2	7.74	$4.84\times10^{\scriptscriptstyle-15}$	Inf	0	5.96	1.26×10^{-9}	Inf	0
2.1	1.87	3.04×10^{-2}	1.87	3.04×10^{-2}	2.64	$4.18\times10^{\scriptscriptstyle -3}$	2.65	4.06×10^{-3}

Inf: infinity.

Safety factor	EDB-C1 (ULS, FORM)		EDB-C1 (ULS, MC)		EDB-C17 (FLS, FORM)		EDB-C17 (FLS, MC)	
	β	$P_{\rm f}$	β	$P_{\rm f}$	β	$P_{\rm f}$	β	$P_{\rm f}$
1.6	-7.40	1.00	-Inf	0	3.09	$1.00 imes 10^{-3}$	3.09	1.0×10^{-3}
1.67	4.12	1.88×10^{-5}	3.94	4.0×10^{-5}	6.08	$5.87\times10^{\scriptscriptstyle-10}$	Inf	0
1.75	17.16	0	Inf	0	9.58	4.91×10^{-22}	Inf	0

SF = 2.3 (FLS)

表8 ULS和FLS下的EDB-C12和EDB-C11可靠性分析

SF = 2.5 (FLS)

图17. 在FLS和ULS下通过FORM进行的可靠性分析结果。(a) CSB-Cs; (b) EDB-Cs。

4. 结论

通过在不同的荷载条件下对拉索的安全性评估,比 较了CSB和EDB的结构冗余。建立了两座桥梁的简化有 限元模型,并进行了静态分析。分别采用确定性和非确 定性方法,根据DCR和可靠指标对冗余度进行了参数 评估。本研究的主要目的是描述CSB和EDB之间的结构 差异,并验证它们在FLS和ULS下的结构冗余。通过 对两座桥的拉索安全系数进行参数研究实现了这一目 标。此外,本研究还探讨了过载、拉索损耗和腐蚀对 两座桥梁结构冗余的影响。根据本研究的结果得出以 下结论。

(1) 当桥的最外层拉索断裂时,单拉索的损耗对 CSB-Cs的DCR产生最大影响,而当一对拉索在主跨中 心附近断裂时,两根拉索的损失可能对CSB-Cs的DCR 产生较大影响。

(2) 在FLS和ULS下, CSB在安全系数为2.5时具有 足够的冗余度。此外,在正常荷载条件下,安全系数为 2.2时, CSB的结构冗余度最小; 但是, 如果拉索意外断 裂/倒塌, CSB可能会在2.2的水平上失去冗余度。因此,

CSB的安全系数必须达到2.3,才能达到预期的结构冗 余度。

(3) 在低疲劳EDB-Cs的情况下,安全系数1.67在 正常负载条件下会产生相当高的冗余度。然而,在极端 损坏的情况下,该安全系数可能不足以为EDB的整个支 柱系统获得足够的结构冗余;因此,对于EDB来说,提 高EDB-Cs的安全系数是必不可少的。

(4) 对于安全系数的微小变化, 拉索的极限强度比 其疲劳强度更为关键。特别是,较长的拉索对ULS下安 全系数和荷载条件的变化极为敏感。因此,随着两个桥 梁拉索的安全系数的增加,可靠指标显著增加。

在本研究中, 拉索损耗被建模为静态问题而不是动 态问题。因此, 需通过结合基于非线性动态分析的拉索 损耗模型来扩展本研究的范围,该模型将为CSB和EDB 的结构冗余评估提供更全面的见解。

Acknowledgements

This study was financially supported by the Ministry of Education, Culture, Sports, Science and Technology of Japan (Monbukagakusho (MEXT)).

Compliance with ethics guidelines

Khawaja Ali, Hiroshi Katsuchi, and Hitoshi Yamada

declare that they have no conflicts of interest or financial conflicts to disclose.

References

- Virlogeux M. Recent evolution of cable-stayed bridges. Eng Struct 1999;21 (8):737-55.
- [2] Lozano-Galant JA, Paya-Zaforteza I. Analysis of Eduardo Torroja's Tempul Aqueduct an important precursor of modern cable-stayed bridges, extradosed bridges and prestressed concrete. Eng Struct 2017;150:955–68.
- [3] Mathivat J. The cantilever construction of prestressed concrete bridges. Emberson CJM, translator. Bath: Pitman Press Ltd.; 1983.
- [4] Shirono Y, Takuwa I, Kasuga A, Okamoto H. The design of an extradosed prestressed concrete bridge—the Odawara Port Bridge. In: Proceedings of the 93th FIP Symposium; 1993 Oct 17–20; Kyoto, Japan; 1994.
- [5] Kasuga A. Extradosed bridges in Japan. Struct Concr 2006;7(3):91–103.
- [6] Stroh SL. On the development of the extradosed bridge concept [dissertation]. Gainesville: University of South Florida; 2012.
- [7] Collings D, Gonzalez AS. Extradosed and cable-stayed bridges, exploring the boundaries. Bridge Eng 2013;166(4):231–9.
- [8] Mermigas KK. Behaviour and design of extradosed bridges [dissertation]. Ontario: University of Toront; 2008.
- [9] Japan Road Association. Specifications for highway bridges: part II, steel bridges. Tokyo: Japan Road Association; 2002. Japanese.
- [10] Nagai M, Xie X, Yamaguchi H, Nogami K, Nida Y. Effect of inelastic behavaior of cables on ultimate behavior and strength of cable-stayed bridges and the possibility of reduction of the safety factor. Doboku Gakkai Ronbunshu 2000;661:85–94. Japanese.
- [11] Ali K, Katsuchi H, Yamada H. Parametric study on cable safety of cable-stayed bridge considering ultimate and fatigue limit states. JSCE 2018;64:99–108.
- [12] Ikeda S, Kasuga A. Development of extradosed structures in bridge construction. In: Proceedings of 25th Conference on our World in Concrete & Structures; 2000 Aug 23–24; Singapore; 2000.
- [13] Mutsuyoshi H, Hai ND. Recent technology of prestressed concrete bridges in Japan. In: Proceedings of IABSE–JSCE Joint Conference, on Advances in Bridge Engineering-II; 2010 Aug 8–10; Dhaka, Bangladesh; 2010.
- [14] Japan Road Association. Specifications for highway bridges: part II, steel bridges. Tokyo: Japan Road Association; 2017. Japanese.
- [15] Japan Prestressed Concrete Engineering Association. Specification for design and construction of prestressed concrete cable-stayed bridges and extradosed bridges. Tokyo: Japan Prestressed Concrete Engineering Association; 2002. Japanese.
- [16] EN 1993-1-11: Eurocode 3—Design of steel structures—Part 1–11: Design of structures with tension components. European standard. Brussels: European Committee for Standardization; 2006.
- [17] Post-Tensioning Institute. Recommendations for stay-cable design, testing and installation. 5th ed. Farmington Hills: Post-Tensioning Institute; 2007.
- [18] Service d'Etudes Techniques des Routes et Autoroutes. Cable staysrecommendations of French interministerial commission on prestressing. Bagneaux Cedex: Service d'Etudes Techniques des Routes et Autoroutes; 2001. French.
- [19] International Federation for Structural Concrete. Acceptance of stay cable systems using prestressing steels. Report. Lausanne: International Federation for Structural Concrete; 2005.
- [20] Burdekin FM. General principles of the use of safety factors in design and

assessment. Eng Fail Anal 2007;14(3):420-33.

- [21] An X, Gosling PD, Zhou X. Analytical structural reliability analysis of a suspended cable. Struct Saf 2016;58:20–30.
- [22] Czarnecki AA, Nowak AS. Time-variant reliability profiles for steel girder bridges. Struct Saf 2008;30(1):49–64.
- [23] Maljaars J, Vrouwenvelder T. Fatigue failure analysis of stay cables with initial defects: Ewijk bridge case study. Struct Saf 2014;51:47–56.
- [24] Lu N, Liu Y, Beer M. System reliability evaluation of in-service cable-stayed bridges subjected to cable degradation. Struct Infrastruct Eng 2018;14 (11):1486–98.
- [25] MIDAS Information Technology. Midas Civil 2017 user manual. Tokyo: MIDAS Information Technology; 2017.
- [26] JIS G3525: Wire ropes. Japanese Industrial Standard. Tokyo: Japan Industrial Standards Committee; 2013. Japanese.
- [27] Asgari B, Osman SA, Adnan A. A new multiconstraint method for determining the optimal cable stresses in cable-stayed bridges. Sci World J 2014;2014:503016.
- [28] Cai J, Xu Y, Zhuang L, Feng J, Zhang J. Comparison of various procedures for progressive collapse analysis of cable-stayed bridges. J Zhejiang Univ Sci A 2012;13(5):323–34.
- [29] Zhou Y, Chen S. Numerical investigation of cable breakage events on longspan cable-stayed bridges under stochastic traffic and wind. Eng Struct 2015;105:299–315.
- [30] Ernst JH. The modulus of elasticity of ropes taking into account the sag. Bauingenieur 1965;40(2):52–5. German.
- [31] Japan Society of Civil Engineers. Standard specifications for steel and composite structures. 1st ed. Tokyo: Japan Society of Civil Engineers; 2007.
- [32] American Association of State Highway and Transportation Officials. LRFD bridge design specifications. 6th ed. Washington, DC: American Association of State Highway and Transportation Officials; 2012.
- [33] Japan Prestressed Concrete Institute. Specification for design and construction of PC cable-stayed bridge and extradosed bridge. Tokyo: Japan Prestressed Concrete Institute; 2009. Japanese.
- [34] Wolff M, Starossek U. Cable loss and progressive collapse in cable-stayed bridges. Bridge Struct 2009;5(1):17–28.
- [35] Ruiz-Teran AM, Aparicio AC. Response of under-deck cable-stayed bridges to the accidental breakage of stay cables. Eng Struct 2009;31(7):1425–34.
- [36] Zhou Y, Chen S. Time-progressive dynamic assessment of abrupt cablebreakage events on cable-stayed bridges. J Bridge Eng 2014; 19(2):159–71.
- [37] Mozos CM, Aparicio AC. Parametric study on the dynamic response of cablestayed bridge to the sudden failure of a stay, part I: bending moment acting on the deck. Eng Struct 2010;32(10):3288–300.
- [38] Mozos CM, Aparicio AC. Parametric study on the dynamic response of cablestayed bridge to the sudden failure of a stay, part II: bending moment acting on the pylons and stress on the stays. Eng Struct 2010;32(10): 3301–12.
- [39] Zhang Y, Fang Z, Jiang R, Xiang Y, Long H, Lu J. Static performance of a longspan concrete cable-stayed bridge subjected to multiple-cable loss during construction. J Bridge Eng 2020;25(3):159–71.
- [40] Deng L, Yan W, Nie L. A simple corrosion fatigue design method for bridges considering the coupled corrosion-overloading effect. Eng Struct 2019;178:309–17.
- [41] Jiang C, Wu C, Cai CS, Jiang X, Xiong W. Corrosion fatigue analysis of stay cables under combined loads of random traffic and wind. Eng Struct 2020;206:110153.
- [42] Yan H, Yuan Y, Yu J. Fatigue reliability analysis of cable considering corrosion. Procedia Eng 2016;166:127–35.
- [43] Vikas AC, Prashanth MH, Indrani G, Channappa TM. Effect of cable degradation on dynamic behavior of cable stayed bridges. J Civ Eng Res 2013:3(1): 35–45.
- [44] MATLAB. Version 9.3.0.713579 (R2017b). Natick: The MathWorks Inc; 2017.
- [45] Nowak AS. Live load model for highway bridges. Struct Saf 1993;13(1-2):53-66
- [46] Nowak AS. NCHRO report 368: calibration of LRFD bridge design code. Washington, DC: National Research Council; 1999.
- [47] Truong VH, Kim SE. An efficient method of system reliability analysis of steel cable-stayed bridges. Adv Eng Softw 2017;114:295–311.
- [48] Phoon KK. Reliability-based design in geotechnical engineering: computation and applications. London: Taylor & Francis; 2008.