Contents lists available at ScienceDirect

Engineering

journal homepage: www.elsevier.com/locate/eng

Research Green Plant Protection Innovation—Article

适用于田野调查的加勒比按实蝇信息素聚氯乙烯剂型

Daniel Kuzmich^a, Zachary A. Kawagoe^b, Spencer S. Walse^{a,b,*}

^a San Joaquin Valley Agricultural Sciences Center, Agricultural Research Service, United States Department of Agriculture, Parlier, CA 93648, USA ^bAgricultural and Environmental Chemistry Graduate Group, University of California, Davis, CA 95616, USA

ARTICLE INFO

Article history: Received 1 April 2020 Revised 29 June 2020 Accepted 20 September 2020 Available online 14 November 2020

关键词 按实蝇信息素 Epianastrephin PVC引诱剂 控制释放

摘要

实蝇威胁着世界各地的水果生产。在美洲,作为害虫治理计划的一部分,用诱捕网络监测按实蝇 (Anastrepha)的种群。在本文中,我们研究了利用雄性加勒比按实蝇(Loew)信息素、(±)-anastrephin和 (±)-epianastrephin,形成聚氯乙烯(PVC)聚合物基质引诱剂进行陷阱部署的制备方法。PVC聚合物圆盘 (100 mg)分别含有10%(质量分数)的(±)-epianastrephin和(±)-anastrephin,天然存在的非对映体比例为7:3。 将信息素从圆盘排放到空气的这一过程作为测量非生物环境参数、绝对湿度和温度的函数。从基质释放 信息素的这一扩散控制机制得到了动力学数据的支持,一级反应速率常数随着温度的降低(从30℃降低 到15℃)而降低了约1/10。因此,从圆盘释放的挥发性信息素能够在田野调查中持续数周。可以很容易 地将这种动力学方法推广至聚合物基质的其他引诱剂的扩散控制释放中,在进行田野生物调查之前,可 以对潜在的环境损失进行实验室预测。

© 2020 THE AUTHORS. Published by Elsevier LTD on behalf of Chinese Academy of Engineering and Higher Education Press Limited Company. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. 引言

在整个美洲,需要进行害虫治理以尽量减少寄生在水 果上的按实蝇(Anastrepha sp.;双翅目:实蝇科)的数 量。仅在美国,宿主水果每年的价值就超过70亿美元[1-2]。使用诱捕网络对商业生产区的按实蝇种群进行监测, 最终指导各种控制工作:综合害虫治理(IPM)策略、杀 虫喷雾技术、检疫管理和昆虫不育技术(SIT)。在佛罗里 达和大安的列斯群岛,加勒比按实蝇,即Anastrepha suspensa(A. suspensa)引起了人们的关注,其雄性信息素 (在自然聚集策略中具有重要作用)是IPM策略关注的重 点[3-5]。 雄性加勒比按实蝇产生挥发性信息素(*R*,*S*,*S*)-(-)-anastrephin和(*S*,*R*,*R*)-(+)-anastrephin,以及(*S*,*S*,*S*)-(-)-epianastrephin和(*R*,*R*,*R*)-(+)-epianastrephin,这些信息素在短期 生物测定中对雄性和雌性按实蝇均有吸引力[5–14]。然 而,在某种程度上因为缺乏可用的测试材料,利用这些信 息素引诱加勒比按实蝇的方法仍然难以掌握。虽然已经报 道了一些精细的合成物[4,15–25],但大多数都不能满足配 方研究的质量要求,更不用说重复的现场试验了[26]。最 近的一项合成技术提供了相对方便的用于获得克量级(±)anastrephin (1)和(±)-epianastrephin (2)的方法[27]。为 了设计一种利用这些信息素的诱捕系统,人们开始尝试制 备一种传统的聚氯乙烯 (PVC)聚合物基引诱剂[28–30]。

* Corresponding author.

E-mail address: spencer.walse@ ars.usda.gov (S.S. Walse).

^{2095-8099/© 2020} THE AUTHORS. Published by Elsevier LTD on behalf of Chinese Academy of Engineering and Higher Education Press Limited Company. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/). 英文原文:Engineering 2021, 7(11): 1646–1650

引用本文: Daniel Kuzmich, Zachary A. Kawagoe, Spencer S. Walse. PVC Formulation of Anastrepha suspensa Pheromones Suitable for Field Studies, Engineering. https://doi.org/10.1016/j.eng.2020.09.011

本研究报道了与PVC基质释放1和2相关的动力学,作为 温度和绝对湿度的函数——这是进行田野调查和捕获效率 研究的关键第一步。

2. 方法和材料

2.1. 化学试剂

PVC (低分子量, 524 980)、邻苯二甲酸二丁酯 (DBP)、邻苯二甲酸二辛酯 (DOP)、无水四氢呋喃 (THF; 无抑制剂)和10%的碳 (C)载钯 (Pd)购自 Aldrich 化学有限公司 (美国)。分析级甲基叔丁基醚 (MT-BE)购自 Fisher Scientific 公司 (美国)。在瓷孔 (Coors™ 多孔板; Sigma-Aldrich,美国)中成形聚合物圆盘。合成 物1和合成物2是由美国农业部 (USDA)制备的,纯度 大于 99%,并经气相色谱 (GC)和电子冲击质谱 (GC-EIMS)验证。用10% Pd/C在乙酸乙酯中催化加氢 (101 kPa) 得到合成物3,作为定量分析的内标 (IS) (图 1) [3,27]。

图1. 信息素结构和GC-EIMS总离子色谱图,显示1和2对IS3的相对保留值。

2.2. 制备

PVC-信息素圆盘的质量占信息素 2 和1(比例7:3) 总质量的10%。在锥形瓶中,将PVC(251.5 mg)、DBP (125.6 mg)、DOP(127.5 mg)、信息素 2(38.5 mg)和信 息素1(16.5 mg)溶解在THF(1.665 g)中。利用抹刀将 混合物混合,然后盖住锥形瓶并在40°C下加热。20 min 后,将混合物再次按上所述方法混合,然后将约400 mg 的溶液移至各自的瓷孔中。将瓷板在40°C下加热15 min, 使THF 蒸发,然后将其在室温下放置过夜,得到三个质 量为(110.4 ± 0.8) mg(平均值±标准偏差, \bar{x} ±s)的PVC 信息素圆盘。需要注意的是,在40°C以上,THF的蒸发 会导致聚合物树脂中气泡的形成,而室温下的蒸发会导致 圆盘混浊,这可能是由于蒸发冷却造成的。

2.3. 挥发性信息素的收集

对Walse等[5]报道的挥发性收集系统进行修改;除非

另有说明,否则所有管道均使用直径为1/4 in (1 in= 25.4 mm) 的 Teflon 管,所有连接均使用标准 Swagelok 接头。压缩 机将空气(413 kPa)压缩并送入15.2 m³的可编程温度环 境室,并通过活性炭过滤器(Westates Vocarb 48C;西门 子工业有限公司, USA)串联连接到计量阀。然后将气流 导入226.2 L的腔室,加压至约14 kPa,该腔室装有可调 节的玻璃容器加湿器(Zoo Med[®],美国),使在所有温度 下(见下文)离开腔室的空气的绝对湿度(C_{a-H,O})维持 在(0.5846 ± 0.0096) mmol·L⁻¹。从腔室流出的空气直接进 入 歧 管 [型 号 VCS-ADS-6AFM6C; 分 析 研 究 系 统[®] (ARS), 美国], 测量4个平行气流的流量为100 mL·min⁻¹。三 个"采样"挥发性收集室(VCC; 直径10 in × 2 in)和第 四个VCC [只包含一个HOBO[®]记录器(型号#UX100-003; 美国), 以5 min间隔记录温度和湿度], 与各自的气流连 接。将制备好的圆盘(直径约19 mm,厚度约0.15 mm)固 定在Petri培养皿(直径30mm,深5mm)的玻璃内表 面,将一面暴露。然后将装有圆盘的培养皿分别置于三个 "采样" VCC中。从圆盘释放的信息素由被插入VCC出口 终端的 ARS 玻璃管[长为 11.5 cm、内径(id) 为 4 mm、 含有 50 mg Super-Q 吸 附 剂 的 挥 发 性 捕 集 器 (VCT; Alltech[™] Associates, 美国)]捕获。

在本研究中的温度[与加勒比按实蝇所在地区(大安的列斯群岛和佛罗里达州)相关的温度: (33.2 ± 0.1) °C、 (26.7 ± 0.3) °C、(20.7 ± 0.3) °C和(15.1 ± 0.4) °C]下,使用 GC-EIMS 在时间间隔内量化 PVC 圆盘释放的信息素。为 了制备用于 GC-EIMS 分析的样品,取下 VCT(并在必要 时更换),用 MTBE(8 mL)冲洗,并将其置于含有1 mL IS 3 的 MTBE 溶液(16.1 ng·µL⁻¹)的10 mL 容量玻璃瓶 (慢吹 Kuderna-Danish)中。在通风橱中通过被动浓缩将 洗脱液减至1 mL,并用移液管转移至2 mL 玻璃 GC 样品 瓶中。用直径为9 mm的 Teflon 内衬瓶盖密封样品瓶,为 GC-EIMS 分析做准备。正如 Walse 等[5]的报道,在5000~ 0.5 ng范围内,1和2的收集效率大于98%。一般先对释放 出的信息素浓度进行初始量化,即[1和(或)2]_io或[1和 (或)2]_o,此后几乎每天进行一次量化,即[1和(或)2]_i

2.4. 气相色谱-电子冲击质谱法

一般来说,1、2和IS3是根据色谱、光谱分析结果与 已发表文献的研究结果的一致性来确定的。使用GC保留 时间(*t*_R)和(或)质谱法进行化学验证,使用IS3峰面 积归一化法(参考相对检测器响应的六点线性最小二乘法 校准相关方法)来确定挥发性收集研究中的浓度。对于已 知体积的MTBE(即校准标准)中1的连续稀释的校准研究,每天测定检测器响应和保留指数。

使用7890A气相色谱仪和5973N四极杆质谱仪(Agilent Technologies,美国)进行电子冲击电离(70 eV)操 作。在143 ℃下用氦气(He)载气(1.0 mL·min⁻¹)进行 冷柱上进样 (1 μL)。烘箱程序为:在140 ℃下恒温 1 min; 以4 ℃·min⁻¹加热至150 ℃,恒温70 min;以30 ℃·min⁻¹ 加热至230 ℃, 恒温2 min。GlasSeal 连接器 (Supelco[®], 美国)用于融合4个串联的色谱柱:一个失活柱[长(L) 为8 cm, id = 0.53 mm; Agilent Technologies, 美国], 注 入物沉积在该色谱柱上;一个失活保留间隙色谱柱(L= 2 m, id = 0.2~5 mm; Agilent Technologies, 美国); 一个 DB-1701 分析柱[L = 60 m, id = 0.25 mm, 膜厚 (df) = 0.25 μm; J & W Santa Clara, 美国]; 一个失活柱 (L= 1.5 m, id = 0.25 mm; Agilent Technologies, 美国) 直接导 入检测器。传输线、离子源和四极杆温度分别为280℃、 230 ℃和150 ℃。分析物t_R(n=10)如下所示。1: (60.26 ± 0.02) min; 2: (62.98 ± 0.01) min; IS 3: (71.06 ± 0.03) min (图1)。

在每次扫描0.34 s时获得从50到600质荷比(*m/z*)的 全扫描光谱,分辨率为±0.3 *m/z*,用于定性验证。*m/z*(相 对强度,%)如下所示。1:94(3)、179(33)、151(14)、 135(33)、108(61)、81(100);2:194(2)、179(23)、151 (11)、135(24)、108(54)、81(100);3:196(0.8)、181 (72)、153(71)、137(12)、110(61)、83(100)。从总离子 色谱图(TIC)中提取的用斜体字标注的离子用于定量 分析。

3. 结果

3.1. 信息素释放速率

在每个时间间隔(*t*),使用GC-EIMS对固体(s)圆盘上的气态(g)信息素损失进行量化。实验时间过程中的信息素损失由微分速率方程表示:

 $-d[1 \text{ and/or } 2]_{t,s}/dt = k_v[1 \text{ and/or } 2]_{t,g}$ (1) 式中, $k_v(d^{-1})$ 是与一级反应速率定律积分相关的可观测挥 发速率常数:

ln[1 and/or 2]_t= -k_v·t + ln[1 and/or 2]₀ (2)
实验数据支持动力学模型,即与信息素损失的一级动力学近似;对三次重复试验的ln([1 and/or 2]/[1 and/or 2]₀)
进行最小二乘分析,绘制与时间的关系,得出斜率为-k_v的复合
线性回归。在(33.2±0.1) ℃、(26.7±0.3) ℃、(20.7±0.3) ℃
和(15.1±0.4) ℃下, k_v分别为9.51×10⁻³ d⁻¹、4.14×10⁻³ d⁻¹、

 $1.57 \times 10^{-3} d^{-1} 和 1.34 \times 10^{-3} d^{-1}$ (图2)。由 ln(2)/ k_v 计算的半 衰期($t_{1/2}$)分别约为73 d、167 d、352 d和519 d。

图2.结果支持PVC信息素圆盘的一级损失为1和(或)2,数据的最小 二乘分析得到了一条斜率为-k,的直线,即PVC信息素圆盘的可观测挥 发速率常数随温度升高而增加[显示95%置信区间(CI)]。

释放速率随温度(*T*)增加而增加,经验上近似为阿 伦尼乌斯方程:

$$\ln k_{v} = -(E_{a}/R)(1/T) + \ln A$$
 (3)

式中, E_a 是活化能;R是气体常数 (8.314 J·mol⁻¹·K⁻¹);T的单位为K;A是指前因子。对每个温度的 lnk_v 进行最小 二乘分析,绘制与 1/T的关系,得到斜率为 $E_a/(-R)$ 、相关 系数为 $r^2 = 0.98$ 的线性回归(图3)。求解方程(3)得到 A的值为 5.36 × 10¹¹ d⁻¹。

遵循 Fickian 扩散原理,化学物质通过薄膜传输到理 想槽的过程可以用 Higuchi 方程[31-32]来描述:

$$Q = k_{\rm H} t_{1/2} \tag{4}$$

式中, $Q \ge t(d)$ 时刻化学物质的累积损失[占总损失的百分数]; $k_{\rm H}$ 是Higuchi常数 (d⁻¹)。为进一步提供证据来支持 PVC 信息素圆盘释放的扩散控制机制,对三次重复试验 累积损失1和(或)2进行最小二乘分析,得出斜率为 $k_{\rm H}$ 、相关系数 $r^2 \ge 0.95$ 的复合线性回归;在(33.2 ± 0.1) °C、

(26.7±0.3) ℃、(20.7±0.3) ℃和(15.1±0.4) ℃下,相关系 数*r*²分别为0.95、0.98、0.98和0.97(图4)。据我们所知,这是首次将Higuchi模型应用于"薄膜"聚合物基质中信 息素的释放。

图4.显示不同温度下最小二乘分析线性关系(显示95% CI)的Higuchi 图[正如相关系数(所有 *r*²≥0.95)所证明],进一步支持 PVC 信息素圆盘 挥发性释放的 Fickian 扩散控制机制。

需要注意的是,在所有温度下,PVC圆盘的2和1相 对损失比率保持恒定,大约为2.3:1,这是自然发生的非 对映体比例(图5)。单因素方差分析(ANOVA)不显著 (*F*_{3,76}=0.72,*P*=0.74),表明2和1的总体均值的比率为 2.39±0.18,可以用来描述在95%置信区间(CI)下针对 各个温度所观察到的比率[33]。这一发现为支持上述动力 学和力学模型提供了额外的证据。

图5.箱形图显示了PVC信息素圆盘中2相对于1的释放中值(---)作为温度的函数,涉及第1到第3个四分位数(灰色矩形)、异常值(•)、配方比例[约为2.3:1(-)],这与天然存在的挥发性信息素的非对映体比例相匹配[5-6]。

4. 讨论

目前,针对包括加勒比按实蝇在内的按实蝇属主要害 虫的诱捕系统依赖于食物引诱剂,这些食物引诱剂的选择 性较差,而且从操作角度来看成本很高[1-2,34]。为了设 计一种利用已知加勒比按实蝇挥发性信息素的诱捕系统, 将基于PVC聚合物的引诱剂配制在含有10%(质量分数) 的1和2、非对映体比例为3:7的圆盘中。信息素的释放 速率随温度升高而增加,1和2的配比没有变化。结果表 明,在几周的温度范围内,每个圆盘每小时释放的1和2 小于10 ng——这一发现与"召唤"雄性加勒比按实蝇的1 和2的释放速率一致[5-6]。

分子扩散系数、黏度(μ)和温度(T)之间的关系可以推广为Stokes-Einstein方程:

$$D_{\rm ES/AS} = (k_{\rm B} \cdot T) / (6\pi r \mu)$$
⁽⁵⁾

式中, *D*_{ES/AS}是1和2的平移扩散系数(cm²·s⁻¹); *k*_B是玻尔兹曼常量(1.38×10⁻²³ kg·m²·s⁻²·K⁻¹); *r*是"球形"1和2的流体动力学半径(约0.45 nm)[35]。初步研究表明,相对湿度的变化不会改变聚合物圆盘的质量,进而不会改变μ。这一发现与使用基于保湿剂的基质以与湿度水平成正比的速率发射1和2的研究结果形成对比[5]。因此,当考虑聚合物基质,或者至少是本研究中使用的PVC时,扩散控制释放量将直接随温度而变化。几何形状对扩散速率的影响已经得到充分证实[36],因此上面用来描述聚合物圆盘的动力学模型可以扩展到其他几何形状,如在捕获系统中使用历史更长的圆柱形"塞子"和球体。

未来的研究将报道将PVC信息素圆盘[和(或)塞子] 集成到潜在的按实蝇捕获系统中以进行现场部署,以及与 此类工作相关的捕获效率研究。从更广泛的角度来看,这 项工作提供了一个动力学框架,用于预测聚合物基质中昆 虫引诱剂的Fickian扩散释放机制,并将其作为环境条件, 特别是温度的函数,使其能够在化学理解和(或)对引诱 剂寿命的预期下启动田野生物调查。

Acknowledgements

This research was funded by the USDA-Agricultural Research Service and the Cooperative Research and Development Agreement (#58-3K95-4-1665) with Betterworld Manufacturing (Fresno, USA).

Compliance with ethics guidelines

Daniel Kuzmich, Zachary A. Kawagoe, and Spencer S. Walse declare that they have no conflict of interest or financial conflicts to disclose.

Chemical Characterization

1:IR(neat)2942,2871,1780,1016cm^{-1,1}HNMR(300 MHz, Chloroform-*d*) δ : 5.68 (dd, J = 17.6, 10.6 Hz, 1H), 5.00 (d, J = 1.5 Hz, 1H), 4.95 (dd, J = 4.7, 0.8 Hz, 1H), 2.38 (dd, J =16.4, 14.8 Hz, 1H), 2.24 (dd, J = 16.4, 6.4 Hz, 1H), 2.10 (dd, J = 14.8, 6.4 Hz, 1H), 2.01 (dd, J = 7.9, 3.0 Hz, 1H), 1.84 (ddd, J = 8.2, 6.2, 3.9 Hz, 1H), 1.73–1.59 (m, 2H), 1.59–1.43 (m, 2H), 1.38 (s, 3H), and 1.06 (s, 3H). ¹³C NMR (75 MHz, CDCl₃) δ : 176.12, 147.76, 111.59, 86.03, 53.43, 38.46, 37.90, 37.02, 29.46, 20.90, 20.43, and 16.37.

2:IR(neat)2942,2868,1770,1029cm⁻¹;¹HNMR (300 MHz, CDCl₃) δ : 5.89 (ddd, J = 17.4, 11.2, 0.9 Hz, 1H), 5.19–5.03 (m, 2H), 2.65–2.30 (m, 3H), 2.16–1.94 (m, 3H), 1.31 (dd, J = 13.1, 5.3, 1H), 1.26 (s, 3H), and 1.04 (s, 3H). ¹³C NMR (75 MHz, CDCl₃) δ : 176.14, 139.98, 112.94, 86.34, 55.51, 38.62, 37.19, 36.07, 30.35, 29.01, 20.38, and 20.21.

3: ¹H NMR (300 MHz, CDCl₃) δ : 2.49 (dd, J = 16.3, 14.9 Hz, 1H), 2.31 (dd, J = 16.3, 6.5 Hz, 1H), 2.15–1.90 (m, 2H), 1.85–1.69 (m, 2H), 1.68–1.40 (m, 3H), 1.36 (s, 3H), 1.33–1.24 (m, 1H), 1.19–0.97 (m, 1H), 0.91 (s, 3H), and 0.85 (t, J = 7.5 Hz, 3H). ¹³C NMR (75 MHz, CDCl₃) δ : 176.62, 86.57, 56.81, 37.68, 36.36, 35.68, 29.40, 27.64, 24.44, 21.08, 20.53, and 9.05.

References

- [1] Tan KH, Nishida R, Jang EB, Shelly TE. Pheromones, male lures, and trapping of tephritid fruitflies. In: Shelly T, Epsky N, Jang EB, Reyes-Flores J, Vargas R, editors. Trapping and the detection, control, and regulation of tephritid fruit flies. Dordrecht: Springer; 2014. p. 15–74.
- [2] Fruit fly exclusion and detection strategic plan FY2019 2023 [Internet]. Riverdale: USDA APHIS; 2019 May [cited 2020 Oct 16]. Available from: https: //www.aphis.usda.gov/plant_health/plant_pest_info/fruit_flies/downloads/feedstrategic-plan-en.pdf.
- [3] Baker JD, Heath RR. NMR spectral assignment of lactone pheromone components emitted by Caribbean and Mexican fruit flies. J Chem Ecol 1993;19 (7):1511–9.
- [4] Battiste MA, Strekowski L, Vanderbilt DP, Visnick M, King RW, Nation JL. Anastrephin and epianastrephin, novel lactone components isolated from the sex pheromone blend of male Caribbean and Mexican fruitflies. Tetrahedron Lett 1983;24(26):2611–4.
- [5] Walse SS, Alborn HT, Teal PEA. Environmentally regulated abiotic release of

volatile pheromones from the sugar-based oral secretions of caribflies. Green Chem Lett Rev 2008;1(4):205–17.

- [6] Epsky ND, Heath RR. Pheromone production by male Anastrepha suspensa (Diptera: Tephritidae) under natural light cycles in greenhouse studies. Environ Entomol 1993;22(2):464–9.
- [7] Lima IS, House PE, Nascimento RR. Volatile substances from male Anastrepha fraterculus Wied. (Diptera: Tephritidae): identification and behavioural activity. J Braz Chem Soc 2001;12(2):196–201.
- [8] Lu F, Teal PEA. Sex pheromone components in oral secretions and crop of male Caribbean fruitflies, *Anastrepha suspensa* (Loew). Arch Insect Biochem Physiol 2001;48(3):144–54.
- [9] Nation JL. Courtship behavior and evidence for a sex attractant in the male Caribbean fruit fly, *Anastrepha suspensa*. Ann Entomol Soc Am 1972; 65(6): 1364–7.
- [10] Nation JL. The sex pheromone blend of Caribbean fruitfly males: isolation biological activity, and partial chemical characterization. Environ Entomol 1975;4(1):27–30.
- [11] Rocca JR, Nation JL, Strekowski L, Battiste MA. Comparison of volatiles emitted by male Caribbean and Mexican fruitflies. J Chem Ecol 1992;18(2):223 -44.
- [12] Robacker DC, Chapa BE, Hart WG. Electroantennagrams of Mexican fruitflies to chemicals produced by males. Entomol Exp Appl 1986;40(2):123–7.
- [13] Robacker DC, Hart WG. (Z)-3-nonenol, (Z,Z)-3,6-nonadienol and (S,S)-()epianastrephin: male produced pheromones of the Mexican fruitfly. Entomol Exp Appl 1985;39(2):103–8.
- [14] Walse SS, Lu F, Teal PEA. Glucosylated suspensosides, water-soluble pheromone conjugates from the oral secretions of male *Anastrepha suspensa*. J Nat Prod 2008;71(10):1726–31.
- [15] Battiste MA, Rocca JR, Wydra RL, Tumlinson JH III, Chuman T. Total synthesis and structure proof of (3*E*,8*E*)-suspensolide. Tetrahedron Lett 1988;29 (50):6565–7.
- [16] Battiste MA, Strekowski L, Coxon JM, Wydra RL, Harden DB. Highly stereoselective rearrangement of (*E*, *E*) -suspensolide to anastrephin and epianastrephin. Tetrahedron Lett 1991;32(39):5303–4.
- [17] Battiste MA, Wydra RL, Strekowski L. Efficient and stereoselective synthesis of 10-hydroxy-4,8-dimethyldeca-3(E),8(E)-dienoic acid, a precursor to (3E,8E) suspensolide, anastrephin and epianastrephin. J Org Chem 1996;61(18):6454–5.
- [18] Irie O, Shishido K. 1, 2-Asymmetric induction in the intramolecular [2+2] cycloadditions of keteniminium salts. Enantioselective synthesis of (-) dihydroactinidiolide and (-)-anastrephin. Chem Lett 1995;24(1):53–4.
- [19] Mori K, Nakazono Y. Synthesis of lactone components of the pheromone of *Anastrepha suspensa*, suspensolide, and the enantiomers of anastrephin and epianastrephin. Liebigs Ann Chem;1988(2):167–74.
- [20] Saito A, Matsushita H, Kaneko H. Synthesis of (\pm) -anastrephin and (\pm) epianastrephin. Chem Lett 1984;13(5):729–30.
- [21] Schultz AG, Kirincich SJ. Asymmetric total synthesis of the Caribbean fruit fly pheromone (+)-epianastrephin. J Org Chem 1996;61(16):5626–30.
- [22] Strekowski L, Visnick M, Battiste MA. Resolution and assignment of absolute configuration to the enantiomers of anastrephin and epianastrephin and their analogs. J Org Chem 1986;51(25):4836–9.
- [23] Tadano K, Isshiki Y, Minami M, Ogawa S. Samarium(II) iodide-mediated reductive cyclization approach to the total synthesis of the insect sex attractant (-)-anastrephin. Tetrahedron Lett 1992;33(51):7899–902.
- [24] Tadano K, Isshiki Y, Minami M, Ogawa SJ. Total synthesis of (-)-anastrephin, (-)-epianastrephin, and their 7a-epimers: use of samarium(II) iodidemediated intramolecular reductive coupling for the construction of their hexahydrobenzofuran-2(3H)-one skeletons. Org Chem 1993;58(23):6266–79.
- [25] Vecchio GHD, Oehlschlager AC. Stereospecific synthesis of suspensolide, a male-produced pheromone of the Caribbean fruit fly, *Anastrepha suspensa* (Loew), and the Mexican fruit fly, *Anastrepha ludens* (Loew). J Org Chem 1994;59(17):4853–7.
- [26] Nation JL. The role of pheromones in the mating system of *Anastrepha* fruit flies. In: Robinson AS, Hopper G, editors. World crop pests: fruit flies: their biology, natural enemies and control. Amsterdam: Elsevier; 1989. p. 189–205.
- [27] Walse SS, Kuzmich D, inventors; the United States of America, as represented by the Secretary of Agriculture, assignee. Diastereoselective synthesis of (±)epianastrephin, (±)-anastrephin and analogs thereof. United States patent US 20170305874. 2017 Oct 26.
- [28] Fitzgerald TD, St Clair AD, Daterman GE, Smith RG. Slow release plastic formulation of the cabbage looper pheromone *cis*-7-dodecenyl acetate: release rate and biological activity. Environ Entomol 1973;2:607–10.
- [29] Sanders CJ. Release rates and attraction of PVC lures containing synthetic sex attractant of the spruce budworm *Choristoneura fumiferana* (Lepidoptera:

Tortricidae). Can Entomol 1981;113(2):103-11.

- [30] Hendricks DE, Shaver TN, Goodenough JL. Development and bioassay of molded polyvinyl chloride substrates for dispensing tobacco budworm (Lepidoptera: Noctuidae) sex pheromone bait formulations. Environ Entomol 1987;16(3):605–13.
- [31] Higuchi T. Mechanism of sustained action medication. Theoretical analysis of rate release of solid drugs dispersed in solid matrices. J Pharm Sci 1963;52(12): 1145–9.
- [32] Siepmann J, Peppas NA. Higuchi equation: derivation, application, use and

misuse. Int J Pharm 2011;418(1):6–12.

- [33] softwareSAS. Cary: SAS Institute Inc.; 2020.
- [34] Epsky ND, Kendra PE, Schnell EQ. History and development of food-based attractants. In: Shelly T, Epsky N, Jang EB, Reyes-Flores J, Vargas R, editors. Trapping and the detection, control, and regulation of tephritid fruit flies. Dordrecht: Springer; 2014. p. 75–118.
- [35] Fuller EN, Schettler PD, Giddings JC. A new method for prediction of binary gas-phase diffusion coefficient. Ind Eng Chem 1966;58(5):19–27.
- [36] Crank J. The mathematics of diffusion. London: Oxford University Press; 1975