

Contents lists available at ScienceDirect

# Engineering



journal homepage: www.elsevier.com/locate/eng

## Research Materials Genome Engineering—Article

# 采用白光X射线源和模拟阵列能量色散阵列探测器的高通量粉末衍射技术

汪晓平<sup>a</sup>,董伟伟<sup>b</sup>,张鹏<sup>c</sup>,唐浩奇<sup>e</sup>,张澜庭<sup>a</sup>,杨铁莹<sup>e</sup>,刘鹏<sup>b,\*</sup>,汪洪<sup>a,\*</sup>,项晓东<sup>c,d,f,g,\*</sup>

<sup>a</sup> Materials Genome Initiative Center & School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China

<sup>b</sup> Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China

<sup>c</sup> Academy for Advanced Interdisciplinary Studies, Southern University of Science and Technology, Shenzhen 518055, China

<sup>d</sup> Department of Materials Science and Engineering & Department of Physics, Southern University of Science and Technology, Shenzhen 518055, China

<sup>e</sup> Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201204, China

<sup>1</sup> Guangdong Provincial Key Laboratory of Energy Materials for Electric Power, Southern University of Science and Technology, Shenzhen 518055, China

<sup>8</sup> Guangdong-Hong Kong-Macao Joint Laboratory for Photonic-Thermal-Electrical Energy Materials and Devices, Southern University of Science and Technology, Shenzhen 518055, China

| ARTICLE INFO                                                                                                                              | 摘要                                                                                                                                                                                                                                                              |
|-------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <i>Article history:</i><br>Received 4 August 2020<br>Revised 1 February 2021<br>Accepted 13 May 2021<br>Available online 24 February 2022 | 在上海同步辐射光源(SSRF)的弯铁光束线上,利用由空间扫描硅漂移探测器(SDD)模拟获得的能量色<br>散阵列探测器,对CeO,样品进行高通量白光X射线粉末衍射(pXRD)实验。考虑到与实验硬件和衍射角<br>相关的多种因素,对数据进行了详细分析和校正。校正后的衍射图谱表明,由能量色散X射线衍射<br>(EDXRD)获得的不同衍射峰之间的相对强度与来自角度分辨X射线衍射(ARXRD)的相对强度一致,说<br>明EDXRD结果可用于分析未知样品的晶体结构。实验同时采集了X射线荧光(XRF)信号。来自所有像 |
| 关键词<br>高通量实验<br>白光X射线衍射                                                                                                                   | 素的XRF计数可直接在能量坐标下叠加,而衍射信号则需在d空间下叠加,从而大大改善了阵列探测器的峰值强度和信噪比(S/N)。与ARXRD相比,白光X射线衍射信号强度是单色光衍射信号强度的10 <sup>4</sup> 倍左右。q空间中衍射峰的半峰全宽(FWHM)取决于探测器的能量分辨率、探测器接收角范围和衍射角大小。如果实验参数选择得当,在当前能量色散探测器的能量分辨率下,EDXRD有可能实现与ARXRD相                                                    |

白光X射线衍射 能量色散阵列探测器 能量色散X射线衍射 角度分辨X射线衍射

同甚至更小的半峰全宽。 © 2022 THE AUTHORS. Published by Elsevier LTD on behalf of Chinese Academy of Engineering and Higher Education Press Limited Company. This is an open access article under the CC BY-NC-ND licenses (http://creativecommons.org/licenses/by-nc-nd/4.0/).

# 1. 引言

X射线衍射(XRD)是测定晶体结构的最常用方法。 当X射线束与晶体材料相互作用时,如果满足布拉格方程 [公式(1)]就会发生衍射[1]。

$$2d\sin\theta = \lambda \tag{1}$$

式中, λ是入射X射线束的波长; *d*是衍射晶面间的距离; *d*是入射光束与入口表面法线的角度(即衍射角为2*θ*)。

公式(1)是分析晶体结构和晶格常数的基础公式。

近年来,人们对 XRD 实验的信号增强给予了很大的 关注。首先,高通量的材料制造技术,如组合材料芯片可 以将数百个或更多的样品集成到一个基片上[2-3]。为了 充分实现这一技术的优势,必须有一种快速的 XRD 技术, 可在微小尺度的薄膜样品获得足够的信噪比(S/N),使 材料芯片的测量速度能与样品制备的速度相匹配[4-5]。 其次,对相变或相形成的材料动态过程进行实时原位表

\* Corresponding authors.

E-mail addresses: liup@ihep.ac.cn (P. Liu), hongwang2@sjtu.edu.cn (H. Wang), xiangxd@sustech.edu.cn (X.-D. Xiang).

<sup>2095-8099/© 2022</sup> THE AUTHORS. Published by Elsevier LTD on behalf of Chinese Academy of Engineering and Higher Education Press Limited Company. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/). 英文原文: Engineering 2022, 10(3): 81–88

引用本文: Xiaoping Wang, Weiwei Dong, Peng Zhang, Haoqi Tang, Lanting Zhang, Tieying Yang, Peng Liu, Hong Wang, X.-D. Xiang. High-Throughput Powder Diffraction Using White X-Ray Beam and a Simulated Energy-Dispersive Array Detector. *Engineering*, https://doi.org/10.1016/j.eng.2021.05.023

征,需要XRD测量时间尺度达到微秒或更快[6-7]。此外,为观测微观或纳米级样品和晶胚,对提高XRD探测极限的需求也日渐强烈。同步辐射光源因其高光子通量的特性,而经常被用于这些场景。

粉末衍射主要有两种形式。角度分辨X射线衍射 (ARXRD)[图1(a)]采用单一波长的X射线入射,将产 生一系列的衍射锥,每一个衍射锥都对应于公式(1)的 一个晶体平面(简称晶面)。在ARXRD实验中,当使用 单元X射线探测器时,需要在2θ角的范围内进行扫描, 以在较大角度空间收集样品的衍射信号。二维(2D)像 素阵列探测器被应用于ARXRD实验(称为2D-ARXRD) [4-5],可同时覆盖大范围的衍射角,不再需要点对点的 机械扫描,提高了数据采集效率。此外,当二维探测器大 到足以覆盖整个圆或相当一部分衍射环(具有相同的2θ) 时,由于衍射强度是沿德拜(Debye)环在方位角(φ) 的积分,因此2D-ARXRD可以获得比单元探测器强很多 的衍射总强度。探测器空间坐标(x,y,z)和角度(2θφ)之间的关系在公式(2)中给出。这两个因素的结合 使测量速度提高了几千倍[4-5]。

$$\sin 2\theta = \frac{\sqrt{x^2 + y^2}}{\sqrt{x^2 + y^2 + z^2}}, \ \tan \varphi = \frac{x}{y}$$
 (2)

能量色散X射线衍射(EDXRD)[8–10]采用波长连续的X射线入射,如图1(b)所示。考虑一束入射的白 光X射线,其能量范围为[*E*<sub>min</sub>,*E*<sub>max</sub>];对于给定的(*hkl*)晶 面,具有最大能量*E*<sub>max</sub>的光子在最低角度2*θ<sup>hkl</sup>*产生衍射, 而具有最小能量*E*<sub>min</sub>的光子在最高角度2*θ<sup>hkl</sup>*产生衍射。因 此,所有来自晶面(*hkl*)的衍射信号都处在两个边界锥体之 间。EDXRD的优点是利用了X射线源的全部光谱。如果 在空间的一个固定位置放置一个具有有效面积S的单元能 量色散探测器[如图1(b)中的红点所示],就可以在一个 恒定的角度下同时收集波长色散的完整衍射图谱,而不需 要进行角度扫描[6–7]。除此之外,EDXRD光谱中同时包 含了X射线荧光(XRF)信号[11],这使得样品的成分和 结构信息可以在同一个数据中获得。

能量色散探测器覆盖更广的角度范围,可以进一步增 强EDXRD信号。Drakopoulos等[12]通过沿锥体的一小部 分设置多个单元能量色散探测器实现信号倍增[与所谓的 一维(1D)-EDXRD相同,这些探测器具有相同的衍射 角 2 $\theta$ , 但坐落在不同的方位角 $\varphi$ ]。当使用一个包含N个 像素的二维探测器阵列[被称为二维单元硅漂移探测器 (2D-SDD),图1(b)]时,则有可能沿着 $\theta$ 角和 $\varphi$ 角两个 维度对能量分辨的衍射信号进行积分。根据一级近似,从 (hkl)晶面收集的衍射信号强度与探测器覆盖的立体角成正 比,比单元探测器增强了N倍。O'Flynn等[13-14]采用了 一个名为HEXITEC的80×80像素的二维能量色散探测器 阵列,构建了一种2D-SDD装置进行能量色散衍射实验。 然而,由于HEXITEC 探测器的能量分辨率仅为约800 eV (1 eV = 1.602176 × 10<sup>-19</sup> J),因此这种装置只适用于快速 分辨已知物质。对于分析鉴定未知材料的结构,需要更高 能量分辨率的能量色散探测器。

用于对各种艺术和考古样品进行现场或实地分析的便携 式设备已被开发出来[15-16]。这些设备采用了一个1024× 256 像素、Peltier 冷却的能量色散电荷耦合器件(CCD) 二维探测器,可同时采集 XRD和 XRF 信号。在识别油漆 颜料时,该设备可获得令人满意的结果。然而,由于 X射 线管的功率有限,采集时间通常为100~600 s [11],这远远 不能满足对材料高通量分析的需求。为了克服这个问题, 一种可能的方法是利用高通量的同步辐射 X射线光源。

表1总结了上述5种衍射实验技术的衍射数据。一般 来说,所有EDXRD技术对所有波长的衍射信号进行积 分,这比单元ARXRD(需要角度扫描)探测器的强度积 分多一个维度。2D-EDXRD能够对两个角度方向以及波 长上的信号进行积分,说明该技术将是高通量表征技术不 错的候选技术。



**图1.** (a)采用扫描型单元探测器的ARXRD(红线为扫描轨迹)和二维探测器阵列(2D-ARXRD)示意图;(b)采用单元能量分辨探测器的EDXRD和二维探测器阵列(2D-SDD)示意图。

表1 各种 XRD 方法的特点

| Mathad   |                       | 20 internation   | ) internation | Simultaneous |
|----------|-----------------------|------------------|---------------|--------------|
| Method   | $\varphi$ integration | 20 integration   | λ integration | XRD/XRF      |
| ARXRD    | No                    | No, need to scan | No            | No           |
| 2D-ARXRD | Yes                   | Yes              | No            | No           |
| EDXRD    | No                    | No               | Yes           | Yes          |
| 1D-EDXRD | Yes                   | No               | Yes           | Yes          |
| 2D-EDXRD | Yes                   | Yes              | Yes           | Yes          |

本文展示了基于同步辐射弯铁光源的 2D-EDXRD 衍 射技术,以验证其作为高通量材料表征技术测定未知结构 的有效性。由于目前还没有商用的高能量分辨率二维能量 色散探测器阵列,本文采用空间扫描 SDD,模拟了一个 88 像素的二维 SDD 阵列[图1(b)]。在 5.9 keV 能量处, SDD 的能量分辨率约为 125 eV [17],满足材料物相鉴定 的精度要求。本研究表明,等时间照射相同的粉末样品, 2D-EDXRD 实验方法比 2D-ARXRD 实验中产生的衍射强 度要高约 10<sup>4</sup>倍。此外,通过使用二维探测器阵列,可以 同时获得 XRD和 XRF 数据,并且前者实验中的信号强度 可以按照像素数的增加等比例增强,从而明显改善衍射数 据的信噪比,使得数据质量适用于快速的材料相鉴定。此 外,EDXRD 有可能实现与 ARXRD 相同或甚至更小的半 峰全宽(FWHM)。

## 2. 实验详情

样品是夹在两块玻璃片之间的一层薄薄的 CeO<sub>2</sub>粉末, 用透明胶带包裹。粉末的纯度为99.99%(Aladdin 公司, 中国),样品总厚度为35 μm,有效密度约为1.66 g·cm<sup>-3</sup>。 实验在上海同步辐射光源(SSRF)的弯铁光束线BL14B1 上进行。同步加速器的电子能量为3.5 GeV,电流为 300 mA。X射线束在样品上的发散是93.24 μrad(x轴) 和1.583 μrad(y轴)。

EDXRD 实验采用透射模式。实验中使用的入射光能 量范围为4~26 keV (波长 $\lambda$  = 3.0996~0.4769 Å),从距离 样品约400 mm的铍 (Be)窗口射出。通过一个前置狭缝 后,入射光斑被缩小到1  $\mu$ m×1  $\mu$ m。能量色散探测器为 Amptek X-123 FAST SDD<sup>®</sup>探测器,被安装在样品另一侧 的三维 (3D) 平移台上,其能量分辨率为125 eV (对应 峰值为5.9 keV)。探测器与样品之间的距离是 609 mm, 2 $\theta$ 角为28.2°。探测器表面与探测器中心和样品之间的连 线垂直。探测器有效面积为17 mm<sup>2</sup> (直径为4.6 mm),对 应的衍射角范围为0.433°。利用钼 (Mo)、硒 (Se) 和镍 (Ni) 的荧光峰以及8 keV、10 keV、12 keV、14 keV 和 16 keV的单色光能量对 SDD进行校准,建立了可靠的 X 射线能量和 SDD通道指数之间的关系。每个位置的数据 采集时间为40 s。

在随后的 2D-EDXRD 实验中,采用了相同的样品、 入射光、SDD装置以及采集时间。在 EDXRD 实验起始位 置周围,以10 mm 的步长在 x 和 y 方向移动探测器,以模 拟二维能量色散探测器阵列。如图1 (b)所示,在11 × 8 的阵列位置进行测量,形成一个虚拟的 88 像素的二维 SDD阵列。这个虚拟阵列探测器覆盖了衍射区的右上象限 的一部分 (20 范围为 22.6° ~ 34.4°),总立体角为 0.004 sr (是单元探测器的 88 倍)。在测量过程中,SDD 的方向保 持不变。

为了有效比较 2D-EDXRD 和 2D-ARXRD 的衍射效 率,在能量色散衍射实验结束后,将白光模式切换为单色 光,并采用相同样品以透射模式进行了 2D-ARXRD 实验。 单色光采用 Si(111)双晶单色器(DCM)产生。通过 OA-SYS 软件计算可知,在 20 keV 时的光子效率为13.3%(能 量带宽为 0.1%)[18]。能量为 20 keV 的单色 X 射线束 (λ = 0.6199 Å) 经 白光狭缝约束后,变为 400 μm × 200 μm 的入射光斑进入实验棚屋。在照射样品之前,光 束通过一个狭缝最终被缩小为2 μm × 2 μm。一台 Mar345 平板探测器(marXperts GmbH,德国)被用于接收衍射 信号。探测器的有效区域直径为 345 mm,像素尺寸为 150 μm × 150 μm(对应的角度范围约为 0.086°,约为能 量色散探测器的1/5)。探测器被放置在垂直于光束的样品 后面约 100 mm处,覆盖衍射角 2θ 为10°~40°。数据采集 时间为40 s。

## 3. 结果与分析

3.1. 能量色散X射线衍射

图2(a)显示了单元能量色散探测器位于2*θ* = 28.2°的衍射角下所收集的衍射光谱,包括一系列尖锐的峰和宽 广的背景。使用数据分析和绘图软件Igor Pro(WaveMetrics, Inc.,美国)进行多峰拟合,其中衍射背景的拟合采 用对数正态函数(蓝线),峰型拟合采用高斯函数(绿色 及蓝色点代表拟合峰位)。背景函数的拟合公式如下:

$$\log \operatorname{normal}(x) = w_0 + w_1 \cdot \exp\left\{-\left[\frac{\ln(x/w_2)}{w_a}\right]^2\right\} \quad (3)$$

拟合参数集  $w = \{w_0, w_1, w_2, w_a\} = \{47.08, 673.99, 11.115, 0.37665\}, 其中<math>w_0, w_1, w_2 \pi w_a$ 分别代表基线、振幅、峰位和峰宽。峰型拟和公式如下:

$$\operatorname{Gauss}(x) = w_0 \cdot \exp\left\{-\left[\left(x - w_1\right)/w_2\right]^2\right\}$$
(4)

每个峰的拟合参数设置列于表2。同时获取的荧光和衍射 信号,用于分析材料的成分和结构。在图2(a)所示的与 角度无关的峰中,6.1 keV以下的四个荧光峰对应于样品 中铈(Ce)元素的 $L_{\alpha l}$ 、 $L_{\beta l}$ 、 $L_{\beta 2}$ 以及 $L_{\gamma l}$ [19],其能量分别 为 $L_{\alpha l}$  = 4.823 keV、 $L_{\beta 1}$  = 5.262 keV、 $L_{\beta 2}$  = 5.613 keV、  $L_{\gamma l}$  = 6.052 keV;另外三个在 6.404 keV、10.551 keV 和 12.614 keV的峰,其能量分别与铁(Fe)元素 $K_{\alpha l}$ 和铅 (Pb)元素 $L_{\alpha l}$ 及 $L_{\beta l}$ 相匹配[19]。Fe 和Pb元素的荧光来自 SDD前面的准直器,而非样品。



**图2.** (a) 衍射角  $2\theta$  = 28.2°时,有背景和无背景的 EDXRD 图谱 (a.u.: 任意单位); (b) 扣除背景后的能量色散探测器在不同方位角 (2 $\theta$ ) 收集的 EDXRD 数据。图例表示强度 (a.u.)。

图2(b)展示了模拟的88像素探测器阵列各个单元 在不同方位角(20)所收集的原始能量色散衍射谱。同一 衍射峰的衍射能量随着探测器位置的变化而移动(衍射角 为20),而荧光峰完全取决于样品中存在的元素,不随像 素的位置而变化。因此,通过比较在多个衍射角下测量的 图谱,可以很容易地区分荧光峰和衍射峰[10,14]。图2 (b)还显示,对于EDXRD中的相同(*hkl*)峰值,随着衍射 角20的增加,峰值位置向低能量方向移动。根据布拉格

表2 2θ=28.2°的EDXRD光谱中高斯峰的拟合参数

| Peak index | $w_0$ | $w_1$ | w <sub>2</sub> |
|------------|-------|-------|----------------|
| XRF        | 4.84  | 0.11  | 685.66         |
| XRF        | 5.28  | 0.13  | 1190.63        |
| XRF        | 5.61  | 0.13  | 512.07         |
| XRF        | 6.06  | 0.12  | 274.36         |
| XRF        | 6.34  | 0.13  | 162.76         |
| (111)      | 8.15  | 0.15  | 2082.91        |
| (002)      | 9.40  | 0.16  | 1243.11        |
| XRF        | 10.57 | 0.15  | 209.03         |
| XRF        | 11.91 | 0.11  | 40.38          |
| XRF        | 12.68 | 0.21  | 152.00         |
| (022)      | 13.31 | 0.18  | 3699.66        |
| (113)      | 15.61 | 0.19  | 2200.00        |
| (222)      | 16.29 | 0.20  | 346.73         |
| (004)      | 18.83 | 0.23  | 226.99         |
| (133)      | 20.52 | 0.24  | 340.39         |
| (024)      | 21.07 | 0.25  | 200.63         |
| (224)      | 23.06 | 0.26  | 161.60         |
| (511)      | 24.45 | 0.23  | 91.29          |

定律(Bragg's law),可探测的晶格间距范围由X射线束 能谱决定,并取决于衍射角2θ。2θ越大,覆盖的范围就 越广,这对分析复杂的结构是有利的。

## 3.2. EDXRD峰的校正

必须指出的是,不同衍射峰之间的相对强度比被认为 是特定晶体结构"指纹"(fingerprint)的一部分,这对于 基于 XRD 的未知样品的相分析至关重要。然而,正如本 文接下来的部分所展示的,图2中来自EDXRD光谱(取 自白光X射线源)的峰比与来自ARXRD(取自单一波长 X射线源)的峰比并不一致。因此,必须对EDXRD数据 进行强度校正后才能将其用于晶体学分析。

衍射峰能量对信号强度的影响主要归因于两个方面: 与硬件有关的因素(即X射线源强度、探测器灵敏度和设 置几何)和与样品吸收有关的因素。Scarlett等[20]研究了 与硬件灵敏度有关的因素,包括:①X射线源的强度随 能量的分布,*I*<sub>source</sub>;②探测器在不同能量下的量子效率, *I*<sub>detector</sub>;③空气的吸收,*I*<sub>air</sub>,这是实验几何的函数。与硬 件灵敏度有关的总体修正可以表示为:

$$I_{\text{hardware}} = I_{\text{source}} I_{\text{detector}} I_{\text{air}}$$
(5)

由于EDXRD 能谱的背景受到 *I*<sub>hardware</sub>所有三个因素的 影响,归一化的背景信号的对数正态函数可以作为实际操 作中的硬件校准。图3(a)显示了从2*θ* = 28.2°的EDXRD 能谱中获得的 *I*<sub>hardware</sub>曲线。然而,应该指出的是,由于 XRF 信号只能由能量高于峰值的光子产生,XRF 峰与该 能量的源强度不成正比。因此*I*<sub>hardware</sub>校正并不适用于XRF 峰。此外,*I*<sub>hardware</sub>中的三个因素对ARXRD的相对峰高没 有影响。

样品的吸收校正系数(A)[20]描述了吸收对衍射光 束强度的影响,是质量吸收系数(α)和样品厚度(d<sub>s</sub>) 乘积的函数,其关系见公式(6)。

$$A(\theta,\lambda) = \exp\left[-\alpha(\lambda)d_{\rm s}/\cos\theta\right] \tag{6}$$

此外,峰值强度(*I*)的角度依赖性与洛伦兹极化因子(Lorentz polarization)引起的衍射几何学有关,如参考文献[1]给出的公式(7):

$$I = I_0 \frac{\lambda^3}{32\pi R} \left(\frac{e^2}{mc^2}\right)^2 \cdot \frac{V}{V_0^2} \cdot \left|F_{hkl}\right|^2 \cdot \frac{P \cdot \phi(\theta) \cdot A(\theta, \lambda) \cdot e^{-2M}}{(7)}$$

式中, $I_0$ 是X射线的通量; R是探测器和样品之间的距离; e 和 m 分别是电子的电荷和质量; c是光速; V是样品的衍 $射体积; <math>V_0$ 是单位晶胞的体积;  $F_{hkl}$ 是(*hkl*)晶面的结构因 子; P是倍率因子;  $\phi(\theta)$ 是角度因子;  $e^{-2M}$ 是温度因子。 对于一个给定的衍射峰(*hkl*),可以将公式(7)重写为与 *hkl*结构有关的项 $I_0^{hkl}$ 、 $\lambda^3$ 、 $\phi(\theta)$ 、衍射角的函数,以及  $A(\theta, \lambda)$ 之间的乘积[可等价写成 $A(\theta, E)$ ],其中E是X射线 能量。当衍射角的变化很小时, $A(\theta, E)$ 近似为只是能量的 一个函数,即

$$I^{hkl} = I_0^{hkl} \lambda^3 \phi(\theta) A(\theta, \lambda) = I_0^{hkl} \lambda^3 \frac{1 + \cos^2 2\theta}{\sin^2 \theta \cdot \cos \theta} A(\theta, E)$$
(8)

由于EDXRD能谱是在每个像素上获得的,其衍射角 与位置有关,并且在不同的20角下,相同的衍射发生在 不同的能量下,因此,所有的光谱应根据公式(5)、公式 (6)和公式(8)进行校正,使其与能量和角度无关。修 正后的曲线如图3所示。

### 3.3. EDXRD 数据的分析

因为图2(b)中的数据是在一定的衍射角范围内收 集的,所以将荧光信号和衍射信号区分开来非常简便,且 不会有歧义。将谱峰分为两组:荧光峰,其位置不随衍射 角的变化而变化[图4(a)];衍射峰,其位置随衍射角转 换为q空间(1/d)而发生变化[图4(b)]。在分离荧光能 谱和衍射能谱之前,要减去背景。

衍射图谱首先用  $I_{hardware}$ 校正,如图3(a)和A(E)所示,然后根据布拉格方程[公式(1)]转换为q空间的函数,见图4(c)。硬件校正后最显著的变化是(111)峰超过了(022)峰,成为最强的峰,与ARXRD数据一致。同时,角度的依赖性也降低了。最后,使用衍射角和波长依赖性校正 $\lambda^3$ 和 $\phi(\theta)$ ,衍射角依赖性基本上被消除,如图4(d)所示。

### 3.4. 与2D-ARXRD的比较

#### 3.4.1. 相对强度

图 5 (a) 显示了由 Mar345 平板 探测器测量的 ARXRD 数据。探测器采集到一组均匀的、同心的德拜 环,表明CeO<sub>2</sub>粉末是随机取向的。图5 (b)中的衍射谱 是通过对整个德拜环进行积分得到的。衍射峰位于10.5° 到40.6°的20处,d间距与CeO<sub>2</sub>粉末衍射文件(PDF)卡 [11]匹配。

从图2(a)和图5(b)中可以看出,尽管ARXRD和 EDXRD的衍射峰的峰位完全一致,但相对强度明显不 同。例如,(111)峰是ARXRD中最强的峰,并且明显高于 (113)峰和(022)峰。然而,(022)峰是EDXRD中最强的衍 射峰。众所周知,ARXRD的衍射强度除了受到结构因 子、倍率、吸收和温度的影响外,还受到洛伦兹极化因子 [1]的影响。因此,2D-ARXRD数据必须除以角度因子  $\phi(\theta)\cos 2\theta$ ,其中 $\cos 2\theta$ 来自R的校正( $R/\cos 2\theta$ ,探测器和 样品之间的实际距离),然后再与EDXRD数据进行比较。 在图5(c)中,将来自图4(d)中88像素的EDXRD数 据之和(即对硬件、样品吸收、角度和波长因素进行了校 正)与q空间中2D-ARXRD的校正数据进行比较,其中 两条曲线都归一化为(113)峰的强度。修正后的EDXRD衍 射峰的相对强度与2D-ARXRD的衍射峰强度非常一致。



**图3.** (a) 在  $2\theta = 28.2^{\circ}$ 时,根据公式(5)确定的同步辐射 EDXRD 实验的硬件灵敏度的校正曲线  $I_{hardware}$ ; (b) 在  $2\theta = 28.2^{\circ}$ 时,由公式(6)确定的 CeO<sub>2</sub>样品吸收的校正系数  $A(\theta, E)$ ; (c) 角度因子  $\phi(\theta)$ 。



**图4.** 从模拟的88 像素能量色散探测器阵列收集的数据中分离出来的图谱。(a) 纯荧光光谱;(b) 转换为1/d空间的纯衍射谱;(c) 用 $I_{hardware}$ 和A(E)校正图(b) 的数据;(d) 用 $\lambda^3 \pi \phi(\theta)$ 校正的图(c) 数据。图例表示强度(a.u.)。



图5. (a) CeO<sub>2</sub>粉末样品 2D-ARXRD 衍射图谱,入射X射线能量为20 keV [图例表示强度(a.u.)];(b) 积分后的衍射光谱;(c) 修正后的 ARXRD 衍射峰和 EDXRD 峰相对强度的比较,用(113)峰强进行归一化。

3.4.2. 信号强度

如前所述,2D-EDXRD能够在X射线波长和探测器 面积两个维度上进行信号积分,而相应的ARXRD技术只 在探测器的面积上进行积分。因此,2D-EDXRD被看作 是一种更有效的高通量表征技术。通过2D-EDXRD和2D-ARXRD确定的(111)峰区的综合强度分别为3.65×10<sup>6</sup>和 5.69×10<sup>5</sup>。

在2D-ARXRD实验中,当衍射环信号被完全采集时, 就像本研究中CeO<sub>2</sub>的(111)峰、(002)峰和(113)峰的情况一 样,积分强度是总衍射信号的一半(另一半进入反射模 式)。也就是说,覆盖立体角实际上是2π sr。在上一节 中,计算出2D-EDXRD实验的覆盖立体角是0.004 sr(该 值是2D-ARXRD的覆盖立体角的1/1570)。因此,对于 CeO<sub>2</sub>(111)的衍射信号,EDXRD相比ARXRD的增益可估 算如下:

$$Gain_{meas} = \frac{3.65 \times 10^6}{5.69 \times 10^5} \times \frac{2 \times 3.1416}{0.004} \approx 10076$$

这一结果表明,与ARXRD相比,在EDXRD中可以 用更小的探测器收集到相同的强度衍射信号。当样品体积 较小时,如在薄膜的微区测量中,2D-EDXRD技术可能 是非常有优势的。当实验空间紧张或预算有限时,该技术 的优势尤其明显。

3.4.3. 半峰全宽

从图 5 (c) 中可以看出, EDXRD 峰比 ARXRD 峰更 宽。使用 Voigt 函数对(022)峰进行定量拟合,结果表 明, ARXRD 的 FWHM (0.0054 Å<sup>-1</sup>) 大约是 EDXRD (0.0119 Å<sup>-1</sup>)的一半。因此,在本研究的实验条件下, EDXRD的q空间分辨率比ARXRD的略差。EDXRD中的 峰值变宽有两个主要原因:① SDD的能量分辨率;②收 集信号时 SDD的角度范围。布拉格公式可等价表示如下:

$$\frac{1}{d} = \frac{2E\sin\theta}{12.4} \tag{9}$$

式中, *E*为X射线的能量, 单位为keV; *d*为晶面间距, 单位为Å。对于一个特定的(*hkl*), 1/*d*的FWHM可以通过 对公式(9)取全导数得到。

$$\Delta\left(\frac{1}{d}\right) = \frac{2\Delta E \sin\theta}{12.4} + \frac{2E\cos\theta \cdot \Delta\theta}{12.4} \tag{10}$$

式中, $\Delta E \neq SDD$ 的能量分辨率; $\Delta \theta \neq SDD$ 角度范围的 一半(此处分别为0.125 keV和0.433°或0.00756 rad)。将 公式(9)应用于公式(10)以消除*E*,得到以下结果。

$$\Delta\left(\frac{1}{d}\right) = \frac{2\Delta E \sin\theta}{12.4} + \frac{\operatorname{ctan}\theta \cdot \Delta\theta}{d} \tag{11}$$

公式(11)表明,一个给定的衍射谱在 q空间的 FWHM包括两项,分别与能量分辨率和衍射方向的不确 定性有关,且都是衍射角的函数。图6显示了理论能量分 辨率项、三个探测器像素角度范围下的角度不确定性项, 以及为CeO<sub>2</sub>(022)晶面(d = 1.9132 Å)计算的q空间中相 应的FWHM总和作为衍射角2 $\theta$ 的函数。当2 $\theta \rightarrow 0$ 时,与 能量分辨率有关的项从0开始,并随着2 $\theta$ 的增加而几乎呈 线性增加。然而,当2 $\theta \rightarrow 0$ 时,探测器接收角项接近∞, 并随着2 $\theta$ 的增加而减少。因此,总的FWHM在这两个项 的交叉点附近达到一个最小值。随着像素大小的减小,最 小值减小,交叉点向低角度移动。对于在衍射角(2 $\theta$ )为 22.6°和34.2°时收集的实验数据,(022)峰的FWHM分别为 0.0115 Å<sup>-1</sup>和0.0126 Å<sup>-1</sup>。相比之下,根据公式(11)计算 的值为0.0138 Å<sup>-1</sup>和0.0123 Å<sup>-1</sup>,都在实验值的20%以内。 图6还显示,如果像素角度范围足够小,EDXRD有可能 实现与ARXRD相同甚至更小的FWHM,这可以通过减小 像素尺寸或将探测器移至远处来实现。例如,如果探测器 的角度范围低于 0.1°,就可以获得与 ARXRD 相当的 FWHM (0.0054 Å<sup>-1</sup>)。如果角度范围进一步减少到 0.05°, 在探测器目前的能量分辨率下,EDXRD 的 FWHM 在 2*θ* 为 6°和 26°之间将优于 ARXRD。但是,在低衍射角下, 晶格间距的可探测范围将受到限制。

#### 3.4.4. 信噪比

EDXRD的信噪比随着探测器的像素数增加而增加。 在2*θ*=28.2°时,单个像素的(111)峰的信噪比为2250/(22~ 100),88像素的信噪比增加到188 600/(250~750);而本实 验中2D-ARXRD的信噪比为248 600/(250~1000)。从统计 学上看,测量数据的信噪比一般可通过叠加得到提高,并 与叠加次数的平方根成比例。理论上,在EDXRD中,每 个像素与其他像素相同,都会收到整个能谱。因此,能谱 可以被叠加和平均,从而获得更好的信噪比。自然地,随 着探测器像素数的进一步增加,2D-EDXRD的信噪比将 继续提高。

#### 3.5. 进一步讨论

应该指出的是,2D-EDXRD的原理也适用于实验室 用的X射线源。然而,实验室X射线管包含狭窄但尖锐的 特征峰,这些特征峰往往比白光背景高几个数量级,造成 积分的总X射线光子通量仅是特征峰的几倍[如是钨(W) 光源的三倍]。因此,在实验室X射线源应用中,2D-EDXRD优势是有限的。相比之下,同步辐射源提供的白 光X射线的通量在相当宽的带宽内对能量只有轻微的依 赖。白光X射线的总通量可以高出几个数量级,因此获得 更高的衍射信号。为了使实验室X射线具有同样的增强效 果,有必要配备一种不同类型的X射线源,使其光谱特性



图6. 在三个探测器角度范围下, CeO, (022)在衍射角2θ处的q空间衍射峰的FWHM。

比目前普遍使用的X射线源更平坦。

除了强度增强之外,与EDXRD相关的另一个重要特征是,无论使用单元还是二维阵列,都可以获得具有正确比例的、各种峰强完整的XRD能谱。这给实验带来了极大的便利。相比之下,ARXRD必须覆盖足够的衍射角和整个衍射环(或所有峰的相等部分)才能获得相同的信息,否则相对强度会有偏差。

与ARXRD相比,EDXRD通常被认为只能提供快速 但质量较低的衍射数据。本研究的分析表明,这种看法可 能并不总是正确的。如果实验参数选择得当,EDXRD有 可能实现与ARXRD相同甚至更小的FWHM。EDXRD的 信噪比也可以通过对多个像素的数据进行积分来提高。这 意味着EDXRD的潜力可能被低估了。因此,值得进一步 开发具有足够数据质量的2D-EDXRD作为一种高通量技 术,用于同时进行结构和成分表征。

最后,需要指出的是,2D-EDXRD的优势在于其具 有一个足够高能量分辨率的、成熟的集成能量色散探测器 阵列[21]。目前,Peltier冷却的CCD的能量分辨率是 230 eV [16]。多项研究已经报道了用于提高能量分辨率的 各种方法。例如,德国的PNDetector GmbH公司推出了一 个低动态范围的pnCCD阵列能量色散探测器[22];美国伯 克利大学开发了一个Maila阵列能量色散探测器[23];英 国开发了HEXITEC 探测器[13,24]。预计商业化的、高能 量分辨率的二维阵列探测器将在未来几年内出现。

## 4. 结论

2D-EDXRD 是一种很好的高通量表征候选技术,因 为它可对两个空间维度以及波长维度的信号进行积分。在 本文中,使用 2D-ARXRD、EDXRD 和 2D-EDXRD,在 SSRF测量了一个CeO,粉末样品,其中88像素的二维探 测器阵列是通过利用一个移动的单元SDD模拟而成的。 在EDXRD实验中,XRD和XRF数据被同时采集。此外, 在X射线源的能量范围内,可探测的晶格间距范围随着衍 射角的增加而增加。二维探测器阵列不仅按比例增加了信 号强度,而且还提高了信噪比。对于来自2D-EDXRD的 XRD 数据,经过修正与硬件相关的因素和衍射角的依赖 性后,其相对峰高与ARXRD一致。在实验条件下,2D-EDXRD的衍射信号增强为2D-ARXRD的10<sup>4</sup>倍左右。在q空间中实测的 EDXRD 峰的 FWHM 与理论分析的结果一 致。对于一个给定的X射线源,FWHM 是衍射角和像素 角范围的函数。通过适当选择实验参数,可以实现与 ARXRD同样质量的尖锐衍射峰。

## 致谢

本研究得到中国国家重点研发计划(2017YFB070190 0)和高级别专项资金(G02256401和G02256301)的支持。 同时得到广东省重点实验室(2018B030322001)和粤港澳 联合实验室(2019B121205001)的基金支持。

## Compliance with ethics guidelines

Xiaoping Wang, Weiwei Dong, Peng Zhang, Haoqi Tang, Lanting Zhang, Tieying Yang, Peng Liu, Hong Wang, and X.-D. Xiang declare that they have no conflict of interest or financial conflicts to disclose.

# References

- Cullity BD, Stock SR. Elements of X-ray diffraction. 3rd ed. London: Pearson; 2014.
- [2] Xiang XD, Sun X, Briceño G, Lou Y, Wang KA, Chang H, et al. A combinatorial approach to materials discovery. Science 1995;268(5218): 1738–40.
- [3] Xiang XD, Wang G, Zhang X, Xiang Y, Wang H. Individualized pixel synthesis and characterization of combinatorial materials chips. Engineering 2015; 1(2): 225–33.
- [4] Gregoire JM, Dale D, Kazimirov A, DiSalvo FJ, van Dover RB. High energy Xray diffraction/X-ray fluorescence spectroscopy for high-throughput analysis of composition spread thin films. Rev Sci Instrum 2009;80(12):123905.
- [5] Xing H, Zhao B, Wang Y, Zhang X, Ren Y, Yan N, et al. Rapid construction of Fe-Co-Ni composition-phase map by combinatorial materials chip approach. ACS Comb Sci 2018;20(3):127–31.
- [6] Rodriguez-Alvarez H, Weber A, Lauche J, Kaufmann CA, Rissom T, Greiner D, et al. Formation of CuInSe2 and CuGaSe2 thin films deposited by three-stage thermal Co-evaporation: a real-time X-ray diffraction and fluorescence study. Adv Energy Mater 2013;3(10):1381–7.
- [7] Nielsen MB, Ceresoli D, Parisiades P, Prakapenka VB, Yu T, Wang Y, et al. Phase stability of the SrMnO3 hexagonal perovskite system at high pressure and temperature. Phys Rev B 2014;90(21):214101.
- [8] Giessen BC, Gordon GE. X-ray diffraction: new high-speed technique based on X-ray spectrography. Science 1968;159(3818):973–5.
- [9] Buras B, Olsen JS, Gerward L. White beam, X-ray, energy-dispersive diffractometry using synchrotron radiation. Nucl Instrum Methods 1978;152(1): 293–6.
- [10] Luo Z, Geng B, Bao J, Liu C, Liu W, Gao C, et al. High-throughput X-ray characterization system for combinatorial materials studies. Rev Sci Instrum 2005;76(9):095105.
- [11] Mendoza Cuevas A, Bernardini F, Gianoncelli A, Tuniz C. Energy dispersive Xray diffraction and fluorescence portable system for cultural heritage applications. X-Ray Spectrom 2015;44(3):105–15.
- [12] Drakopoulos M, Connolley T, Reinhard C, Atwood R, Magdysyuk O, Vo N, et al. I12: the joint engineering, environment and processing (JEEP) beamline at diamond light source. J Synchrotron Radiat 2015;22(3):828–38.
- [13] O' Flynn D, Reid C, Christodoulou C, Wilson M, Veale MC, Seller P, et al. Pixelated diffraction signatures for explosive detection. In: Broach JT, Holloway JH Jr, editors. Proceedings of SPIE 8357: detection and sensing of mines, explosive objects, and obscured targets XVII; 2012 Apr 23–27; Baltimore, MD, USA; 2012.
- [14] O'Flynn D, Crews C, Drakos I, Christodoulou C, Wilson MD, Veale MC, et al. Materials identification using a small-scale pixellated X-ray diffraction system. J Phys D 2016;49(17):175304.
- [15] Nakai I, Abe Y. Portable X-ray powder diffractometer for the analysis of art and

archaeological materials. Appl Phys A 2012;106(2):279-93.

- [16] Chiari G, Sarrazin P, Heginbotham A. Non-conventional applications of a noninvasive portable X-ray diffraction/fluorescence instrument. Appl Phys A 2016;122(11):990.
- [17] FAST SDD<sup>®</sup> ultra high performance silicon drift detector [Internet]. Bedford: AMPTEK, Inc.; c2019 [cited 2022 Jan 18]. Available from: https://www. amptek.com/products/x-ray-detectors/fastsdd-x-ray-detectors-for-xrf-eds/fastsddsilicon-drift-detector.
- [18] Rebuffi L, del Rio MS. OASYS (orange synchrotron suite): an open-source graphical environment for X-ray virtual experiments. In: Chubar O, Sawhney K, editors. Proceedings Volume 10388: advances in computational methods for X-ray optics IV; 2017 Aug 6–10; San Diego, CA, USA; 2017.
- [19] Salavati-Niasari M, Davar F, Loghman-Estarki MR. Long chain polymer assisted synthesis of flower-like cadmium sulfide nanorods via hydrothermal process. J Alloys Compd 2009;481(1–2):776–80.

- [20] Scarlett NVY, Madsen IC, Evans JSO, Coelho AA, McGregor K, Rowles M, et al. Energy-dispersive diffraction studies of inert anodes. J Appl Cryst 2009;42 (3):502–12.
- [21] Wollman DA, Irwin KD, Hilton GC, Dulcie LL, Newbury DE, Martinis JM. High-resolution, energy-dispersive microcalorimeter spectrometer for X-ray microanalysis. J Microsc 1997;188(3):196–223.
- [22] Ordavo I, Ihle S, Arkadiev V, Scharf O, Soltau H, Bjeoumikhov A, et al. A new pnCCD-based color X-ray camera for fast spatial and energy-resolved measurements. Nucl Instrum Meth A 2011;654(1):250–7.
- [23] Ryan CG, Siddons DP, Kirkham R, Li ZY, de Jonge MD, Paterson DJ, et al. Maia X-ray fluorescence imaging: capturing detail in complex natural samples. J Phys Conf Ser 2014;499:012002.
- [24] Schroeder G. Summary of NSLS-II source properties [Internet]. Upton: Brookhaven National Laboratory; [cited 2022 Jan 18]. Available from: https:// www.bnl.gov/nsls2/docs/PDF/Summary\_of\_NSLS-II\_Source\_Properties.pdf.