

Contents lists available at ScienceDirect

Engineering

journal homepage: www.elsevier.com/locate/eng

Research Frontier Research on Carbon Neutrality—Review

二氧化碳捕集与封存——历史与未来之路

马劲风 ab,c,*, 李琳 b,c,d, 王浩璠 ab,c, 杜艺 ab,c, 马俊杰 b,c,d, 张小莉 ab,c, 王震亮 ab,c

^a Department of Geology, Northwest University, Xi'an 710069, China

^b National and Local Joint Engineering Research Center of Carbon Capture and Storage Technology, Xi'an 710069, China

^c Shaanxi Key Laboratory for Carbon Neutral Technology, Xi'an 710069, China

^d College of Urban and Environmental Sciences, Northwest University, Xi'an 710127, China

ARTICLE INFO

摘要

Article history: Received 27 July 2021 Revised 16 October 2021 Accepted 24 November 2021 Available online 12 March 2022

关键词

二氧化碳捕集与封存研究设施 净温室气体减排 能源消费 监测 二氧化碳捕集与封存(CCS)的大规模部署在全球实现净零排放的道路中显得越发紧迫,但CCS的全球部 署显著落后于预期。回顾和学习先进国家CCS的成功实例与历史,有助于包括中国在内的国家采取科 学的方法来推动与部署CCS项目。在CCS关键技术研发与示范中,本文认为先进国家CCS科技基础研 究设施的建立是其CCS技术源头创新、成本降低、风险降低、商业化推广及人才培养的源泉。除了激励 政策外,CCS的良性发展,需要从科技基础研究设施过渡到规模化商业化设施,不然难以跨越从小规模示 范到百万吨级CCS与千瓦吨级CCShub实施的技术障碍。CO2地质封存是CCS项目的最终目标与解决 捕集CO2归宿的驱动力。进一步提高观测、监测和证实(MMV)CO2封存量、减排量与安全性技术的精 度,仍然是地质封存面临的问题。咸水层CO2封存可以更好地耦合多种碳排放源,是目前需要优先发展 的方向。降低低浓度CO2捕集的能耗,减小化学吸收剂的衰竭,提高燃烧后CO2捕集系统的运行效率和 稳定性成为制约大规模CCS部署的关键。对于各国最大程度地开采化石燃料而不是从环境友好程度较 低的产油国进口石油,CO3驱油提高石油采收率(CO3-EOR)也非常重要。

© 2022 THE AUTHORS. Published by Elsevier LTD on behalf of Chinese Academy of Engineering and Higher Education Press Limited Company. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. 引言

二氧化碳捕集与封存(carbon capture and storage, CCS)或二氧化碳捕集、利用与封存(carbon capture utilization and storage, CCUS)技术,被国际上公认为是减缓 气候变化和保护人类生存环境不可或缺的关键技术 (图1)[1-3]。国际能源署(IEA)[4]与碳收集领导人论 坛(CSLF)[5]都认为,要使能源部门实现2050年净零排 放,2030年全球CCS规模必须达到2020年规模(4000万 吨/年)的10~15倍,2050年规模必须达到2020年规模的100倍。联合国政府间气候变化专门委员会(IPCC)[6]认为,如果不采用CCS技术,减排成本将上升138%。在IPCC 2018年发布的1.5°C特别报告中,将CCS列为4种关键减排技术路径[7]中三种必须采用的减排技术。

IEA [8]将 CCUS 战略角色定义归纳为:解决现存基础 设施的碳排放;耦合低碳氢的生产;减排难度大领域的解 决方案,如重工业、航运,以及从减少大气中累积碳排放 的解决方案。虽然 CCS 技术与可再生能源技术都是减缓

^{*} Corresponding author.

E-mail address: jfma@nwu.edu.cn (J. Ma).

^{2095-8099/© 2022} THE AUTHORS. Published by Elsevier LTD on behalf of Chinese Academy of Engineering and Higher Education Press Limited Company. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/). 英文原文:Engineering 2022, 14(7): 33–43

引用本文: Jinfeng Ma, Lin Li, Haofan Wang, Yi Du, Junjie Ma, Xiaoli Zhang, Zhenliang Wang. Carbon Capture and Storage: History and the Road Ahead. *Engineering,* https://doi.org/10.1016/j.eng.2021.12.019

图1. CCS概念示意图。

气候变化的关键技术,但是从土地利用角度看,CCS属于 地下空间利用技术,并且燃煤电厂加CCS要远比太阳能、 风电占地面积更小。在可再生能源无法提供大规模工业用 电,以及其间歇性与储能难以解决的前提下,煤电、天然 气发电加CCS仍然是电力生产安全稳定的基石。同时, CCS技术也是以化石能源为基础的炼钢、水泥、化工等行 业大规模排放源直接快速减排的唯一有效选择[8]。CCS 将成为与石油、天然气工业同等规模的大工业(图2)。

不同学者对 CCS 在中国碳中和路径中的作用有不同 的预测[9–11],不同的预测模型反映了 CCS 对中国减排贡 献的大小以及未来政府的投资比重?一些学者将 CCS 技 术作为保底技术而不是必需技术,这样预测的CCS对中国减排的贡献值还不够高。然而,中国严重依赖煤炭,因此CCS的减排贡献值应该更高。如最新的亚州开发银行(ADB)预测,要实现中国碳中和目标,2030年中国CCS减排贡献要达到(0.3~1.2)×10⁸ t·a⁻¹,2050年要达到(8.5~25)×10⁸ t·a⁻¹,2060年则要达到(13~26)×10⁸ t·a⁻¹ [12]。 而如果考虑未来"一带一路"国家的减排需求,CCS的广泛应用将为中国企业提供更大的开拓空间。像直接空气捕集(DAC)和从生物能源工厂捕集CO₂(生物质能耦合碳 捕集与封存,BECCS)这样的负排放技术具有未来发展 空间,需要扩大规模以确定经济可行性。

2. CCS项目发展的起源回顾

从20世纪60年代起,美国和加拿大就一直开展CO₂ 驱油提高石油采收率(CO₂-EOR)的研究。世界上第一个 大规模CO₂-EOR项目SACROC(Scurry Area Canyon Reef Operating Committee),从1972年1月26日起,由雪佛龙 公司(Chevron)在得克萨斯州Scurry县的油田开展[13]。 该项目的CO₂来自科罗拉多州的天然CO₂气田,并通过管 道将其运输到油田驱油。在1972—2009年,SACROC项 目就累积注入超过1.75亿吨天然CO₂[14]。

然而,现代意义的CO₂捕集、运输与封存作为减少人 为排放CO₂的概念,最早是由意大利学者Marchetti [15] 提出。1996年开始的挪威Sleipner CCS项目和2000年开 始的IEA 温室气体(IEAGHG)研究与开发计划机构 Weyburn-Midale CO₂监测与封存项目(简称Weyburn项 目),则是国际上最早开展的对人为排放CO₂进行大规模 捕集、利用与封存的示范。

Sleipner CCS项目是科学研究及大规模商业化示范项目。受挪威碳税政策影响,原挪威石油公司 Statoil (现称 Equinor)对从天然气净化过程中分离出的CO₂进行捕集,并注入海底咸水层进行封存。该项目从1996年至今,累计封存超过2000万吨CO₂。该项目持续开展了20年的先进监测,取得了令人瞩目的科学研究成果[16]。

Weyburn项目在加拿大自然资源部、美国能源部、萨

斯喀彻温省政府及企业联合支持下,在加拿大萨斯喀彻温 省南部的Weyburn油田建立最大的地球科学试验场,开展 了历时12年的180万吨/年规模、多学科、全球最完整的 CO₂地质封存科学研究[17–19]。该项目从2000年10月开 始注入CO₂,至今仅Weyburn油田就累积封存超过3500万 吨CO₂:科学研究完成后转为商业化项目。

Weyburn项目的成功确定了CCS技术在温室气体减排 中的不可替代作用(图3)。首先,这是世界上第一个将 来自煤使用(美国北达科他煤气化厂)过程中产生的低成 本、高浓度CO,,进行大规模捕集、长距离运输,然后进 行驱油与封存的项目。从而证明了可以通过 CCS 技术, 将煤产生的CO,进行大规模、快速和低成本减排,进而清 洁利用煤炭。其次,该项目依靠CO₂-EOR获得收益,在 没有政府补贴的情况下,良性运行超过20年,建立了最 成功的CCS 商业化模式。再次,在解决高浓度煤化工CO, 排放源的捕集与封存之后, Weyburn 项目的组织者瞄准低 浓度 CO, 排放的燃煤电厂捕集与封存,在 SaskPower Boundary Dam Power Station Unit 3 (简称 BD3) 机组建成 世界上第一个100万吨/年规模燃烧后CO,捕集装置,将捕 集的CO,输送到Weyburn油田进行驱油与封存。当油田对 CO,的需求较低时, SaskPower Boundary Dam 电厂就会将 捕集的多余的CO,就近封存到咸水层中,基于此,该电厂 与位于加拿大萨斯喀彻温省的石油技术研究中心(Petroleum Technology Research Centre, PTRC) 合作建设了 Aquistore深部咸水层CO,地质封存科学研究设施。

图3. 科学研究设施和扎实的科学研究为Weyburn项目的成功奠定了基础。

Weyburn项目也使得 CO₂-EOR 利用成为没有政府激励条件下的 CCS 发展的最佳商业模式。因此,"U"被添加到 CCS 概念中而受到国际上的推崇。但是考虑到当前各国为实现碳中和目标所做出的承诺与努力,一些 CO₂-EOR 利用项目并没有完全起到大规模减排的效果[20],本文不讨论包括 CO₂-EOR 等利用的问题。

3. CCS项目的分类

CCS项目有众多的分类方法,其中全球碳捕集与封存研究院(GCCSI)[21]的分类最著名,该分类是按照项目从工业排放源捕集、运输和封存40万吨/年,以及从燃煤电厂捕集和封存80万吨/年CO₂的能力作为大规模先导试验、示范或商业化项目的门槛。按照2020年GCCSI的报告,目前全球有65个商业化项目,其中26个在运行中,其他的处于不同的发展阶段。

CCS项目的类型也可从CO₂的来源划分,即天然气分 离(如挪威北海 Sleipner 项目)、煤化工捕集(如美国大 平原煤气化厂,Great Plains Coal Gasification Plant)、炼油 制氢[如壳牌加拿大公司 Quest 项目[22]、日本苫小木 Tomakomai 项目]、煤电厂(如加拿大 SaskPower Boundary Dam 项目和美国 Petra Nova 项目)、钢铁厂捕集(如阿拉 伯联合酋长国 Al Reyadah 项目)、生物质能源捕集(如美 国 Decatur 项目)、直接空气捕集(如冰岛 Carbfix 公司和 瑞士 Climeworks 公司的项目,以及德国 Heidelberg Cement 集团旗下的挪威 Norcem's Brevik 水泥厂、加拿 大Lehigh Cement 公司的项目等)。直接采用开采高纯度天 然 CO₂进行驱油封存的项目不属于碳减排项目,因此不算 做 CCS 项目。

从封存的类型上主要分成咸水层封存、CO₂-EOR封存、废弃油气田的封存、玄武岩封存[23]等类型。玄武岩封存项目包括冰岛Carbfix项目[24]和日本Tomakomai项目

[25]。但是在Tomakomai项目中,CO₂在浅部砂岩层注入 很好而在深部玄武岩层中的封存效果并不理想,储层注入 性不高;加之没有类似冰岛Carbfix项目中玄武岩的高温 条件,因此并未形成矿化封存。因此,未来玄武岩封存的 潜力目前来看并不高。

如果从CCS项目的科学研究与商业化示范或运行来 分,就可以更好地理解CCS项目发展的历史、面临的科 学问题以及取得的技术进步。前面已经提到,虽然美国从 1972年起就开展大规模CO₂-EOR,但是CO₂-EOR技术关 注的提高原油采收率,并不关心CO₂的地质封存与减排。 当CO₂-EOR技术转向地质封存时,无论是在咸水层还是 在油层中封存CO₂,首先需要回答的科学问题是:CO₂是 否被安全地封存了?如何验证封存地点?如何验证不同规 模的CO₂封存量?用什么技术与装备去长期监测CO₂封存 的安全性?这是CCS科学研究项目与设施所要解决的问 题,也是商业化推广的基础。因此Weyburn项目是以CO₂ 的监测与封存为目标,而开展的年注入百万吨级CO₂的监 测与封存科学研究[18,26–27];项目在研究基础上形成的 标准CSA Z741成为国际ISO/TC 265碳捕集运输与地质封 存的种子标准。

Sleipner项目同样涉及CO₂大规模地质封存的海上监测研究,该项目的四维地震监测及时延重力监测,揭示了CO₂注入过程中在地下的运移规律。国际上影响较大的CCS科学设施(表1[28–29])还包括Aquistore、Cooperative Research Center for Greenhouse Gas Technologies (CO2CRC)Otway、Tomakomai、Ketzin、Decatur项目等。这些科学研究设施的建设技术水平高,监测技术与设备先进,涵盖CO₂地质封存的注入前(pre-injection)选址研究、注入阶段(injection)监测与研究,以及注入和封存后(post-injection)监测与研究,以及注入和封存后(post-injection)面测与研究,以及注入和封存后(post-injection)面测与研究,以及注入和封存后(post-injection)面积的方式。早期的CO₂地质封存科学研究设施还包括日本长冈(Nagaoka)CO₂地质封存试验场,荷兰K12-B CO₂地质封存项目等。

Name	Capture type and scale	Transportation	Storage	Characteristics
Weyburn, Canada	The 3 Mt·a ⁻¹ coal gasifi- cation unit of the US Da- kota Gasification Com- pany; the 1 Mt·a ⁻¹ post- combustion capture unit of the Canada SaskPow- er Boundary Dam Power Station	320 km pipeline from the US to Canada; 80 km pipeline from the SaskPower Bound- ary Dam Power Sta- tion to the oilfield	CO_2 storage with EOR at a depth of 1450 m; about 1.8 Mt·a ⁻¹ ; injection started in October 2000; the Weyburn field alone has stored a total of more than 35 million tonnes of CO_2 thus far	The world's largest scientific research facility for geological storage of CO_2 ; the most advanced, comprehensive, and complete MMV in the world, including 3D 3-component seismic monitoring (performed three times), 3D 9-component seismic monitoring (performed three times), 80-level 3D 3-component VSP monitoring in wells (performed three times), passive seismic monitoring (performed five times), fast and slow S-wave logging, surface environment monitoring, and so forth; the largest scale geological CO_2 storage datasets obtained; basis for the formation of the CSA Z741 Geological storage of carbon dioxide standard in Canada and the United States

表1 全球典型CCS科学实验项目与特点

Name	Capture type and scale	Transportation	Storage	Characteristics
Aquistore, Canada	The 1 Mt •a ⁻¹ post-com- bustion capture unit of the Canada SaskPower Boundary Dam Power Station	10 km pipeline trans- portation to the saline aquifer storage point (straight-line distance of 3.4 km)	Storage in a 3400 m underground deep saline aquifer; injec- tion started in 2015; has stored a total of 350 000 t of CO ₂	Learned from the experience of the monitoring technology used in the Weyburn Project and promoted the development of permanent moni- toring equipment and technology for the geological storage of CO_2 ; currently the world's deepest geological CO_2 storage project (3400 m), with the most difficult monitoring technology; layout of fa- cilities for permanent 3D seismic monitoring, borehole fiber optic DAS VSP, deep-well fiber optic temperature, pressure DTS, passive seismic monitoring, tiltmeter/GPS (surface horizontal and vertical de- formation), environmental monitoring was carried out multiple times before injection in order to detect the repeatability of the moni- toring technology and analyze non- CO_2 injection factors
Sleipner, Norway	Separation of CO_2 from the natural gas of Sleipner Vest Field, with a scale of 850 kt \cdot a ⁻¹ CO_2 ; capture technology and chemical solvents (amine absorption)	Separation of CO_2 on an offshore platform and injection of CO_2 into deep saline aqui- fers below the seabed	Storage of CO_2 in 800–1100 m deep sa- line aquifers below the seabed; injection started on September 15, 1996; the world's first offshore CCS project; has stored about 17 million tonnes of CO_2 in total so far	Injection into two sets of saline sandstone aquifers; the world's first time-lapse gravity monitoring project, through which it was found that the reservoir density decreased after CO_2 injection; 3D seismic monitoring with marine streamers (performed eight times); deep sub- surface monitoring, which was technically difficult and technically ad- vanced. The main research goal was to determine the movement pro- cess of pinnate fluids in reservoirs after CO_2 storage underground; da- ta were acquired and recorded using a comprehensive monitoring technology; data analysis facilitated safe CO_2 storage operations in complex reservoirs and environmental assessment
				Determination of the injection rate in different stages according to sci-

CO2CRC Otway, Australia	Separation of CO_2 from natural gas, CO_2 concen- tration of 80%, methane concentration of 20%	2.25 km pipeline	Storage in saline aqui- fers 1565 m deep; injection started in September 2009; a total of 80 000 t of CO_2 have been stored	entific tasks; research on geophysical monitoring and imaging technol- ogy at different CO_2 injection rates, and especially at small CO_2 injec- tion rates; the world's first facility for studying the impact of CO_2 in- jection on the sealing property of faults; possesses the most complete site experimental facilities and indoor experimental facilities at pres- ent; layout of facilities for permanent 3D seismic monitoring, bore- hole fiber optic DAS VSP, passive seismic monitoring, surface defor- mation, environmental monitoring, and so forth
Ketzin, Germany	Small-scale industrial hy- drogen-production proj- ect Schwarze Pumpe	Transportation with tankers	Storage in deep sa- line aquifers 630– 650 m underground; injection started on June 30, 2008 and ended on August 29, 2013; a total of 67 271 t of CO ₂ were stored	Most successful 4D seismic monitoring in the world; most successful monitoring with the resistivity method; unique combination of borehole monitoring with geophysical surface monitoring; long-term monitoring after well closing; main research goal was the movement process of pinnate fluids in reservoirs after CO_2 storage underground; the analysis performed used a comprehensive monitoring technology that facilitated safe CO_2 storage operations in complex reservoirs and environmental assessment; achieved the most successful prediction of the CO_2 reserves and storage capacity

				法权
Name	Capture type and scale	Transportation	Storage	Characteristics
Tomakom - ai, Japan	Capture of high-concentration CO_2 (industrial separation/chemical adsorption) in the hydrogen-production process of refineries, at a rate of 100 kt \cdot a ⁻¹ CO ₂	Injection of CO_2 from the capture end into the injection well lo- cated on the land	Storage in two sets of seabed saline aquifers 1000 m and 3000 m deep, respectively; hor- izontal well injection mode; a cumulative storage of 300 110 t of CO_2 from April 6, 2016 to November 22, 2019	Used HiPACT equipment, developed jointly by JGC and BASF, to capture CO ₂ ; utilized a chemical absorption process of newly devel- oped absorbing solvents with characteristics such as stable thermal degradation resistance and excellent CO ₂ absorption performance; achieved CO ₂ liquid-vapor separation process and energy conserva- tion at high pressure (3–5 atm), thus greatly reducing the energy and cost burden of CCS projects, as well as the cost of CO ₂ recovery and compression from 25% to 35%; developed an advanced and unique ocean-bottom cable; achieved four-component time-lapse seismic monitoring, marine streamer 4D seismic monitoring, ocean-bottom seismometer monitoring, land borehole monitoring, and earthquake network-combined monitoring systems; involved the injection of CO ₂ from land into two sets of seabed sandstone and basalt formations
In Salah, Algeria	Separation of CO ₂ (5.5% CO ₂ content) from natural gas in the Salah Oil Field of BP (Algeria), with a scale of $1.0-1.2 \text{ Mt} \cdot a^{-1} \text{CO}_2$	Direct separation of CO_2 from wellhead natural gas; transportation of CO_2 to the CO_2 injection well	Storage in a deep sa- line aquifer 20 m thick and 1880 m un- derground; injection started in August 2004, and ended in June 2011 due to caprock leakage risks caused by injection after moni- toring analysis; a total of 3.8 million tonnes of CO_2 were stored	Injection into one set of saline aquifers; performed the world's first research on surface-deformation monitoring with InSAR, through which it was found that, after CO_2 injection into the saline aquifer deep underground, the surface deformed significantly [29], possibly causing a risk of leakage through the caprock; 3D seismic monitoring (performed multiple times), micro-seismic monitoring, and tiltmeter/GPS; borehole wall leakage was found during wellbore integrity monitoring, possibly due to the geochemical reaction of well cement with CO_2

VSP: vertical seismic profiling; DAS: distributed acoustic sensing; DTS: distributed temperature sensing; GPS: Global Positioning System; HiPACT: high pressure acid-gas capture technology; JGC: Japan Gasoline Company; BASF: Badische Anilin-und-Soda-Fabrik; InSAR: interferometric synthetic aperture radar.

但总体来说,这些CCS科学研究设施是以地质封存 为核心,开展地质封存的MMV技术研究,测试从每年百 万吨级封存量到万吨级封存量的监测技术的可行性。除了 Weyburn项目(以驱油封存为主),研究的重点都是CO₂ 咸水层封存。这是因为从封存潜力上看,咸水层具有远大 于油气层的封存空间。CO₂咸水层封存项目一般是在排放 源附近就近捕集和封存,节省了用于修建长距离CO₂输送 管道的费用,也不需要考虑油田因驱油效益随国际油价变 化而导致的对CO₂需求的降低或终止,净碳减排成本应该 还低于驱油封存的成本。因此,咸水层封存代表了目前 CCS发展的方向。

当然, CO₂-EOR 也应受到重视,因为该过程产生的 效益可以补偿当前昂贵的捕集过程。从技术上来说,咸水 层CO₂地质封存目前是采用直接注入的方式进行的,即没 有抽采咸水层中的流体和降低原始孔隙压力。这与CO₂驱 替油气和补充储层压力的方式不同,咸水层注入CO₂更容 易导致孔隙压力高于原始地层压力,进而导致盖层的破 裂、储层裂缝的开启、断层的开启等泄漏风险。但目前国际上正在开展的咸水层CO₂封存项目证明了这些风险是可控的。

4. CO₂捕集的关键问题

CO₂捕集的难点在于低浓度排放源,如燃煤、燃气电 厂,钢铁、水泥、化工行业,以及垃圾焚烧等大规模、低 能耗或低成本问题。从壳牌加拿大公司Quest CCS项目投 资7.903亿加元的资本支出明细看[30],100万吨/年重油 制氢过程中浓度为17%的CO₂的捕集、运输与封存的成本 占比约为55%、16%和5%。显然,CO₂捕集的成本总是 占据CCS投资的主要部分,而地质封存部分花费最低。 除捕集设施投资的高成本外,捕集设施运行过程中的压缩 工艺与蒸汽能耗仍有优化改进的空间。极高的溶剂降解率 要求在捕集设施在运行过程中大量补充溶剂,因此导致运 行成本和捕集成本上升。 CO₂捕集工艺还面临着各种其他的挑战,包括有限的 土地空间、有限的水资源利用率、对其他烟气成分的耐受 性(适应钢铁、水泥、冶炼等产生不同烟气成分的排放 源)以及其他当地电厂标准(如主要运行维护间隔和调低 输出负载),捕集的规模也是技术先进性的重要标志。大 规模燃烧后捕集有很多好处,上面提到的许多性能问题正 在得到解决。例如,需要针对每种烟气调整溶剂组成以减 少降解问题,中国华能等公司目前正在探索这些问题的解 决方案。

虽然科学界在低浓度CO,捕集技术领域开展大量的科 学研究[31-34],但是能够大规模商业化应用的技术还很 少。而作为世界上第一个百万吨级燃煤电厂燃烧后CO,捕 集设施, SaskPower BD3 捕集设施的建成与运行具有里程 碑意义。该捕集设施从2014年10月2日投产至今,实现 稳定运行,到2021年5月底累积捕集414.3519万吨CO,, 年实际捕集能力达到设计规模的75%以上。其捕集过程 利用壳牌公司的Cansolv技术,该技术用于集成SO₂-CO₂ 的热捕集过程,使用专有胺基溶剂。这些溶剂利用发电厂 的低压蒸汽进行再生。对于 SaskPower BD3 捕集设施,关 于胺基溶剂再生的高能量要求和溶剂降解等操作技术问 题,有待继续优化和改进[35]。在美国能源部支持的第二 代捕集技术中, Linde/Badische Anilinund-Soda-Fabrik (BASF)的高级水胺溶剂法[36]达到的捕集能耗低于 2.7 GJ·t⁻¹ CO₂ (其运行规模不详),运行 5500 h的最小胺 基溶剂降解最低。Baker Hughe公司的紧凑型捕集技术, 更加适合大多数没有预留捕集土地空间的排放源,该技术 具有较好的应用前景。

世界上规模最大的燃煤电厂 CO₂捕集设施是 Petra Nova,该设施CO₂捕集能力达到140万吨/年。CO₂捕集是 使用日本 Kansai Mitsubishi 公司的 CO₂回收工艺进行的, 该工艺使用专有的KS-1 溶剂(一种空间位阻胺),使用独 立燃气热电厂产生的蒸汽进行再生。Petra Nova燃烧后捕 集工厂产生的CO₂用于提高原油采收率。低油价将影响捕 集设施的运行,直到使工业减少其碳足迹的法规准备就绪 为止。

捕集设施中具有标志性意义的项目包括具有80万吨/ 年CO₂捕集能力的阿拉伯联合酋长国Al Reyadah项目,以 及正在建设中的具有400万吨/年CO₂捕集能力的英国 Drax 生物质发电捕集设施、德国 Heidelberg Cement 集团 旗下的挪威 Norcem's Brevik 水泥厂40万吨/年CO₂捕集 设施、芬兰 Fortum Oslo Varme 公司40万吨/年CO₂捕集设 施、美国得克萨斯州 Mustang Station 天然气发电厂600万 吨/年 CO₂捕集设施、即将建设的加拿大海德堡里海 Lehigh 水泥厂全规模 80 万吨/年捕集设施,以及壳牌加拿 大公司 Polaris 制氢等化工过程 75 万吨/年 CO₂捕集设施等。 美国 Kemper 县整体煤气化联合循环发电(IGCC)300 万 吨/年 CO₂捕集设施虽然没有成功,但这个项目展现的雄 心和积累的经验,仍然是大规模燃烧前 CO₂捕集技术的有 益探索。

工业化技术进步的特点是,基于技术在早期运行中获得的经验教训,进而应用于改进下一代设备的设计和运行 实践,从而提高效率、降低成本。正是由于 SaskPower BD3 捕集设施的成功运行才促成了随后 Shand 发电站第二 代燃烧后捕集技术的建立。该捕集技术基于第一代 CO₂捕 集设施运行实践,但项目成本可以降低 67% [8,37]。

5. 中国CCS项目的现状

中国目前还没有全流程 CCS 科学研究设施,目前的 研究基本上是在小规模的全流程 CCS 先导试验项目,以 及 CO₂-EOR 示范基础上开展的[38-41]。这些项目的目标 主要是研究 CO₂-EOR,对于现场规模的 CO₂地质封存安 全性的研究还不足;虽然很多学者已经开展了相关的监测 研究[42-43],但是没有足够的证据证实项目的 CO₂封存 量、分布范围与安全性。由于科学研究水平、技术水平与 投入资金的先天不足,中国与发达国家的 CCS 科学设施 差距很大。

国内早期在中国石油天然气集团有限公司、中国石油 化工集团有限公司开展的CO₂-EOR项目,都是以开采天 然CO₂进行驱油封存的。这些项目不能被认定为CCS和减 排项目。后续的神华集团鄂尔多斯咸水层CCS项目、陕 西延长石油集团靖边CCS项目、中国石化中原油田CO₂-EOR项目、中国石油长庆油田CO₂-EOR项目,则是以低 成本高浓度煤化工捕集为基础的示范项目[38–41]。

目前基于低浓度 CO₂源的 CO₂捕集试验或示范,包括 华润集团 2019年5月在广东建设投产的华润电力(海丰) 有限公司碳捕集测试设施、2009年中国华能集团有限公 司建设的上海石洞口第二发电厂 CO₂捕集装置(10万吨/ 年)、2017年中国华能集团有限公司建设的天津 IGCC 电 厂燃烧前 CO₂捕集设施(6万吨/年)、安徽白马山水泥厂 燃烧后 CO₂捕集设施(5万吨/年),以及陕西国华锦界能 源有限责任公司(现为国能锦界能源有限责任公司)神木 锦界电厂刚刚建成的 CO₂捕集设施(15万吨/年)。但是因 为这些 CO₂捕集设施没有下游的规模化封存或者承接项 目,无法完成长期捕集和满负荷运行的测试。在捕集技术 的测试,包括不同类型吸附剂的测试、运行效率、运行稳 定性、能耗,特别是捕集规模上与美国、加拿大有较大 差距。

6. CO₂地质封存的关键科学与技术问题

CCS项目的落脚点是实际地质封存量、地质封存的安 全性以及CO₂减排量的监测、报告和核查(MRV)[44]。 这是企业进入碳交易市场,获得如美国45Q抵免税,以及 挪威、加拿大碳税等政府激励政策的基础。早在2008年, 美国国家工程院就将碳封存作为21世纪未解决的14项重 大工程挑战之一,2019年麻省理工学院《MIT科技评论》 将碳封存列为全球十大技术挑战之首,其中最关键的科学 与技术问题是如何进行现场规模的CO₂地质封存MMV的 一系列技术方法的研发,进而评估地下封存风险和封存 量,并确保CO₂地下长期封存的安全性。美国能源部从 1997年开始资助CCS研究,前期投入主要集中在地质封 存上[45–46]。这是因为只有地质封存问题解决好,才能 解决被捕集的CO₂的去处,进而驱动CCS项目发展。

6.1. 安全性与风险监控一直是CO2地质封存的核心问题

对CO₂地质封存安全性与风险的担忧,一直是科学界和民众最关心的议题之一[47-48]。CO₂地质封存风险主要来自三个方面:一是注入或生产井这种连接地质封存体、地下水层和大气的直接泄露通道[49-51];二是注入地下的CO₂可能诱发地震、开启断层或突破盖层封堵而导致泄露;三是外力如天然地震可能破坏CO₂地质封存体(包括井壁),从而导致泄露。在注入或者生产井作业过程中会导致井筒变窄、扩大、破裂、坍塌、老井套管及水泥环腐蚀等,进而成为CO₂地质封存中风险最高的泄露路径。井筒完整性是地质封存安全性的保障,因此美国国家环境保护局(EPA)出台了CO₂地质封存井眼VI类的标准,用于确保CO₂注入过程中井筒的安全与地质封存的长期安全性。

天然地震是否会造成 CO₂地质封存设施的损坏与泄露,是日本 Nagouka、Tomakomai两个 CCS 科学研究设施研究的重点。这两个 CO₂地质封存体都经受多次地震,包括距震中 20 km 的 6.8 级、6.7 级地震,但并没有导致项目发生任何泄漏[52–54]。日本地球环境产业技术研究机构(RITE)的研究人员利用声波水泥胶结测井和井眼成像检查地震前后长冈项目井壁的完整性,评估地震井底压力及注入设施,进行气密性/压力试验等[55],证明井筒的安全性。

然而,注入地下的CO2诱发地震导致断层开启或盖层

突破的危险,因压力变化规律和CO2流向未知而成为安全 性监测与预警的难点。2012年斯坦福大学地球物理学家 Zoback和Gorelick [56]发表论文,认为CO,注入与地质封 存可能诱发地震,即使是一次小地震也会导致CO,逃逸到 地表;这一观点引发一场科学家论战。主要问题在于 Zoback 的实验研究是基于花岗岩,而花岗岩极不可能被 用作实际封存中的封堵层或盖层。另外,研究认为盖层中 的节理和裂缝渗透性在所有情况下都会增加,并形成一条 路径导致CO,向地表迁移是不合理的。节理和裂缝渗透性 增加的程度取决于岩石类型、应力状态和填充物等多种因 素。事实上,在很多情况下,大滑动的大断层起到密封作 用,对渗透性没有影响。美国加利福尼亚州、伊朗,甚至 中国渤海湾盆地的油气藏就是这样——尽管频繁发生大地 震,但仍能很好地保存油气藏而不会导致泄露。在这些地 区,断层本身起到了密封作用,而不是流体运移的通道, 并在地质时期封堵了运移中的油气而成藏。Zoback所讨 论的断层,是从深部注入层一直延伸到地表的巨大断层, 这种断层在盆地内部存在的可能性很低,或者地质封存选 址可以回避这种断层。而麻省理工学院的学者[57]、卡内 基梅隆大学的学者[58]均认为CO,注入与封存诱发地震产 生巨大断层的可能性极低。

对于断层延伸到地表的断层渗漏与封堵性研究,由澳 大利亚地质调查局[59]牵头,正在开展断层封堵安全性研 究。该研究属于 CO2CRC Otway 科学试验场开展的现场 规模的 CO₂注入项目的一部分。研究未发现 CO₂顺着断层 渗漏的现象。当然,如同油田注水开发、地热开采诱发地 震一样[60],大规模的流体注入,有可能诱发地震[61]。 为防止 CO₂注入过程中诱发地震,压力控制是最重要的监 管措施[62];而断层活化、盖层突破现象也主要是由压力 变化引起的。

6.2. 断层活化和盖层突破问题是CO₂封存安全性监测的关键问题

CO₂地质封存安全性与风险评估,就是研究注入的 CO₂是否突破完整的构造或岩性圈闭,包括井筒和多套断 层、盖层组合。需明确和回答:地质圈闭封存CO₂的能 力;注入储层的CO₂在地层中的运移规律;注入压力或者 外力开启断层或盖层而导致泄露或渗漏的可能性;CO₂泄 露的可能路径;CO₂是否会泄露到浅地表,污染地下饮用 水及导致地表生态环境损害;如果没有泄露到地表,储层 上覆地层的多套盖层能否继续二次封闭和隔离CO₂;如何 确定井筒完整性及油藏工程、工艺等会导致井筒破坏和 CO₂泄漏等。 对CO₂地质封存安全性和风险的研究,国际上早已在 一系列大规模地质封存和科学研究项目中进行过,关键问 题是现场规模的安全与风险监测验证研究。对于加拿大 Weyburn 项目,曾有学者认为部分注入的CO₂可能突破了 盖层和断层,进入上覆地层。因无法在上覆咸水层进行现 场规模监测,所以不知道哪里是可能的突破位置,无法通 过地球化学方法进行检验,被动地震监测也未发现异常响 声。而注入过程中特别是封存完成后,运用地球物理(四 维地震)监测和验证盖层、上覆层则成为唯一可行手段 [26,63]。

中国国内也开展了多个小规模CO₂-EOR及鄂尔多斯 CO₂咸水层封存示范[38-39,64],然而这些项目的重点是 CO₂-EOR [65],对地质封存安全性研究及检验进行数值模 拟较多,对现场规模、规模化的盖层、断层风险监测与验 证研究很少,因此无法证明CO₂在地下分布的范围、安全 性与封存量。对于CO₂注入的地面四维地震监测,仅在中 国石化胜利油田高89区块开展[66]。从国内开展的CO₂-EOR项目看,虽然没有公开报道,但是CO₂顺井壁泄漏进 入上覆地层是目前最主要的风险。国内外所有的CO₂-EOR项目,都未见到断层开启而泄漏CO₂的现象发生。

石油工业在研究和预测盖层完整性方面具有非常成熟和成功的经验。当然仍存在一些对封存过程的担忧,例如,在CO₂与盖层接触时,CO₂与岩石的地球化学反应是否会影响孔隙及渗透性[67]?CO₂在储层中的矿化情况如何?CO₂是否会扩散到盖层并腐蚀泄漏通道?盖层封堵CO₂的厚度要求是什么?然而,现有的天然CO₂气田储层保存与封闭证明,这些担忧是不必要的[68–70]。

尽管目前90%以上的CO₂地质封存都是在油气层进行的,但深部咸水层仍是最具潜力和最大的CO₂地质封存空间。White等[71–72]通过InSAR数据,对英国BP公司等在阿尔及利亚的In Salah项目的咸水层CO₂注入井附近的地表形变进行观测研究,进而支持"地下950m深度咸水层在注入近400万吨CO₂后储层破裂和底部位盖层被突破"的假说,但是他们没有在地表观测到CO₂泄漏。对于全球其他更大规模的CO₂封存项目,如Weyburn都没有观测到地表形变。

Verdon 等[29]对 Sleipner、In Salah 及 Weyburn 三个百 万吨级地质封存项目引起的应力变形进行对比,结果也说 明对于低渗透咸水层,注入压力对地质封存安全性的影响 是最大的。无论是油层还是咸水层 CO₂地质封存,压力管 控都是确保地质封存安全与降低未来泄露风险要解决的关 键科学问题[62]。

当然,假设CO₂突破了一套盖层,或者开启了断层而

进入上一套地层,但是只要被上覆的多套盖层逐层封堵就 不算泄漏。Rinaldi [73]等的研究也表明,与断层复活相关 的诱发的地震活动不一定会为渗漏打开一条新的流动路 径。某个层内单个诱发事件,通常不足以实质性地改变整 个断层长度上的渗透性。这样,即使某段断层渗透性发生 一些变化,也并不意味着CO₂会沿着整个断层向上运移, 突破多套盖层进入上覆饮水层[74]。

6.3. 观测、监测与证实的难点是准确的地质封存量预测

国际上不少学者开展了很多CO,-咸水层-地层化学、 物理作用条件下的盖层封闭性、断层开启等岩心实验与数 值模拟研究[75-76],加深了人们对CO,长期地质封存过 程中盖层、断层演化可能性的理解。但是这些储层内的物 理化学变化,以及盖层及断层CO,-水-岩石等化学反应 [67]等变化,与地层压力、CO,饱和度变化相比都比较小 [77],也不容易被观测和监测。CO2地质封存安全性与封 存量是互相印证的关系。对CO,地质封存量的监测与证 实,既可以证明减排量,又可以证实当注入量不等于封存 量时,可能预示的泄漏风险。而这其中最关键的参数是地 层压力和CO,饱和度,因为注入CO,后地层压力升高可能 诱发盖层、断层突破及井壁破裂。CO,饱和度是确定CO, 地下分布范围、计算封存量的关键参数。当然,对于CO, 分布的监测,需要证明CO,可能突破多套盖层或者开启多 段断层进入浅地表或大气中才算真正的泄漏。地表环境监 测及地下潜水层监测也是证明CO,是否泄漏到地表、浅地 表的重要环节。

井中观测是监测CO2地质封存安全性最直接的方法, 但多数情况下,注入井周围不存在盖层与断层突破的风 险,并且井监测的范围非常有限。依靠地面地球物理监 测,特别是四维(时移)地震来监测地下地质封存体的变 化,成为国际上CO,地质封存项目的首选技术手段[16,27, 78]。在所有的CCS科学研究设施中(表1), 四维地震成 像是证明CO₂地质封存安全性、分布范围、分布状态最有 效的证据。德国Ketzin项目较准确地预测出CO,饱和度与 封存量[79],这可能与CO,封存比较浅有关。加拿大 Aquistore 项目吸取了 Weyburn 项目的很多经验教训,布设 了永久检波器和采用可控震源,避免了炸药震源在两次三 维地震监测中激发点不重复的问题。采用井中分布式声传 感器 (DAS) 技术,在获得井中不同深度的压力、温度和 垂直地震剖面 (VSP) 监测数据的同时, 又不影响井中 CO,注入[80]。期间开展注入CO,前的地面四维地震监测, 以此研究季节变化导致的浅地表弹性参数变化对四维地震 差异信息的影响[81]。研究证明,在注入规模为一万吨、 注入深度为3400 m的咸水层中,仍然可以利用地震监测 对CO₂分布进行成像[82]。CO2CRC Otway项目采用先进 的四维地震监测技术(配有埋地 DAS 阵列)、4D VSP (井中光纤)、连续震源,对注入深度为1500 m、注入量 为5000 t的CO₂分布、饱和度成功进行成像[83]。Sleipner [16]、Tomakomai [25]项目采用海洋四维地震监测技术对 CO₂分布进行成像,这也是海底咸水层封存最有效的监测 手段。Sleipner项目[84]开展时延重力监测,首次证明低 成本的重力监测技术对于大规模CO₂地质封存监测的有效 性。时延重力监测与地震监测的结合,有助于提高地震预 测CO₂封存量的精度。

但是常规纵波信息难以区别两次地震监测之间的差异 是来自压力还是CO₂饱和度的变化[78,85]。因此Weyburn 项目采用了先进的四维三分量(4D3C)地震监测技术, 利用纵波与转换波的结合来区分压力与CO₂饱和度变化。 当然目前四维转换波资料的处理与解释还存在很多难点, 未能获得预期的效果,但这代表了地震监测技术的前沿。

对于预测CO,封存量的关键参数CO,饱和度来说,难 点在于准确获得井点的CO,饱和度,特别是在注入CO, 后,套管井中更难准确测量CO,饱和度。日本Nagaoka项 目在世界上首次开展了注入CO,后40多次的井中地球物 理测井,成为利用多次测井识别注入储层前后和不同阶段 CO,变化的典范[55,86]。目前对CO,地下分布的监测结果 主要是一套地层的CO,分布。对于注入两套咸水层(如 2400~3000 m 处的火山岩和火山碎屑中新世中期的北海道 地层 Miocene Takinoue; 这是 Tomakomai 项目的第二个 CO₂注入层)的CO₂的监测,,未获得CO₂分布的监测结 果。为了确定CO,是否从注入层进入其他储层,进而确定 地质封存是否安全,有必要进一步研究监测和成像方法, 以获取多套储层中CO,的分布状况。当然,CO,地质封存 的 MMV, 需要地质、地球物理、地球化学、石油工程等 多学科的结合与互相印证,才能证明CO,地质封存的长期 安全性。

7. 结论与展望

从先进国家 CCS 发展的经验看, CCS 应当从低成本、 高 CO₂浓度的煤化工捕集,或者低成本的天然气净化捕 集、或者与驱油封存结合进行捕集,或者直接进行咸水层 封存,逐步过渡到低浓度的燃煤电厂、炼化制氢、钢铁、 水泥等尾气捕集。捕集技术的难点依然是低浓度 CO₂尾气 的大规模、低能耗捕集,地质封存的难点在于如何开展现 场规模的 MMV,来确定 CO₂地质封存量、减排量和封存 的安全性。

先进国家建设的 CCS 科技基础研究设施,对于对 CCS 基础科学问题的理解、降低全流程 CCS 技术环节的 成本、长期地质封存的安全性监测、先进技术研发和进一 步的商业化推广示范以及人才培养起到至关重要的推动作 用。虽然先进国家的 CCS 研究与知识共享,有助于加速 CCS 在其他国家降低成本、降低风险与商业化布局,但是 地质条件的复杂性使得许多技术难以直接复制和取得应有 的效果,比如中国的 CO₂-EOR 并未取得像北美国家那样 高和稳定的驱油效果。对注入地下的 CO₂封存状态、运移 规律、安全性等科学问题的研究和认识的不足,制约了 CO₂-EOR 与封存的规模化发展。缺乏 CCS 科学研究设施 的研究与技术支撑,即便开展大规模 CCS 项目的建设, 也难以持续运行而不能达到大规模、快速减排的目标。

CCS hub可以实现成本的降低和区域内不同类型排放 源的大规模减排,是未来商业化 CCS 项目发展的方向。 但是 CCS hub 对封存地点的地质封存能力要求更高,详细 准确的地质封存选址显得尤为重要。封存地址的 CO₂封存 潜力、注入能力,决定了捕集、输送管道的规模和 CCS hub 的建设规模。

CO₂地质封存未来重点的发展方向是咸水层封存,其次是油层和废弃气田封存。咸水层封存可以使更多类型的高碳排放源就近被封存,减少了长距离CO₂输送管道建设的成本,以及钢管生产、铺设中的碳足迹。咸水层封存不需要将排放的CO₂捕集成高纯度的CO₂,从而降低了捕集成本。CCS部署过程中,需要从全流程的每个环节提高能源利用效率、减少碳足迹,从全流程角度计算,并实现最低成本的净减排量。

从先进国家成功的大规模 CCS 项目建设周期看,从 选址到建成运行,需要 5~10 年的时间。要达到 IEA 和 CSLF 预计的 2030 年 CCS 减排量,需要现在就开始行动, 不然无法实现《巴黎协定》的温控目标。当然,先进国家 如美国、挪威、加拿大等成功发展 CCS 的最重要因素是 国家的激励政策(如 45Q)、碳税和对企业碳排放的约束 政策。欧盟、中国的碳市场对于 CCS 技术有积极的推动 作用,随着碳价的提高,会有助于 CCS 加快走向盈利和 商业化。

致谢

本研究由陕西省自然科学基金项目(2021JCW-04)资助。感谢编辑人员与匿名审稿人员给予的建设性意见。

Compliance with ethics guidelines

Jinfeng Ma, Lin Li, Haofan Wang, Yi Du, Junjie Ma, Xiaoli Zhang, and Zhenliang Wang declare that they have no conflict of interest or financial conflicts to disclose.

References

- [1] Orr FM. Onshore geologic storage of CO2. Science 2009;325(5948):1656-8.
- [2] Chu S. Carbon capture and sequestration. Science 2009;325(5948):1599.
- [3] Intergovernmental Panel on Climate Change. Special report on carbon dioxide capture and storage. Report. Cambridge: Cambridge University Press; 2005.
- [4] International Energy Agency. Net zero by 2050. A roadmap for the global energy sector. Report. Paris: International Energy Agency; 2021.
- [5] Carbon Sequestration Leadership Forum. The carbon sequestration leadership forum (CSLF) technology roadmap 2021. Report. Washington, DC: CSLF Publications; 2021.
- [6] Intergovernmental Panel on Climate Change. The fifth assessment report (AR5). Report. New York: Intergovernmental Panel on Climate Change; 2014.
- [7] Intergovernmental Panel on Climate Change. Global warming of 1.5 °C. Report. Geneva: Intergovernmental Panel on Climate Change; 2018.
- [8] International Energy Agency. The role of CCUS in low-carbon power systems. Report. Paris: International Energy Agency; 2020.
- [9] Wei YM, Kang JN, Liu LC, Li Q, Wang PT, Hou JJ, et al. A proposed global layout of carbon capture and storage in line with a 2 °C climate target. Nature Climate Chang 2021;11(2):112–8.
- [10] Duan H, Zhou S, Jiang K, Bertram C, Harmsen M, Kriegler E, et al. Assessing China's efforts to pursue the 1.5 °C warming limit. Science 2021;372(6540): 378–85.
- [11] Institute of Climate Change and Sustainable Development of Tsinghua University. China's long-term low-carbon development strategies and pathways. Singapore: Springer; 2021.
- [12] Asian Development Bank. Road map update for carbon capture utilization and storage demonstration and deployment in the People's Republic of China. Report. Manila: Asian Development Bank; 2022.
- [13] Gill TE. Ten years of handling CO₂ for SACROC unit. In: Proceedings of SPE Annual Technical Conference and Exhibition; 1982 Sep 26–29; New Orleans, LA, USA. OnePetro; 1982. p. SPE-11162-MS.
- [14] Hovorka SD, Smyth RC, Romanak KD, Yang C, Nicot JP, Hardage B, et al. SACROC research report [Internet]. Austin: Bureau of Economic Geology; 2021 [cited 2021 Jul 28]. Available form: https://www.beg.utexas.edu/gccc/ research/sacroc.
- [15] Marchetti C. On geoengineering and the CO₂ problem. Clim Change 1977;1(1): 59–68.
- [16] Chadwick A, Williams G, Delepine N, Clochard V, Labat K, Sturton S, et al. Quantitative analysis of time-lapse seismic monitoring data at the Sleipner CO₂ storage operation. Leading Edge 2010;29(2):170–7.
- [17] Wilson M, Monea M, editors. IEA GHG Weyburn CO₂ monitoring & storage operation summary report 2000–2004. In: Proceedings of 7th International Conference on Greenhouse Gas Control Technologies; 2004 Sep 5–9; Vancouver, BC, Canada. Regina: PTRC Internet Homepage; 2004.
- [18] Hitchon B. Best practices for validating CO₂ geological storage: observations and guidance from the IEAGHG Weyburn–Midale CO₂ monitoring project. Sherwood Park: Geoscience Publishing; 2013.
- [19] Brown K, Whittaker S, Wilson M, Srisang W, Smithson H, Tontiwachwuthikul P. The history and development of the IEA GHG Weyburn–Midale CO₂ monitoring and storage project in Saskatchewan, Canada (the world largest CO₂ for EOR and CCS program). Petroleum 2017;3(1):3–9.
- [20] Bui M, Adjiman CS, Bardow A, Anthony EJ, Boston A, Brown S, et al. Carbon capture and storage (CCS): the way forward. Energy Environ Sci 2018;11(5): 1062–176.
- [21] Global CCS Institute. Global status of CCS 2020. Report. Melbourne: Global CCS Institute;2020.
- [22] Simon O. Quest CCS project—learning from the first year of operations [presentation]. In: CCS Technical Workshop; 2017 Jan; Toyko, Japan; 2017.
- [23] Gislason SR, Oelkers EH. Carbon storage in basalt. Science 2014; 344(6182):

373-4.

- [24] Matter JM, Stute M, Snæbjörnsdottir SÓ, Oelkers EH, Gislason SR, Aradottir ES, et al. Rapid carbon mineralization for permanent disposal of anthropogenic carbon dioxide emissions. Science 2016;352(6291):1312–4.
- [25] Sawada Y. Overview of Tomakomai CCS demonstration project key results of Tomakomai project [presentation]. In: Carbon Capture, Utilization and Storage in Japan; 2020 June 24; online conference.
- [26] White D. Seismic characterization and time-lapse imaging during seven years of CO₂ flood in the Weyburn field, Saskatchewan. Canada Int J Greenh Gas Control 2013;16(S1):S78–94.
- [27] Ma JF, Li L, Wang HF, Tan MY, Cui SL, Zhang YY, et al. Geophysical monitoring technology for CO_2 sequestration. Appl Geophys 2016;13(2): 288–306.
- [28] Worth K, White D, Chalaturnyk R, Sorensen J, Hawkes C, Rostron B, et al. Aquistore project measurement, monitoring and verification: from concept to CO, injection. Energy Procedia 2014;63:3202–8.
- [29] Verdon JP, Kendall JM, Stork AL, Chadwick RA, White DJ, Bissell RC. Comparison of geomechanical deformation induced by megatonne-scale CO₂ storage at Sleipner, Weyburn, and In Salah. Proc Natl Acad Sci USA 2013; 110(30):E2762–71.
- [30] Maas W. Quest CCS project costs [presentation]. In: CCS Cost Network Workshop; 2017 Sep 13–14; London, UK; 2017.
- [31] Rochelle GT. Amine scrubbing for CO₂ capture. Science 2009; 325(5948): 1652–4.
- [32] Bhown AS, Freeman BC. Analysis and status of post-combustion carbon dioxide capture technologies. Environ Sci Technol 2011;45(20):8624–32.
- [33] Herzog HJ. Carbon capture. Cambridge: MIT PRESS; 2018.
- [34] Service RF. Carbon capture marches toward practical use. Science 2021; 371(6536):1300.
- [35] Nath D, Campbell C, Feng Y, Bruce C, Philip F, Henni A, et al. A novel methodology for online analysis of amine solution degradation caused by fly ash. In: Proceedings of 15th Greenhouse Gas Control Technologies Conference; 2021 Mar 15–18; Abu Dhabi, UAE. SSRN; 2021. p. 1–14.
- [36] Lunsford L. Front end engineering design of Linde BASF advanced post combustion CO₂ capture technology at a Southern Company Natural Gas Fired Power Plant [presentation]. In: 2020 Integrated Project Review Webinar; 2020 Aug 17–19; online conference.
- [37] Giannaris S, Bruce C, Jacobs B, Srisang W, Janowczyk D. Implementing a second-generation CCS facility on a coal fired power station—results of a feasibility study to retrofit SaskPower's Shand power station with CCS. Greenhouse Gas Sci Technol 2020;10(3):506–18.
- [38] Ma J. China's CCUS progress and deployment [presentation]. In: CLSF 7th Ministerial Meeting; 2017 Dec 3–7; Abu Dhabi, UAE; 2017.
- [39] [Roadmap for carbon capture, utilization and storage technology in China (2019)]. Beijing: Science Press; 2019. Chinese.
- [40] Xie H, Li X, Fang Z, Wang Y, Li Q, Shi L, et al. Carbon geological utilization and storage in China: current status and perspective. Acta Geotech 2014;9(1): 7–27.
- [41] Liu HJ, Were P, Li Q, Gou Y, Hou Z. Worldwide status of CCUS technologies and their development and challenges in China. Geofluids 2017;2017:1–25.
- [42] Li Q, Song R, Liu X, Liu G, Sun Y. Monitoring of carbon dioxide geological utilization and storage in China: a review. In: Wu Y, Carroll JJ, Zhu W, editors. Acid gas extraction for disposal and related topics. New York: Wiley-Scrivener; 2016. p. 331–58.
- [43] Li X, Li Q, Bai B, Wei N, Yuan W. The geomechanics of Shenhua carbon dioxide capture and storage (CCS) demonstration project in Ordos Basin. China J Rock Mech Geotech Eng 2016;8(6):948–66.
- [44] Schrag DP. Storage of carbon dioxide in offshore sediments. Science 2009; 325(5948):1658–9.
- [45] Folger P. Carbon capture and sequestration (CCS) in the United States. Report. Washington, DC: CRS; 2018.
- [46] Damiani D. Safe geologic storage of captured carbon dioxide: two decades of DOE's carbon storage R&D program in review. Report. Washington, DC: US DOE Office of Fossil Energy; 2020.
- [47] Bickle MJ. Geological carbon storage. Nat Geosci 2009;2(12):815-8.
- [48] Li Q, Liu G. Risk assessment of the geological storage of CO₂: a review. In: Vishal V, Singh TN, editors. Geologic carbon sequestration. New York: Springer; 2016. p. 249–84.
- [49] Skinner LC. CO₂ blowouts: an emerging problem. World Oil 2003;224(1): 38–42.
- [50] Loizzo M, Akemu AP, Jammes L, Desroches J, Lombardi S, Annunziatellis A. Quantifying the risk of CO, leakage through wellbores. SPE Drill Complet

2011;26(3):324-31.

- [51] Carroll S, Carey JW, Dzombak D, Huerta NJ, Li L, Richard T, et al. Review: role of chemistry, mechanics, and transport on well integrity in CO₂ storage environments. Int J Greenh Gas Control 2016;49:149–60.
- [52] Chhun C, Tsuji T. Pore pressure analysis for distinguishing earthquakes induced by CO, injection from natural earthquakes. Sustainability 2020;12:9723.
- [53] Research report on impacts of Hokkaido Eastern Iburi Earthquake on CO2 reservoir. Report. Tokyo: Japan CCS Co., Ltd.; 2018 Nov.
- [54] Sano Y, Kagoshima T, Takahata N, Shirai K, Park JO, Snyder GT, et al. Groundwater anomaly related to CCS-CO₂ injection and the 2018 Hokkaido eastern Iburi earthquake in Japan. Front Earth Sci 2020;8:611010.
- [55] Nakajima T, Xue Z. Evaluation of a resistivity model derived from time-lapse well logging of a pilot-scale CO₂ injection site, Nagaoka, Japan. Int J Greenh Gas Control 2013;12:288–99.
- [56] Zoback MD, Gorelick SM. Earthquake triggering and large-scale geologic storage of carbon dioxide. Proc Natl Acad Sci USA 2012;109(26):10164–8.
- [57] Juanes R, Hager BH, Herzog HJ. No geologic evidence that seismicity causes fault leakage that would render large-scale carbon capture and storage unsuccessful. Proc Natl Acad Sci USA 2012;109(52):E3623.
- [58] Vilarrasa V, Carrera J. Geologic carbon storage is unlikely to trigger large earthquakes and reactivate faults through which CO₂ could leak. Proc Natl Acad Sci USA 2015;112(19):5938–43.
- [59] Feitz A, Tertyshnikov K, Pevzner R, Ricard L, Harris B, Schaa R, et al. The CO2CRC Otway shallow CO₂ controlled release experiment: preparation for phase 2. Energy Procedia 2018;154:145–50.
- [60] Kim KH, Ree JH, Kim Y, Kim S, Kang SY, Seo W. Assessing whether the 2017 Mw 5.4 Pohang earthquake in South Korea was an induced event. Science 2018;360(6392):1007–9.
- [61] National Research Council. Induced seismicity potential in energy technologies. Washington, DC: National Academies Press; 2013.
- [62] Zoback MD, Gorelick SM. To prevent earthquake triggering, pressure changes due to CO₂ injection need to be limited. Proc Natl Acad Sci USA 2015;112(33): E4510.
- [63] Duxbury A, White D, Samson C, Hall SA, Wookey J, Kendall JM. Fracture mapping using seismic amplitude variation with offset and azimuth analysis at the Weyburn CO₂ storage site. Geophysics 2012;77(6):B295–306.
- [64] Cai B, Li Q, Lin Q, Ma J, Pang L. 2020, China carbon dioxide capture, utilization and storage (CCUS) status report. Beijing: China Environmental Publishing Group; 2020. Chinese.
- [65] Hill LB, Li X, Wei N. CO₂-EOR in China: a comparative review. Int J Greenh Gas Control 2020;103:103173.
- [66] Wang H, Wang Z, Ma J, Li L, Wang Y, Tan M, et al. Effective pressure prediction from 4D seismic AVO data during CO₂-EOR and storage. Int J Greenh Gas Control 2022;113:103525.
- [67] Bickle M, Kampman N. Lessons in carbon storage from geological analogues. Geology 2013;41(4):525–6.
- [68] Gaus I, Azaroual M, Czernichowski-Lauriol I. Reactive transport modelling of the impact of CO₂ injection on the clayey cap rock at Sleipner (North Sea).

Chem Geol 2005;217(3-4):319-37.

- [69] Lu J, Wilkinson M, Haszeldine RS, Fallick AE. Long-term performance of a mudrock seal in natural CO₂ storage. Geology 2009;37(1):35–8.
- [70] Blackford J, Stahl H, Bull JM, Bergès BJP, Cevatoglu M, Lichtschlag A, et al. Detection and impacts of leakage from sub-seafloor deep geological carbon dioxide storage. Nat Clim Chang 2014;4(11):1011–6.
- [71] White JA, Chiaramonte L, Ezzedine S, Foxall W, Hao Y, Ramirez A, et al. Geomechanical behavior of the reservoir and caprock system at the In Salah CO₂ storage project. Proc Natl Acad Sci USA 2014;111(24):8747–52.
- [72] White JA, Foxall W. Assessing induced seismicity risk at CO₂ storage projects: recent progress and remaining challenges. Int J Greenh Gas Control 2016;49(1): 413–24.
- [73] Rinaldi AP, Rutqvist J, Cappa F. Geomechanical effects on CO₂ leakage through fault zones during large-scale underground injection. Int J Greenh Gas Control 2014;20:117–31.
- [74] Bourne S, Crouch S, Smith M. A risk-based framework for measurement, monitoring and verification of the Quest CCS Project, Alberta, Canada. Int J Greenh Gas Control 2014;26:109–26.
- [75] Cappa F, Rutqvist J. Modeling of coupled deformation and permeability evolution during fault reactivation induced by deep underground injection of CO₂. Int J Greenh Gas Control 2011;5(2):336–46.
- [76] Rutqvist J, Rinaldi AP, Cappa F, Jeanne P, Mazzoldi A, Urpi L, et al. Fault activation and induced seismicity in geological carbon storage—lessons learned from recent modeling studies. J Rock Mech Geotech Eng 2016;8(6):789–804.
- [77] Wang Z, Cates ME, Langan RT. Seismic monitoring of a CO₂ flood in a carbonate reservoir: a rock physics study. Geophysics 1998;63(5): 1604–17.
- [78] White D. Monitoring CO₂ storage during EOR at the Weyburn-Midale field. Leading Edge 2009;28(7):838-42.
- [79] Ivanova A, Kashubin A, Juhojuntti N, Kummerow J, Henninges J, Juhlin C, et al. Monitoring and volumetric estimation of injected CO₂ using 4D seismic, petrophysical data, core measurements and well logging: a case study at Ketzin. Germany Geophys Prospect 2012;60(5):957–73.
- [80] Sun Y, Liu J, Xue Z, Li Q, Fan C, Zhang X. A critical review of distributed fiber optic sensing for real-time monitoring geologic CO₂ sequestration. J Nat Gas Sci Eng 2021;88:103751.
- [81] White DJ, LANRoach, Roberts B. Time-lapse seismic performance of a sparse permanent array: experience from the Aquistore CO₂ storage site. Geophysics 2015;80(2):WA35–48.
- [82] LANRoach, White DJ, Roberts B, Angus D. Initial 4D seismic results after CO₂ injection start-up at the Aquistore storage site. Geophysics 2017;82(3):B95–107.
- [83] Watson M. CO2CRC Otway stage 3 project [presentation]. In: CLSF 7th Ministerial Meeting; 2017 Dec 3–7; Abu Dhabi, UAE; 2017.
- [84] Alnes H, Eiken O, Stenvold T. Monitoring gas production and CO₂ injection at the Sleipner field using time-lapse gravimetry. Geophysics 2008;73(6):WA155–61.
- [85] Ma J, Morozov IB. AVO modeling of pressure-saturation effects in Weyburn CO₂ sequestration. Leading Edge 2010;29(2):178–83.
- [86] Mito S, Xue Z. Post-Injection monitoring of stored CO₂ at the Nagaoka pilot site: 5 years time-lapse well logging results. Energy Proceedia 2011;4:3284–9.