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Abstract The application of mineral and organic phos-
phorus fertilizers to arable land has greatly increased crop
yield to meet the world food demand. On the other hand,
impurities in these fertilizers, such as heavy metals, are
being added to agricultural soils, resulting both from the
raw materials themselves and the processes used to obtain
the final product. Cadmium, a non-essential and toxic
heavy metal, has been found in relatively high amounts in
common P fertilizers obtained from sediments. This metal
poses a high risk for soil fertility, crop cultivation, and
plants in general. Furthermore, human health might be
compromised by the cadmium concentrations in agricul-
tural and livestock products, due to the bioaccumulation
effect in the food web. The accumulation in the different
matrixes is the result of the high mobility and flexible
availability of this harmful metal. This review summarizes
risks to human health, the factors influencing cadmium
movement in soils and crop uptake, as well as common
plant responses to its toxicity. In addition, it summarizes
cadmium balances in soils, trends, long-term experiments,
and further studies. Cadmium inputs and outputs in arable
soil, together with their calculated concentrations, are
compared between two different regions: the European
countries (in particular Germany) and China. The
comparison appears useful because of the different
proportions in the inputs and outputs of cadmium, and
the diverse geographical, environmental and social factors.
Moreover, these variables and their influences on cadmium
contamination improve the understanding of the pollution
from phosphate fertilizers and will help to establish future
mitigation policies.
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1 Introduction

Phosphorus is a scarce essential element for plant, animal
and human life. It forms part of the sugar phosphates in the
structures of DNA and RNA, as well as component of
other biomolecules including ATP and phospholipids[1].
Thus, the element is involved in virtually all metabolic
processes. The availability of this scarce macronutrient is
the product of its cycle and its pools. The soil pools include
P in solution (available for plants in organic or orthophos-
phate form), active (depending on soil pH bound as Ca-,
Fe-, Al-phosphate, metal hydroxides or as organic
phosphate, but potentially mobilized by biogenic activity)
and fixed (in deposits or sediments)[2].
Due to its deficiency in many soils and the human need

for higher crop yields, mineral phosphorus fertilizers are
produced via the treatment of phosphate rock (PR) from
sedimentary or igneous origin[3,4]. The final products of the
process include phosphoric acid, superphosphate (SP) and
triple superphosphate (TSP)[4]. Other common P fertilizers
include monoammonium (MAP) and diammonium (DAP)
phosphate, the result of nitrogen addition in ammonium
form to phosphoric acid[5].
The production and consumption of P fertilizers have

been rising and will rise further to meet the food demand of
the increasing global population (Table 1)[9]. Phosphorus
slowly accumulates in P mineral deposits, which are
renewed over a time-scale of thousands to millions of
years. The intense mining activity for agricultural purposes
is rapidly decreasing these high-quality rock phosphate
deposits, leading to a probable scarcity or depletion in the
next 50–100 years, although other studies claim that the
actual reserves will last for 400 years or more[1,10,11].
According to the most recent survey by the Geological
Survey in 2018[12], the world P reserves will last around
260 years, taking into account the phosphate mine
production (270 kt$yr–1) and reserves (70000 kt).
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Beside potentially exhausting P stocks, another problem
is the presence of toxic heavy metals in the fertilizer input
added to otherwise uncontaminated arable soils[9,13–15].
These non-essential heavy metals, including cadmium,
may disturb human, animal and plant life even at low
concentrations[9,16,17].

2 Cadmium in the environment and its
health risks

2.1 Health risks by cadmium consumption

Cadmium is known as a toxic heavy metal with high
mobility and hazardous effects for human life and the
environment (Fig. 1)[16–20]. For human health, the tolerable
weekly intake given by the World Health Organization is
7.00 µg$kg–1 bodyweight[20–22]. However, an intake above
75.00 µg$d–1 Cd by an average adult person is considered a
hazardous consumption, since cadmium has a half-life
about 20 years in the human body[17,22].
Cadmium can cause damage to DNA and disturbances

to enzyme activities. As a consequence, cadmium can
trigger failure or cancer in different organ systems,
including the reproductive system, muscles, bones (by
demineralization and Ca replacement), heart, lungs, liver,
and kidneys. The kidneys accumulate most of the cadmium
and it often binds to proteins, due to its affinity for
sulfhydryl and phosphate groups[17,18,20,23,24].

2.2 Cadmium in soil

In general, cadmium concentrations in surface soils
range from 0.06 to 1.10 mg$kg–1 with an average of
0.41 mg$kg–1[17]. The cadmium concentrations in arable
land in Germany are on average 0.31 mg$kg–1 (0.30–
1.20 mg$kg–1)[25,26], with concentrations varying with the
soil type. Arable soils in China contain an average
concentration of 0.27 mg$kg–1 Cd, with higher amounts
in soils near areas of mining and industrial activity, where
the values can reach 150.00 mg$kg–1[25].
The bioavailability of heavy metals (including Cd) via

plant roots depends on various factors: abiotic factors
include the metal concentration in soil and the physico-
chemical characteristics (pH, clay content, salinity, humid-
ity, mineral, and organic matter); and biotic factors
including the presence of metal-releasing microorganisms
and the substances (enzymes, organic acids and hydrogen
ions) released into the rhizosphere[20,26–28].
Due to its high mobility, cadmium can be transferred

from soil to plants including crops, thereby increasing the
risk of bioaccumulation along the food chain[23]. Cadmium
solubility and bioavailability in soils is strongly dependent
on pH[17,20,26,29–33]. Lower mobility is observed when the
pH is above 7.5, and a higher availability under lower pH
conditions. The critical pH range is between 4.0 and 4.5
where a decrease of 0.2 pH units can cause up to five times
higher mobilization and bioavailability[16,30]. However,
cadmium uptake by plants can be reduced or suppressed

Table 1 Phosphate rock production and reserves (kt; data from US Geological Survey[6,7]), and production and demand of P fertilizers (kt; data from

International Fertilizer Industry Association[8])

Year Country
Phosphate Rock USGS 2019 IFAData 2019

Production Reservesa P2O5 content Production (P2O5) Demand (P2O5)

2010 All countries 181000 65000000 56000 42532 41663

China 68000 3700000 20400 15998 13092

Germany – – – 3 286

Morocco and Western Sahara 26600 50000000 8800 1875 191

United States 25800 1400000 7400 6297 3890

2015 All countries 223000 69000000 73900 44139 43912

China 120000 3700000 36000 17224 12111

Germany – – – 25 225

Morocco and Western Sahara 30000 50000000 9100 2169 221

United States 27600 1100000 7710 5257 4302

2018 All countries 270000 70000000 – – –

China 140000 3200000 – – –

Germany – – – – –

Morocco and Western Sahara 33000 50000000 – – –

United States 27000 1000000 – – –

Note: a The estimated reserves correspond to the survey done the year after 2011, 2016 and 2019.
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regardless of the suitability of the pH for mobilization by
simultaneous competition with other metallic cations
(Ca2+, Mg2+, Zn2+) and hydrogen ions[34].
Other physicochemical characteristics of soil, such as

the high organic matter content in arable soils (for instance
crop residues or input of farmyard manure) may form
insoluble organic complexes with cadmium, diminishing
its phytoavailability and increasing crop yield[20,26,35,36].
In general, the processes of sorption-desorption, pre-

cipitation, and complexation reactions control the retention
of metals in soils. The sorption-desorption equilibrium is
the predominant process if heavy metals (such as Cd) are
present at a low concentration. In contrast, when heavy
metal concentrations are relatively high, or the pH is low,
the precipitation-dissolution reactions are likely to regulate
availability of heavy metal in the soil solutions[5,31].
In addition, cadmium behavior in acidic soils can be

controlled by the amount of soluble organic matter. In
alkaline soils, however, cadmiummobility is dominated by
precipitation processes involving phosphates and carbo-
nates[17].
The biotic factors influencing cadmium bioavailability

include organic acids in the rhizosphere, which can form
complexes with cadmium, facilitating plant uptake[27].
Further biotic factors are the microorganisms. For
example, mycorrhizal fungi can decrease cadmium
phytoavailability by adsorbing cadmium in their hyphae,
and bacteria can take up metallic cations and release them
in a less mobile form[27]. However, according to Vig
et al.[37], many studies regarding plant-microbe-metal
interactions are based on soils amended with sewage
sludge (SS) or on polluted sites after bioremediation. In

such cases, high concentrations of cadmium, as well as
other heavy metals and organic pollutants, are employed.
Furthermore, the role of microbes is focused on augment-
ing tolerance to heavy metals in plants or reducing
cadmium uptake by plants[37]. In another review related
to soil microorganisms, Wyszkowska et al.[38] point out
that cadmium and other heavy metals can affect the
microbial community, especially bacteria, by damaging
cellular structure (protein or lipid bonding structures),
denaturalization of proteins or affecting enzyme activity,
and thereby, influence the microbial population and its
interactions with plants.

2.3 Cadmium and fertilizers

The fertilizer type, the fertilization rate, the quantity per
application, crop rotation, crop residues management and
liming, along with the plant species and genotype, as well
as changes in pH and plant growth, can all affect the
cadmium concentration and availability in soils[20,26]. To
illustrate this, chloride ions (e.g., from KCl fertilizers) may
form soluble Cd-Cl complexes, reducing cadmium sorp-
tion in soils and thus increasing the Cd mobilization and
bioavailability[31,35].
The combination of high pH and high fertilization rates

with nitrate compounds, such as Ca(NO3)2, can enhance
the cadmium concentration in soil solution, since calcium
in solution competes with Cd2+ for adsorption by soil
particles, thus increasing cadmium phytoavailability[32].
Mineral P fertilizers are considered the main input

source of cadmium in arable soils in Europe[39]. The
cadmium comes from the raw materials used to produce

Fig. 1 General scheme of cadmium balance in an air-soil-crop system.
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the fertilizers, i.e., PR, which is often sourced from
materials of sedimentary (with higher Cd concentration),
rather than igneous origin (with lower Cd concentration).
Unfortunately, only 13% of the global P sources is found in
igneous rock[3,5,31]. Dependent on their origin, the
cadmium concentrations in PR range from 0.10 to
60.00 mg$kg–1, with the highest values found in PR from
North Africa (~60.00 mg$kg–1)[40]. However, other
studies have found cadmium concentrations above
500.00 mg$kg–1 in PR from Morocco (Table 2)[14].
In Europe cadmium concentrations in P fertilizers

generally range from trace amounts to 300.00 mg$kg–1,
with an average of 7.40 mg$kg–1[50], and 36.00 mg Cd
per kg P2O5 considering the phosphate content[51]. The
current permitted limit for cadmium in fertilizers in
Germany is 50.00 mg$kg–1 P2O5 according to the German
Fertilizer Ordinance[48]. Nevertheless, P fertilizers includ-
ing PR, SP and TSP might exceed this value[14,40,48].
P fertilizers containing ammonium, such as MAP and

DAP, can temporally acidify soils as a consequence of the
natural process of nitrification, thereby, releasing hydrogen
ions[5,31,32]. However, the acidification of soils caused by
nitrate is only relevant when this is lost by leaching[52].

NH2H2PO4 ↕ ↓NHþ
4 þ H2PO

–
4

NHþ
4 ↕ ↓conversion of ammonia to nitrate ↕ ↓NO –

3

þ 2Hþ
↕ ↓decreased pH and soil acidification

Another effect of ammonium fertilizer may be

rhizosphere acidification when ammonium is taken up
directly by the plant root, which may compensate this
cation uptake by proton release. If ammonia is taken up,
the proton release by conversion of ammonium to
ammonia also acidifies the rhizosphere. In the case of
neutral or alkaline soil solution pH, both these variants
mobilize phosphate and cadmium in the rhizosphere.
In contrast, P fertilizers, such as TSP and PR, can induce

changes in pH and cadmium allocation into less available
compartments after several applications[30,53]. These
fertilizers can enhance the formation of insoluble
cadmium-phosphate compounds, e.g., Cd3PO4, in soils,
thus immobilizing cadmium and reducing plant uptake[36],
due to the shift in soluble-exchangeable Cd distribution
toward more stable bound phosphate forms[5,32,54].

2.4 Cadmium in plants

Cadmium can have detrimental effects on enzyme activity
in plants, leading to lower photosynthesis. As a result,
plant growth and development including germination, root
elongation, and leaf expansion can be affected by
cadmium[17,55,56]. Under higher concentrations in soils,
this metal can also produce phytotoxicity symptoms such
as chlorosis, and reduced vigor and performance (for
instance, water and nutrient uptake)[16,56,57]. Reduced
growth and proliferation is also a consequence of the
additional C skeletons required for defense and repair,
which usually causes the size of the most tolerant plants
to be very small (e.g., hyperaccumulators such as

Table 2 Cadmium concentrations (mg$kg–1) in inorganic and organic P fertilizers from different countries

Inorganic P ferti-
lizers China Brazil (sold) Germany (sold) Morocco Russia South Africa USA

PR 5.00[31] 20.00[41] 19.00b[42] 30.00–60.00[40] 0.25a[39] 1.00[20] 60.00–340.00[31]

< 2.00[20] – – 12.00–38.00[20,31] 1.00[20] – 6.00–92.00[20]

4.48a[43] – – 46.00–120.00a[39] 0.15[14] – 1.45–199.00[14]

2.60b[28] – – 507.00[14] – – –

DAP 5.10a[39] – 28.10a[44] 29.50–68.00a[39] 2.10a[39] 2.20a[39] 18.20–185.40[39]

2.20[45] – 61.00a[44] 9.36[45] 0.84[46] – –

MAP 5.30a[39] 17.12[41] – 30.60–70.60a[39] 2.20a[39] 2.20a[39] 18.80–192.40a[39]

– – – – 0.14[45] – 50.92[45]

NPK 0.60–1.51[45] 5.80[41] 15.80b[47] 0.80–11.45[45] 3.23–3.66[45] – –

– – 2.30[48] – – – –

PK – – 55.60b[47] – – – –

SP 0.22b[49] 8.50[41] 34.00[48] – – – –

TSP – – 24.40[48] 31.50–72.70a[39] 2.30a[39] 2.30a[39] 13.30–198.10a[39]

– – 62.00b[42] – – – –

– – 36.70–73.10b[47] – – – –

– – 28.10b[44] – – – –

Note: a Given in mg$kg–1 P2O5;
b given in mg$kg–1 dry mass. PR, phosphate rock; DAP, diammonium; MAP, monoammonium; NPK, nitrogen, phosphorus,

potassium; SP, superphosphate; TSP, triple superphosphate.
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Arabidopsis halleri[58]). Therefore, in agricultural produc-
tion cadmium can be responsible for damage to crop,
decreasing yield and protein content in seeds[55,56].
Plants have developed resistance mechanisms against

heavy metal pollution, and some species are hyperaccu-
mulators of certain heavy metals. Even in non-
accumulating species, such as maize, responses can be
detected. For example, when this crop is grown under
cadmium presence, phytochelatins (Cd binding polypep-
tides) are released as a detoxification response to avoid
cadmium binding to important enzymes or proteins[26,59].
Another reaction is the storage of cadmium binding
peptides in the vacuole, removing the cadmium from
essential and sensitive metabolic activities[2,55].
Several environmental factors can activate an increased

production of reactive oxygen species (ROS) in plants,
including stress by heat, drought, air pollutants, organic
chemicals or heavy metals. These compounds include
hydroxyl radicals, hydrogen peroxide, singlet oxygen and,
superoxide radicals, which are highly reactive products of
an incomplete reduction of O2 to H2O for energy
production[9,32,55,60]. The oxidative stress triggered by
high ROS concentrations impacts negatively on plant
metabolism, including potential DNA damage, inhibition
of enzyme activity, protein oxidation, lipid peroxidation
and cell membrane damage[55].
Thus, a further plant defense mechanism against

elevated ROS production derived from heavy metal stress
is the production of antioxidants. For example, some
studies have detected an increased enzyme production with
antioxidant activity in some maize cultivars under high
cadmium concentrations, such as peroxidase, catalase,
ascorbate peroxidase and superoxide dismutase[60].

3 Cadmium balance in arable soil

The cadmium balance in surface soils as well as the
bioaccumulation along the food chain involving crop
production, are determined by the inputs and the outputs in
arable land. Currently, the main cadmium input into
European arable soils derives from mineral P fertili-
zers[13,15,61]. Nonetheless, other cadmium contributions
from animal manure, SS, lime, and atmospheric deposition
also need to be considered (Table 3)[31,39,70].
For atmospheric deposition, cadmium can be present in

the air as particulate matter, facilitating its mobility through
the atmosphere and to other parts of the ecosphere[17].
However, this input has been reduced since 2002 in
European countries through environmental policies[70],
while in China atmospheric deposition still has a
larger cadmium contribution compared to P fertilizers
(Table 3)[5,71].
Another important source of cadmium inputs to the soil

are recycled P fertilizers. Due to the decline of PR
reservoirs[1] and the increase of organic farming, the

development and use of non-mineral fertilizers had
intensified[42]. These fertilizers include animal manure,
dewatered SS, chemical and thermally treated SS and
anaerobically digested wastes[42].
Manure and SS, which offer a large number of benefits

to agricultural soils, are also important for the cadmium
pathway through the P cycle in crop production, since
cadmium is still found in these fertilizers, especially in
regions of China (Table 4). Cadmium concentrations in
manure usually differ according to the animal origin, with
higher amounts in swine manure regardless of the
region[44,51,74]. As a consequence of its nature, the nutrient
concentration in manure is lower and more variable
compared to mineral P fertilizer, leading to a higher field
application rate[5], and thereby, a higher cadmium input
rates. For SS in Germany, the cadmium concentration
in dewatered and stabilized SS should not exceed
1.00 mg$kg–1[77]. Due to this reasonably low cadmium
concentration in SS and the controlled application rate[78],
the estimated input through SS to arable land in Europe is
relatively low[70].
Another cadmium input to soils is the addition of lime,

given that it can contain cadmium as an impurity. Usually
liming of soils increases pH and reduces cadmium
availability in acidic soils, thus the uptake by plants is
reduced[26,32,79–81]. Several studies have found that 50%–
70% less cadmium accumulates in maize and some
vegetables (amaranth, cabbage, and lettuce), most likely
due to the supply of calcium from lime and its absorption
competition with cadmium[80–82]. However, this lime
addition might not diminish cadmium uptake in alkaline
soils, under deeper rooting or due to the antagonism with

Table 3 Atmospheric cadmium deposition (g$ha–1$yr–1) in different

regions of China

Location in China Cadmium deposition Reference

Heilongjiang, Northeast 1.46 [62]

Mongolian Plateau, Northwest 1.04 [63]

Beijing, North China 4.75 [64]

Tianjin, North China 5.30 [64]

Hebei, North China 5.57 [64]

Henan, North China 4.93 [65]

Shanxi, North China 2.04 [65]

Fujian, Southeast 0.91 [65]

Lianyuan, Southeast 17.00 [66]

Shenzhen, Southeast 7.42 [66]

Guizhou, Southwest 2.01 [65]

Jiaozhou Bay, Central Yellow Sea 1.30 [67]

Daya Bay, South China Sea 1.60 [68]

East China Sea 1.78 [69]

Southern Yellow Sea 1.80 [69]
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Ca+ in the soil solution[26].
When calculating the cadmium outputs from the

soil, crop uptake and leaching must be considered
(Table 5)[15,44,61]. While crop harvest contributes to the
output, leaching most likely represents a significant output
from agricultural soils[70]. Several factors influence
cadmium leaching, including the sorption-desorption
processes, which, as specified in Section 2.2, regulate the
cadmium retention in soils. One of the most important
sorption types is non-specific sorption. This occurs when
cadmium is weakly bound to negatively charged surfaces
by electrostatic attraction, and can be easily replaced by
other ions (exchangeable) and predisposed to leaching and
bioavailability[31,91]. Another influencing factor is the pH,
which could cause increased leaching when the value is
lower, while higher pH values decrease this variable[92].
For instance, data obtained by He et al.[93] indicate that the
cadmium quantity adsorbed in soils was higher, the more
acidic these became. This is due to the likely release of
hydrogen ions from adsorption sites and their replacement
with cadmium[93]. Paradoxically, as mentioned before, a
lower pH can increase the cadmium leaching to deeper
layers. Furthermore, periods with elevated precipitation
(water surplus or excess of precipitation) contribute to
leaching to deeper layers since cadmium leaching is
coupled to water leaching[94]. Other factors such as soil
density, total cadmium concentration in the soil, tempera-
ture, distribution coefficient (KD), cation exchange capa-
city (CEC), which is influenced by organic matter and clay
content, are known to influence cadmium leach-
ing[61,70,93,95]. Thus, leaching rates are usually modeled
or calculated[15]. In 2014, Six and Smolders[70] calculated a
relatively high leaching rate for European soils, which
represents the main output from arable soils (Table 5). This
agrees with some Chinese studies, in which leaching has
been found to be the main output mechanism rather than
crop harvesting[15,87]. However, another recent study has
indicated that the high value for leaching for European
soils could be an overestimation due to the equation

used[61] since lower rates of cadmium leaching were
measured or calculated in other studies done in soils from
Europe and New Zealand[19,94,95]. Furthermore, soils in
Europe are usually limed[70], which should be sufficient to
buffer soil and avoid cadmium leaching.

4 Long-term studies

4.1 Field studies

One single application of fertilizer may not cause a
significant accumulation of heavy metals in arable land.
However, repeated fertilizer application over the long-term
can result in harmful heavy metal concentrations for crops
and for bioaccumulation potential in the food chain, thus
representing a health risk[76,96,97]. Nevertheless, contrast-
ing studies reviewed by Jiao et al.[28] indicate that
cadmium concentrations in soils might not be affected by
P fertilization addition in the long term.
Long-term studies by Gray et al.[96] in pastures of New

Zealand indicated that after 44 years of P mineral
fertilization, an increase in total soil cadmium had
occurred. The P fertilizer used (single SP) had relatively
high concentrations of cadmium, ranging between 34.00
and 69.00 mg$kg–1. However, after the long period of
fertilization, a higher proportion of cadmium was in the
residual soil fraction, which represents the residual and
least mobile fraction from the sequential extraction method
used, indicating that cadmium moves to less plant-
available forms with time[96].
Results from other long-term fertilization experiments

(> 22 years) suggest that animal manure could cause
cadmium accumulation in soils as a consequence of the
mixture of mineral and non-mineral fertilizers[33,97]. In one
of these studies, cadmium concentrations were 10 to 25
times higher than prior to fertilization with manure.
However, the manure decreased the uptake of cadmium
by the maize crop[97], while in other field experiments

Table 4 Cadmium concentrations (mg$kg–1) in organic P fertilizers from China, European region and Germany

Organic P fertilizers China Europe Germany

Manure 0.67a[72] 0.20[70] 0.30a[44]

Swine manure 1.30[73] – –

12.05[74] 0.46[70] 0.74[44]

0.64–21.02[75] – –

Cattle manure 0.92[73] – 0.43a[44]

5.61[76] – 0.80[42]

Poultry manure 1.48[73] – 0.25a [44]

15.38[74] – –

Sewage sludge 1.65[77] 1.80[70] 1.00a[42,77]

– 0.30–5.10[77] 1.50–4.50[78]

Note: a Given in mg$kg–1 dry mass.
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under swine manure and NPK fertilization, the plant-
available cadmium fraction in soils decreased compared to
the total concentration[33]. This may be due to the
formation of insoluble cadmium-complexes with organic
compounds originating from the manure[26,35]. In other
words, the application of amendments, namely manure and
SS, does not decrease (or increase) the total cadmium
concentration, but their application can reduce its bioavail-
ability for crops[23].
In another long-term experiment (17 years) by Wu

et al.[76], the application of pig manure together with
mineral fertilizer (NPK) increased the total cadmium
concentration in different soil types: ‘black’ soils, which
have a higher quality humus and a moderate to high
organic matter content[98,99], and ‘red’ soils, which have
high contents of Al-and Fe-oxides, and a lower CEC[98]. In
this long-term experiment, the cadmium bioavailability
(reducible and exchangeable fractions) was determined by
the soil type: the ‘red’ soil had a lower cadmium
bioavailability and a higher residual fraction, while the
‘black’ soil had a higher cadmium percentage in the
exchangeable and reducible fraction. This is likely due to
the mineral differences between both soils. Still, for
mineral P fertilizer, application in the form of calcium
superphosphate did not result in any difference in cadmium
concentration compared to the unfertilized soils[76].

4.2 Models and trends

The problem of relatively high cadmium concentrations in
fertilizers is not just a recent concern and several papers
have approached this challenging situation in the past.
Cupit et al.[100] studied the economic aspects, conclud-

ing that the lowest cost option for decreasing cadmium
risks was to use low-cadmium phosphate rock, since taxing
the fertilizers with high cadmium concentrations would
impact largely on the farmer. Another suggested option
was to the limit concentration gradually from 60.00 mg Cd
per kg P2O5 by 2006 to 20.00 mg Cd per kg P2O5 by
2015[20,100]. However, a lower threshold would affect
important producers and exporters[39,101], for instance,
producers from Morocco, where cadmium concentrations
in PR are usually higher than 20.00 mg Cd per kg
P2O5

[14,39,40], and in 2018 the flexible limit was still
60.00 mg Cd per kg P2O5

[102].
In a study by Smolders and Six[51], European soils with

different P fertilizers concentrations (with 0, 40.00, 60.00
and 80.00 mg Cd per kg P2O5) were modeled. It was
predicted that soil cadmium will stay constant over the
long-term (100 years), even if fertilizers with the highest
concentrations of cadmium were to be applied. Addition-
ally, under low or medium fertilizer application, the
cadmium concentrations in the soil will decrease in most
of the scenarios after 100 years of P fertilizers application.
This prediction was based on lower P fertilization rates,

leaching rates, the KD models used and the strong
reduction in atmospheric deposition of cadmium in
European countries, compared to other mass balances
done previously.
Another mass balance model, for accumulation of

cadmium and other hazardous substances after 200 years
of different P fertilizer application, was developed by
Weissengruber et al.[42]. The authors assumed two different
pH values and different rainfall scenarios to test the
influence of diverse fertilizers on hazardous substances
accumulation. These fertilizers included mineral fertilizers
(e.g., TSP), recycled P fertilizers allowed in organic
farming (e.g., compost), and other emerging options (e.g.,
treated biosolid ashes). The results indicated that there is
likely to be a decline in cadmium accumulation in soils
even when high cadmium concentration fertilizers are
applied, which agrees with the study of Six and
Smolders[70]. However, there is a probability of cadmium
output by leaching and crop harvests, which is higher
under TSP, PR and compost application. Recycled
fertilizer had a higher probability of cadmium output
than struvite or biosolids ashes, as the result of the fertilizer
application rate, which is dominated by the P concentration
in the fertilizers. In other words, if the P concentration is
lower, such as in green compost, the application frequency
will increase to meet the crop P demand, as will the
addition of hazardous substances as a consequence.
Meanwhile, if the P concentration is relatively high, as in
struvite or biosolid ashes, the P fertilization rate decreases
and therefore the pollutant input to soils will also decrease,
despite cadmium concentration of these fertilizers being
higher[5,15,42].
In contrast to these results, Qian et al.[103] indicated that

cadmium concentrations in Chinese soils will increase,
reaching the acceptable threshold for agricultural soils in
50 years. This is the result of the cadmium background
concentrations in soil, the atmospheric deposition and the
continuous application of animal manure to fields, which
are the main heavy metal inputs to arable soils in
China[15,71], especially from swine manure, which has
higher cadmium concentrations than the current approved
limit (Cd< 3.00 mg$kg–1 DM)[74].
Another mass balance model for actual P fertilizer

application rates in soils in France was developed by
Sterckeman et al.[61]. In their study, the authors indicated
that under high leaching rates (using the equation from Six
and Smolders[70]), the cadmium concentration in the soil
would decrease in the long-term (100 years) from 0.31 to
0.29 mg$kg–1. Meanwhile, considering a medium and low
leaching rate, cadmium would increase from 0.31 to 0.35
and 0.36 mg$kg–1, respectively. In addition, the increase of
cadmium in soils under the actual P rates would lead to
proportionally higher crop uptake, increasing the cadmium
exposure of animals and humans through dietary intake[61].
There are numerous model studies, however, the results
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of these cadmium accumulation models can be imprecise,
due to the many assumptions and generalizations that are
made to simplify the complexity of reality, including
social, agricultural, climatic and regional factors[102].
Moreover, the lack of consistency in the leaching rate
estimates indicates that its determination in different
regions and environmental variables should be a priority
to eliminate further uncertainties around this factor.

5 Conclusions and outlooks

Cadmium input from phosphate fertilizers represents an
environmental and health risk due to soil pollution, crop
uptake, and bioaccumulation along the food chain. A
decrease in mineral P fertilizer dependence, along with the
use of non-polluted recycled fertilizers could alleviate the
gap in the P cycle and the cadmium pollution of arable
land, in countries such as Germany, where atmospheric
deposition does not represent an important cadmium
contribution to the soil. In countries like China, however,
where atmospheric deposition and the manure application
are the main cadmium inputs to agricultural land,
environmental policies, and trace metals limits in animal
waste could be used to decrease the pollution of arable
land.
Future work should focus on cadmium balances in

arable land, considering the soil properties (e.g., pH and
CEC), crop and soil management (e.g., liming) and
therefore the potential leaching, which seems to be an
important but also inconsistent output regarding cadmium
balance models. The social, climatic and economic
differences and circumstances among countries should
also be taken into account. Furthermore, there is a lack of
knowledge about the potential accumulation of cadmium
from P fertilizers via crops in the various elements of the
food chain and in the P cycle. Hopefully, an improved,
highly efficient P input and a more closed P cycling can
mitigate the problem of cadmium pollution, due to a
higher recycling and a lower dependency on mineral P
fertilizer from sedimentary origin, but this remains to be
investigated.
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