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Abstract Selecting beneficial DNA variants is the main
goal of animal breeding. However, this process is
inherently inefficient because each animal only carries a
fraction of all desirable variants. Genome editing technol-
ogy with its ability to directly introduce beneficial
sequence variants offers new opportunities to modernize
animal breeding by overcoming this biological limitation
and accelerating genetic gains. To realize rapid genetic
gain, precise edits need to be introduced into genomically-
selected embryos, which minimizes the genetic lag.
However, embryo-mediated precision editing by homol-
ogy-directed repair (HDR) mechanisms is currently an
inefficient process that often produces mosaic embryos and
greatly limits the numbers of available edited embryos.
This review provides a summary of genome editing in
bovine embryos and proposes an embryo-mediated
accelerated breeding scheme that overcomes the present
efficiency limitations of HDR editing in bovine embryos. It
integrates embryo-based genomic selection with precise
multi-editing and uses embryonic cloning with elite edited
blastomeres or embryonic pluripotent stem cells to resolve
mosaicism, enable multiplex editing and multiply rare elite
genotypes. Such a breeding strategy would enable a more
targeted, accelerated approach for livestock improvement
that allows stacking of beneficial variants, even including
novel traits from outside the breeding population, in the
most recent elite genetic background, essentially within a
single generation.
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1 Introduction

Existing natural variation in the gene pool of domesticated
animals has been successfully used to improve livestock,
such as cattle, through conventional breeding by artificial
selection. Although this strategy has been proven highly
successful, progress is limited to small incremental steps at
each generation, typically amounting to annual genetic
gains of 1% to 3%, which become more substantial over
longer time frames[1].
However, conventional breeding is slow. As every

breeding event generates new gene combinations, which
cannot be directed or controlled, each animal only carries a
fraction of all potentially desirable sequence variants. To
accomplish genetic improvement, it is important to select
the best animals that will become the parents for the next
generation of improved animals. Genomic selection, using
genome-wide single-nucleotide polymorphism (SNP) chip
arrays or whole genome sequencing, provides a powerful
means for the identification of animals with the most
favorable genotypes that assemble the overall best
combination of sequence variants in an individual
animal[2]. This concept, first introduced in 2001[3], has
allowed unprecedented advances in commercial breeding
in the past 15 years, including a doubling of dairy cattle
improvement per generation compared to traditional
selection. However, the potential for genetic improvement
can be compounded by genetic linkages that result in the
concurrent inheritance of desirable and non-desirable
sequence variants. Depending on how tight the genetic
linkages are, passenger mutations may not be easily
removed by breeding into subsequent generations, even if
their identity is known.
The development of programmable nucleases allows for

the precise site-specific editing of livestock genomes[4].
With genome editing technology, it is now possible to
uncouple genetic linkages and directly introduce indivi-
dual beneficial variants, even from outside the natural
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breeding population, into elite genetic backgrounds.
Further, it facilitates the assembly of multiple high-impact
sequence variants in individual genomes which can be very
difficult or impossible to achieve with conventional
breeding strategies. Presently, genome editing targets are
still limiting due to a low number of known causative
sequence variants with relatively high impact on pheno-
typic production traits. Decreasing cost for whole genome
sequencing is now allowing the sequencing of large
numbers of animals which can greatly facilitate the fine-
mapping and identification of causative variants[5]. Like-
wise, the inclusion of increasing numbers of causative
sequence variants is also expected to increase the accuracy
of genomic selection.
Genome editing, in combination with genomic selection,

offers a novel opportunity that could change the scope and
speed for improving efficiency of livestock production and
completely overhaul current livestock breeding practices.
For increased speed of genetic gain of large animals with
long generation times, such as dairy cattle, it is paramount
that selection and editing is undertaken as early as possible,
using appropriately elite baseline genetics.
Here, we review the current approaches of embryo-

mediated genome editing in cattle, outline its short-
comings, suggest solutions to overcome these issues and
present a model for an improved breeding strategy. We
propose to combine embryonic genomic selection, genome
editing and multiplication into a breeding platform that
captures embryo-derived germlines as clones or germline
chimaeras. This generates a contemporary breeding
strategy offering large scale dissemination and accelerated
genetic gain that is superior to currently implemented
procedures.

2 Genome editing for livestock breeding

Programmable nucleases have provided the molecular
tools to efficiently introduce defined sequence variants into
livestock genomes. This enables the direct introgression of
beneficial traits essentially within a single generation,
which offers scope for improvements of animal breeding
by directed and fast genetic gain.

2.1 Double strand break (DSB)-dependent editors

At present, the toolbox contains three main technology
platforms. Zinc finger nucleases (ZFNs) were the first
available genome editors, combining a programmable
DNA binding domain of multiple zinc finger modules with
the catalytic domain of the restriction enzyme FokI[6].
They were soon followed by the development of an
analogous protein-based editing platform, transcription
activator-like effector nucleases (TALENs) where the FokI
domain was linked to a modular DNA binding domain

consisting of an array of repeat units whose intrinsic
polymorphic sites determine DNA binding specificity[7].
Both platforms were protein-based, which required
customization of the DNA binding domain for each
editing target, limiting flexibility and making it expensive.
This changed with the advent of the much simpler
clustered regularly interspaced short palindromic repeat
(CRISPR)/CRISPR-associated nuclease 9 (Cas9) sys-
tem[8]. Rather than entirely protein-based, it is an RNA-
guided nuclease system that uses a universal monomeric
nuclease (Cas9) and a small programmable guide RNA
(gRNA), which guides the nuclease to the editing site
through sequence complementarity. The gRNAs can be
readily designed for unique genome target sites through
various online tools and economically synthesized by
commercial suppliers. Given that the Cas9 nuclease can be
universally used for any target site, it is now commercially
available as mRNA or recombinant protein. This provides
unprecedented flexibility and easy access to cost-effective
genome editors for any desirable target site.
All site-specific nucleases function by introducing a

DSB into the genomic DNA at the programmed target site.
A DSB in the genome is typically repaired by the cellular
repair machinery via the non-homologous end joining
(NHEJ) repair process. NHEJ is an error-prone process.
Due to endogenous nuclease activity at the DSB, the repair
process often leads to an introduction of small insertions or
deletions (indels) at the target site. However, there is no
control over how the target site is edited by these indels,
which makes this mechanism unsuitable for directed
breeding applications. This is different when a pair of
editors is introduced which can efficiently delete the
fragment between the two DSBs[9]. In this case, the
outcome can be more predictable and used to introduce a
naturally occurring deletion that is associated with a
beneficial trait.
Many of the sequence variants relevant for breeding can

be conversions, deletions or insertions of single base pairs.
Their introduction requires full control over genome
editing outcomes, which can be achieved through an
HDR mechanism. The site-specific DSB generated by a
genome editor can trigger HDR. In the presence of a
homologous repair template provided in trans, the cellular
repair machinery can then repair the DSB according to the
repair template. This can be exploited for the introduction
of defined mutations, such as a single base pair change, by
supplying a repair template that specifies the intended
sequence changes[10].

2.2 DSB-independent editors

Although limited to the change of specific base pairs, a
new concept for the introduction of precise changes was
developed with base editing. This no longer requires the
introduction of a DSB and its subsequent repair. Rather, it
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is based on a Cas9 with either one or both of its
endonuclease domains inactivated, rendering it a nickase,
able to only introduce a nick at the target site, or removing
any endonuclease activity. These mutant Cas9 enzymes
retain uncompromised target site binding and when fused
to a deaminase, enable the direct conversion of a C-G base
pair into a T-A base pair and an A-T base pair into G-C
base pair[11]. The limitation of base editors for conversion
of only a subset of single base pair combinations might
already be resolved by the development of a new
innovative tool with great potential for precise genome
editing[12]. For this novel editor, a Cas9 nickase was fused
to a reverse transcriptase. Like Cas9, it is programmed by a
single RNA molecule but has additional functional
components, compared to a conventional gRNA. The
RNA molecule for the new editor combines the function of
the gRNA to guide the nickase to the target site with a
primer and template for reverse transcription. When
encoded in the RNA template section of the RNA
molecule, intended edits, including indels and all 12
types of point mutations, can be efficiently introduced into
the genome without the need for a DBS or other exogenous
DNA molecules as repair template for HDR.

2.3 Potential for unintended off-target edits

Programmable nucleases have high cleavage activity and
show some degree of tolerance to mismatches for target-
specific binding. This creates the potential for unintended
off-target events with the introduction of unwanted
mutations somewhere in the genome[13]. In particular,
Cas9-based editors have seen rapid improvements to
increase binding specificity and associated reduction in
off-target activity[14]. As a recent example, prime editors
appear to be associated with much lower off-target editing
compared to Cas9 nuclease[12].
Systematic identification of all possible cleavage sites in

vitro and their validation in an in vivo mouse model
demonstrated that despite efficient editing, no detectable
off-target mutations were found when following appro-
priate design guidelines for the gRNA/Cas9 editor[15].
PCR and sequencing analyses commonly characterize only
short genomic regions, which might miss larger deletions
and complex rearrangements that can also be introduced
through DSB repair triggered by genome editing. This is an
issue that is particularly relevant for multiplex applica-
tions[16]. Comprehensive unbiased genome-wide assess-
ment of genome-edited sheep and goats showed that the
level of de novo mutations was comparable to normal
animals, with only one and two mutations attributable to
off-target events, respectively[17,18]. Most studies to date
observed no to negligible off-target effects in genome-
edited livestock. Although the risk appears to be very
small, the potential for off-target mutations should be
considered.

2.4 Editing somatic vs. embryonic cells

Genome editing of cattle can be approached by two
alternative experimental strategies. First, genome editors
can be introduced into cultured primary somatic cells to
effect site-specific sequence changes of their genomes.
Following the isolation and characterization of cell clones,
individual cells from cell clones that possess the intended
edits can then be used as donor cells for somatic cell
transfer (SCT) (Fig. 1(a)). This approach has so far been
the method of choice for the generation of genome-edited
cattle. It allows accurate characterization of the edited
genotype, including monoallelic or biallelic modification
and the potential introduction of any unintentional
mutations from off-target events. Hence, it provides the
ability to only generate cattle with intended genotypes and
avoids the wasteful production of unwanted cattle.
However, this approach is also associated with some
major disadvantages. SCT is notoriously encumbered by
low production efficiencies of viable offspring due to
faulty or incomplete epigenetic reprogramming of the
donor cell genome. This causes the commonly observed
high rates of losses during pregnancy and can also affect
the viability of live-born calves[19]. From a breeding
perspective, adult somatic cloning increases the genetic lag
between nucleus and commercial populations by one
generation interval (equivalent to two years in cattle),
compared to embryonic clones.
The second approach introduces genome editing tools

into embryos, which are subsequently transferred into
recipient cows for development to term and production of
live genome-edited calves (Fig. 1(b)). As with somatic
cells, not all embryos will be edited. To screen and identify
edited embryos, there is the option to take a small biopsy
which can provide a good representation about the editing
status of the embryo and resulting animal[20]. The injection
and biopsy do not compromise the developmental potential
of the embryos.
Importantly, the same biopsy sample can be used for

genomic selection, using SNP genotyping on different
density bovine SNP BeadChips[21]. Following imputation
with parental genotypes, there was high concordance
(≥95%) between biopsied and vitrified in vitro produced
(IVP) embryos and their respective calf genotypes[21].
Applying this approach to dairy cattle, where vitrified IVP
embryos are commonly used in breeding programs without
loss of viability, would offer two advantages. First, it
enables more intense selection of favorable genotypes
within full-sib IVP embryos and second, it reduces the
costs for yearling bulls and heifers because embryos of low
genetic merit would not be transferred into surrogate
mothers and reared to breeding age[22]. Genome editing
can effectively integrate with this embryo-based breeding
platform, strongly decreasing the time to fixation for a
desired allele compared to both genomic selection alone[23]
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and to somatic clones, which require another generation
interval[24]. In contrast to the inefficient SCT route,
embryo-mediated genome editing can therefore rapidly
produce live genome-edited calves comparable to industry
standards for conventional cattle. Thus, it fulfills an
important prerequisite for a breeding application.
A major disadvantage of the embryo-mediated approach

is the lack of control over the exact time and duration of
nuclease and repair activities which can result in animals
with variable degrees of mosaicism and one or several
different mutated alleles (Table 1). Even with high HDR
editing efficiencies, one could not completely rule out a
low degree of mosaicism. Considering the large numbers
of offspring that are produced from elite sires, any degree
of mosaicism would pose a significant issue for breeding
applications, as not all offspring would be of the desired
genotype. However, this is not an unsurmountable problem
and strategies to overcome mosaicism by embryonic cell
transfer (ECT) are discussed in detail below.

3 Embryo-mediated editing

Genome edits have been introduced into eutherian zygotes,
two-cell embryos or embryonic pluripotent stem cells
(ePSCs), derived from high-value blastocysts. These
embryo-mediated editing methods can be used indepen-

dently or in combination. Zygotic and two-cell editing are
two approaches that were already successfully applied in
mouse and cattle, while bovine ePSC-mediated editing is
still under development.

3.1 Editing zygotes

Editing at the earliest point in embryogenesis means that,
in theory, all cells of the developing embryo would acquire
the precise modification. There are few reports of zygote-
mediated genome editing in bovine embryos, differing in
the type of nuclease used, as well as the timing, reagent and
method of delivery (Table 1). A shared outcome from these
diverse methods is the frequent production of mosaic
embryos arising from several independent editing events
from the one-cell stage onwards. These typically produce
complex genetic mosaics, each with a unique spectrum of
alleles and/or variable contribution of each allele to the
whole animal, resulting in unpredictable and difficult-to-
define phenotypes that necessitate further breeding of the
founders[34].
Earlier publications carrying out zygote-mediated gen-

ome editing relied on ZFN and TALENs instead of Cas9,
probably a reflection of the long generation time of cattle
vs. the rapid development of new editing tools. In fact, the
only embryo-mediated HDR-edited cattle offspring so far
have come from TALENs producing lactoglobulin-ablated

Fig. 1 Soma- and embryo-mediated genome editing approaches in cattle. (a) Somatic cells isolated from an elite sire are genome edited
(locus black to gold) and cloned to introduce the modification on the same genetic background. A new elite sire with a higher breeding
worth—and carrying the genomic modification—is produced after crossing the cloned sire with an elite dam. (b) For embryo-mediated
genome editing, the elite sire and dam are crossed, and the genome editing carried out in the zygote, introducing the genomic modification
in the higher breeding worth genetic background in a single generation.
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cattle[20]. Across all three DSB-based editing platforms,
nucleases have been delivered as plasmid DNA, mRNA or
as RNA/protein complexes (Table 1). Delivering the editing
tools as plasmid DNA is convenient but carries the risk of
unwanted insertions of plasmid vectors as has been
observed in cattle that were edited for the Celtic polled
mutation[35]. Unwanted insertion can be avoided by
delivering the editors in a different form and several studies
have successfully demonstrated on-target mutagenesis in
zygotes with preformed gRNA/Cas9 ribonucleoprotein
(RNP) complexes[30–33]. Since designing gRNAs for Cas9
is far simpler than TALENs or ZFNs, delivering preformed
gRNA/Cas9 RNP complexes is likely to be the preferred
option for future accelerated breeding programs.
The standard method of delivery is via cytoplasmic,

rather than pronuclear, microinjection (Fig. 2). This

preference is due to the high lipid content in bovine
oocytes and zygotes, which obscures visibility of the
pronuclei by standard transmitted-light microscopy. Cyto-
plasmic injection is near 100% efficient and the associated
plasma membrane damage and volume change is transient
and generally well-tolerated by the zygote. Provided that
the dimensions of the injection capillaries and injection
parameters (e.g., injection pressure and duration) are
standardized, this technique results in reproducible
amounts of material being delivered. However, this
method relies on high technical skills, introducing
operator-dependent experimental variation as a confound-
ing parameter in editing experiments. It also requires
expensive micromanipulation, microscopy and pipette
fabrication equipment and is relatively low-throughput.
By contrast, electroporation offers a higher throughput

alternative, which is less labor- and cost-intensive. It can
be simultaneously applied to many zygotes and only needs
a stereomicroscope, electroporator and fusion chamber.
This approach has been reported to deliver gRNA/Cas9
RNPs, Cas9 mRNA and gRNAs into rodent embryos,
achieving high biallelic editing efficiencies[36,37]. This was
followed by the validation of electroporation as a suitable
method to edit bovine embryos[32,33]. In addition, the
feasibility was demonstrated to HDR-edit bovine zygotes
by electroporating gRNA/Cas9 RNPs and an exogenous
repair template[30].
Multiple time points during the first bovine cell cycle

have been evaluated for NHEJ or HDR editing efficiency.
Most reports in cattle have focused on introducing NHEJ
mutations for simple loss-of-function experiments, with
nuclease delivery time ranging from 5 to 24 h after in vitro

Table 1 Publications of embryo-mediated genome editing in bovine zygotes

Nucleasea Reagentb
Delivery
methodc

Delivery time
(post IVF)/hd

Target locus
Intended

editing pathwaye
Edited embryos/%

Mosaic
embryos/%f

Mosaic/total
edited offspring

Reference

TALE mRNA CI 19 ACAN or
GDF8

NHEJ NHEJ: 2–50 ~20 – [25]

TALE mRNA CI 24 GDF8 NHEJ NHEJ: 31–57 ND 1/3 [26]

ZF or
TALE

Plasmid or
mRNA

CI 8 or 18 LGB NHEJ & HDR NHEJ: 29–83
HDR: 11–46

~80 – [27]

TALE plasmid CI 18 LGB HDR HDR: 21–32 ND 1/3g [20]

Cas9 mRNA CI 20–22 – NHEJ NHEJ: 83 ND – [28]

Cas9 Plasmid or
mRNA

CI 5 PRNP NHEJ & HDR KI NHEJ: 25–45
KI: 12.5

~85 – [29]

Cas9 RNP E 8 PMEL NHEJ & HDR NHEJ: 57–100
HDR: 0–6

ND – [30]

Cas9 RNP CI 10 (IVF),
1 (PG)

POU5F1 NHEJ NHEJ: 86 ~34 – [31]

Cas9 RNP E 18–22 NANOS2 NHEJ NHEJ: ~63 ND – [32]

Cas9 RNP E 10 or 15 GDF8 NHEJ NHEJ: 20–60 ~75 – [33]

Note: a Transcription activator-like effector (TALE), zinc finger (ZF). b Nuclease delivered as mRNA, plasmid, or preformed ribonucleoprotein (RNP) complex.
c Cytoplasmic injection (CI) or electroporation (E). d In vitro fertilized (IVF) or parthenogenetic (PG) embryos. e Non-homologous end joining (NHEJ), homology-
directed repair (HDR), knockin (KI). f Normalized on the total number of edited embryos or not determined (ND). g Embryos were biopsied and screened for the
presence of the HDR edit before transfer.

Fig. 2 Cytoplasmic injection in a bovine zygote. Image courtesy
of Dr. Jingwei Wei (AgResearch, Ruakura Research Centre, New
Zealand).
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fertilization (IVF) (Table 1). At each of these time points,
moderate editing efficiencies have been achieved with
usually at least half of the embryos carrying NHEJ
generated indel mutations. However, fewer publications
have assessed HDR-based editing in bovine embryos.
HDR occurs at higher frequency during late S and G2

phase of the cell cycle[38]. So, timing the delivery of the
editing tools may be important for achieving precise HDR
editing. In bovine zygotes, G1 phase lasts from about
6–14 h post-IVF, S-phase starts at 11–15 h and ends at 23–
26 h, followed by a short G2-phase at 26–31 h and the first
cleavage divisions after 26 h[39]. For HDR editing in
bovine embryos, the nuclease and repair template were
either co-delivered before (5–10 h post-IVF) or during
mid/late S phase (18–24 h post-IVF, Table 1). When
delivered in G1, cleavage and repair of the target sites will
result in edits that are replicated in both DNA strands
during subsequent S phase. By contrast, editing during S
phase occurs while each chromosomal DNA strand is
being replicated into two sister chromatids, doubling the
number of target sites, but coinciding with the DSB repair
machinery being most active[38]. Previous work by our
group showed that there was no significant difference in
the proportion of HDR-edited embryos between delivering
the nuclease and repair template at G1 (8 h) vs. S phase
(18 h)[27]. These experiments were mostly performed with
ZFNs delivered as a plasmid, with the DNA cleavage
expected to be faster if the nuclease was delivered as a
protein. Further experiments are required to optimize
delivery time for HDR when using the more convenient
gRNA/Cas9 RNPs. Since mosaic embryos with more than
two alleles are commonly observed, the editing could be
continuing throughout subsequent cleavage divisions[40].
HDR editing efficiency in zygotes is relatively low and

was reported to be in the range of 11%–46%[27] and 21%–
32%[20] of cytoplasmically injected zygotes for the
introduction of a 9-bp deletion in the bovine LGB gene.
By electroporation, the efficiencies were even lower with
only up to 6% of embryos showing some degree of HDR
editing[30]. For large transgene knockin experiments,
Bevacqua et al.[29] reported that Cas9 improved targeted
insertion with one of eight embryos correctly modified
compared to zero of 175 when using just the repair
template. This shows that direct HDR editing is possible in
bovine zygotes, but the reported efficiencies would need to
be greatly increased or correctly edited embryos identified
and selectively multiplied in order to be useful for a
breeding program.

3.2 Optimizing HDR outcomes

HDR efficiencies still remain low, especially for introdu-
cing large DNA sequences. A number of approaches have
been devised to shift the balance between competing NHEJ
and HDR pathways toward the latter. These include the use
of chemical and biochemical compounds to interfere with

the DNA repair machinery— either by blocking the NHEJ
pathway, with DNA-dependent protein kinase inhibitors
like M3814[41], or by stimulating the HDR pathway, with
mRNA from HR effectors like RAD51[42] or with
stimulating molecules like RS-1[43]. As pharmacological
inhibitors can be cytotoxic and yield variable efficiency,
HDR can also be enhanced by coupling Cas9 expression to
cell cycle effectors at the late S to G2 phase[44,45] or by
tethering the DNA template to the gRNA/Cas9 RNP
complex, juxtaposing the template DNA to the DSB repair
site[46–48]. In addition, HDR repair efficiency depends on
how the DNA template is delivered: as a single-stranded
DNA molecule[49], as recombinant adeno-associated viral
vector[50], or in a cassette designed to trigger alternative
DNA repair pathways, like microhomology-mediated end
joining[51], homology-mediated end joining[52], or homol-
ogy-independent targeted integration[53].
Direct delivery into embryos provides an additional

opportunity to improve HDR outcomes. In contrast to
zygotic injection, much higher HDR-mediated knockin
efficiencies were achieved by cytoplasmic microinjection
into two-cell mouse embryos, combined with a modified
streptavidin-biotin Cas9 system[46]. This strategy resulted
in a 10-fold increased knockin efficiency compared to
standard methods, higher frequency of homozygous
insertions, and increased germline contribution. Benefits
were attributed to two factors. First, the two-cell stage
marks the onset of major embryonic genome activation in
the mouse, which is associated with increased open
chromatin that may improve the accessibility for Cas9 to
the target site. Second, mouse embryos display an
exceptionally long G2 cell cycle phase during the two-
cell stage, extending the time for HDR-mediated repair to
occur. The same approach is less likely to be successful in
cultured bovine embryos, where embryonic genome
activation occurs at the eight-cell stage[54], concomitant
with the longest cell cycle duration at this stage[55].
Compared to zygote delivery, introducing editors into all
blastomeres at the two- or eight-cell stage likely increases
mosaicism, as there are now multiple independent genome
editing events that need to resolve in the developing
embryo. Also, transfecting multiple blastomeres, either by
injection or electroporation, is technically more difficult,
which makes its implementation less straightforward.
All the above optimization strategies have so far been

unable to sufficiently lift HDR efficiencies to make
precision genome editing in embryos for breeding a
realistic proposition. Without future improvements, multi-
plication of HDR-edited but rare embryos might offer
another solution.

4 Multiplying edited embryonic genotypes

The probability of obtaining a viable calf from a single
edited IVF embryo is about 45%[56]. To address this
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biological limit, different strategies for multiplying edited
genomic selection embryos are being developed. These
also address low editing efficiency by identifying and
selectively multiplying correctly targeted embryonic cells.
For zygote-mediated editing, serial cloning from early
cleavage-stage or morula blastomeres can multiply the
desired genotype, resolve potential mosaicism and ensure
the generation of live animals. For ePSC editing, robust in
vitro proliferation enables genotype amplification and
characterization before potentially generating a large
number of animals.

4.1 Blastomeres

The zygote cleaves into progressively smaller nucleated
cells, termed blastomeres, without increasing total embryo
volume[57]. This process ends at the blastocyst stage when
cells initiate growth and replicative proliferation for the
first time during embryo development[57]. Until the eight-
cell stage, bovine blastomeres are still totipotent, i.e., able
to give rise to all cell types on their own, and genotype
multiplication can be achieved by embryo splitting[58].
Following zygote-mediated editing, dissociating totipotent
blastomeres at the two- to eight-cell stage could potentially
resolve early embryonic mosaicism by segregating the
different genotypes generated at the one-cell stage[59].
Multiplication of the edited genotype is maximally two to
8-fold with this approach, not accounting for some
blastomeres that must be sacrificed for genomic selection
and validation of edits. This limits the applicability of
blastomere splitting for resolving mosaicism and genotype
amplification.
The pre-compacting morula stage (32–64 cells) offers an

intermediate starting point for embryo multiplication
between early cleavage-stage stages, which are limited in
numbers, and blastocyst-derived ePSCs, which can
produce large numbers but have not been routinely
established in cattle. Biopsy, genotyping and vitrification
procedures, originally developed for genomic selection of
blastocysts[22], can be applied to identify the best morula
genotypes[60]. Modest genotype multiplication by ECT is

feasible with morula blastomeres and editing is already
fixed because introduced editors are unlikely to still be
active at this stage[40]. As each embryo derives from a
single donor cell, ECT segregates edited from unedited
donors and only generates non-mosaic embryos (Fig. 3).
Hence, genomically selected morulae can be dissociated
into single donor cells for ECT, resulting in genotype
amplification and segregation. In principle, several rounds
of iterative ECT can achieve further multiplication by
serial embryo recycling and intermittent cryopreservation.
Importantly, ECT multiplies both edited and unedited elite
embryos.

4.2 Blastocysts and ePSCs

Blastocysts can be microsurgically bisected, but the
biological multiplication factor to term is low (~1.2
times) due to the compromised in vivo survival of demi-
embryos[61]. Instead, blastocyst-derived ePSCs offer a
promising alternative for both multi-editing (see below)
and multiplication. Under the right culture conditions,
these cells remain capable, at the single cell level, to
produce all adult cell types, including functional
gametes[62,63]. This ability is retained even after extensive
genetic modification by homologous recombination[64] or
genome editing[65]. Only cells capable of germline
transmission or tetraploid complementation, wherein
ePSCs are introduced into a tetraploid host embryo and
forced to form the entire animal[66], are considered fully
pluripotent. Such cells have been referred to as naïve
PSCs[67]. Naïve PSCs are capable of extended self-renewal
and biological amplification of a selected genotype without
genetic transformation. Their high clonogenicity from
single cells allows maintaining stable diploid cultures over
hundreds of population doublings[68]. This would be
highly desirable for in vitro multiplication of rare high-
value embryonic genotypes.
Ever since ePSCs were first described in mice, there has

been an interest to derive analogous cells from farm
animals, however, all attempts to isolate naïve bovine
ePSCs have so far been unsuccessful[69]. Progress in

Fig. 3 Resolving mosaicism in edited embryos by embryonic cell transfer (ECT) blastomere cloning. After genome editing in the
zygote, a mosaic morula can be dissociated and the blastomeres used for ECT. The resulting embryos derived from a single blastomere
would then be non-mosaic, which can be confirmed with an embryo biopsy before transfer or cryopreservation.
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understanding of pluripotency regulation in mice and
humans, combined with extensive chemical screening, has
led to the development of chemically defined culture
conditions that yielded expanded potential stem cells in
pigs[70]. These cells show molecular and functional
features of naïve pluripotency, including expression of
key pluripotency genes and permissiveness to genome
editing. Initial plating and cell line derivation efficiency
from individual blastocysts was only averaging ~30% but,
once established, porcine ePSCs reached >40 passages
without overt differentiation, while remaining karyotypi-
cally normal[70]. Similar results were also reported for
bovine ePSC-like cells, achieving >50 passages with
stable population-doubling times and normal karyo-
types[71]. Importantly, porcine ePSCs also engendered all
embryonic and extra-embryonic somatic cell lineages, but
so far not the germline, in chimaeras. These advances
suggest that the naïve pluripotent state may be a conserved
feature of mammalian embryogenesis that could be
effectively captured, without genetic intervention, in
other livestock species.

4.3 Multiplex editing of ePSCs

The majority of important livestock traits are complex,
quantitative and controlled by multiple genes. Their
manipulation will require multiplex genomic modifica-
tions, which are likely to be challenging to achieve by
zygotic injection alone. Long-term proliferating livestock
ePSCs, once available, would present a practical alter-
native to zygote-mediated editing (Fig. 3).
In mouse and human ePSCs, the pluripotent cell state

facilitates transgenesis, homologous recombination and
genome editing with ZFNs and TALENs[72–74]. Likewise,
Cas9 allows for fast and efficient multiplex mutagenesis at
endogenous genomic loci in human[75] and mouse
PSCs[65]. Even though biallelic HDR frequencies in
human PSCs are generally 5–20-fold lower than in tumor
cell lines, this can be overcome by positive selection
strategies, efficient subcloning of cells with rare editing
events or enhanced delivery methods for nuclease and
template[75]. Similarly, transfected mouse PSCs can be
enriched by either using drug selection or sorting for the
expression of fluorescent reporters. Since ePSCs are highly

clonogenic under defined long-term culture conditions,
single cells can be expanded into sufficient numbers of
primary colonies to allow for thorough characterization of
the introduced edits (Fig. 4). At the same time, ePSC clonal
strains would resolve any potential mosaicism present in
the founder population. Clonal strains derived from
unedited cells that have undergone the same targeting
process provide isogenic parental control cells.
While simultaneous editing is possible, its scope will be

limited by the number of simultaneous DSBs in the
genome that a cell can tolerate for survival. By contrast, the
indefinite growth potential of ePSCs allows for essentially
unlimited sequential editing and engineering of compound
genotypes optimally suited to study complex biological
processes. In livestock, this would facilitate stacking of
beneficial causative variants into an elite genetic back-
ground in a single generation, short-cutting decades of
traditional crossbreeding and backcrossing to generate
enhanced phenotypes.

5 Generating genome-edited animals from
embryonic genotypes

5.1 Clones

The two main reproductive strategies for producing
animals from either edited embryos or naïve ePSCs are
(1) ECT cloning, and (2) germline chimaera formation
(Fig. 5). In ECT cloning, the incidence and severity of
abnormal phenotypes is greatly reduced with blastomere
compared to somatic clones[76,77]. It remains to be shown
that this also holds true for edited blastomeres, multiplied
by serially cloning, but potentially this approach can
substantially lessen animal welfare burdens. The situation
is less clear with cloning from ePSCs. In mouse cloning
experiments, ePSCs did not perform significantly better
than genetically matched somatic cells[78]. However,
mouse ePSC often contain non-reprogrammable karyoty-
pic abnormalities[79] and are epigenetically unstable in
long-term culture during targeting experiments[80], com-
plicating assessment of their true reprogramming potential.
This has prompted the notion that short-term cultures of
primary ePSCs, which are more likely to be devoid of

Fig. 4 Multiplex genome editing in embryonic pluripotent stem cells (ePSCs) isolated from a genomically selected elite blastocyst. With
high clonogenicity and stable pluripotency, ePSCs would allow sequential multiplex genome editing of multiple loci (loci black to gold),
followed by clonal expansion of edited strains.
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genetic and epigenetic aberrations, may result in higher
cloning efficiency, similar to the results with embryonic
blastomeres[78].

5.2 Germline chimaeras

Chimaera formation, on the other hand, involves introdu-
cing donor blastomeres or naïve ePSCs into a normal
diploid host embryo of a different zygotic origin, resulting
in widespread somatic and germline contribution of the
donor cells. Since the donor germline contribution is
seldom 100%, only some of the offspring originate from
the donor genotype, necessitating time-consuming cross-
breeding of the founder generation, which renders this
approach impractical for livestock breeding. To overcome
this problem, it is possible to genetically ablate the host
germline[81–85], providing a suitable vehicle for exclusive
transmission of the donor haplotype, either from trans-
planted spermatogonial stem cells[86] or embryonic cells
developing into gametes. The latter approach relies on
embryo complementation of germline-deficient hosts, a
mechanism that has, in principle, been demonstrated as
feasible in sheep[87], cattle[88,89] and pigs[90,91]. The
generation of such absolute transmitters with exclusively
embryo-derived elite donor germlines provides an exciting
opportunity for accelerating genetic gain[22]. Absolute
transmitters could functionally replace somatic clones,
potentially reducing cloning-associated animal welfare
problems.

5.3 In vitro gametogenesis

It may also be possible to differentiate edited diploid
ePSCs into haploid male and female gametes, similar to
what has been achieved in mice[92]. Depending on the time
lines for cell differentiation, meiotic recombination and

proliferation, this approach, originally termed whizzoge-
netics, could theoretically shorten the generation interval,
provided that the same selection accuracy can be
maintained[93]. Even though the biological and practical
hurdles for reconstituting gametogenesis in the dish are
enormous, this new technology may provide an alternative
source of gametes for in vitro breeding in the future.

6 Regulatory aspects

Genome editing is a relatively new technology that is
associated with regulatory uncertainty. Regulations estab-
lished for the control of transgenic technology appear no
longer appropriate for the level of precision and control
that is possible with the new editing technology and is a
topic of intense international discussion[94]. While many
countries are still developing their final position, economic
heavyweights like the EU and the USA have opted to
regulate genome-edited animals just like transgenic
animals even though genome-edited animals can be
indistinguishable from naturally-occurring animals[95,96].
However, there are also a few countries that have taken a
different path. The regulations in Argentina, Australia and
Brazil reflect the reduced risk profiles of genome-edited
animals and regulation is not required if genome-edited
animals do not contain any foreign DNA[97,98]. The
simplest regulatory approach for new technologies has
probably been implemented by Canada[99]. The trigger for
regulation is not a new technology but rather a new animal
trait, irrespective of what technology was used to create
that trait. Realizing the great potential of genome-edited
animals toward sustainable solutions for pressing environ-
mental and food security issues will only be possible if
more countries adopt risk-adjusted regulations that might
allow the widespread use of such animals.

Fig. 5 Embryo-mediated accelerated breeding in cattle. (a) Using proven technologies (solid arrows), precise genomic edits can be
introduced in zygotes from elite sires and the best embryos identified by genomic selection (GS). The desired embryonic genotype can
then be multiplied by embryonic cell transfer (ECT) cloning and elite offspring generated. (b) A complementary pathway (dashed arrows)
is centered around embryonic pluripotent stem cells (ePSCs). ePSCs would be isolated from an elite embryo and numerous genomic
modifications introduced. Alternatively, ePSCs would be isolated from embryos multiplied by ECT for subsequent genome editing.
Offspring could then be produced by cloning or as a chimaera with absolute transmission of the elite germline.
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7 Conclusions

Almost two decades ago it was predicted that embryo-
based genome selection, modification and multiplication
would replace somatic cell-based approaches to accelerate
livestock breeding[100]. With the advent of accurate
marker- and sequence-based embryo selection, precise
multi-editing and more sophisticated serial embryo multi-
plication, this prediction is now getting closer to reality
(Fig. 5). Conceptually, some key advantages of embryo-
mediated approaches for genetic improvement have not
changed since then: (1) genomically-selected embryos
capture the most recent genetic gains, compared to the
genetic lag associated with adults; (2) embryonic cells are
amenable to complex genomic modifications owing to
their extensive proliferation potential; (3) embryonic
donors are inherently easier to reprogram, resulting in
greater cloning efficiency, reduced animal production costs
and animal welfare issues; and (4) animal clones may even
be replaced with chimaeras if complementation with
embryonic donors can efficiently establish absolute germ-
line transmitters. In addition, genome editing can selec-
tively introduce naturally-occurring beneficial variants into
various elite genetic backgrounds in a single generation
without leaving foreign DNA in the targeted genome.
To use genome editing productively for livestock

improvement, putative causative variants for desirable
traits must first be identified, emphasizing the ongoing
need for large-scale gene discovery programs. Genome
editing can then determine causality of the most promising
selection candidates before their embryo-meditated intro-
gression for animal production. Stacking multiple edited
variants in the most recent elite genetic background would
rapidly generate fitter, healthier and more sustainable
animals, required to reduce our vulnerabilities to dimin-
ishing natural resources and secure sustainable livestock
production.
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