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Abstract Huanglongbing (HLB, citrus greening) is one
of the most serious quarantine diseases of citrus world-
wide. To monitor in real-time, recognize diseased trees,
and efficiently prevent and control HLB disease in citrus, it
is necessary to develop a rapid diagnostic method to detect
HLB infected plants without symptoms. This study used
Newhall navel orange plants as the research subject, and
collected normal color leaf samples and chlorotic leaf
samples from a healthy orchard and an HLB-infected
orchard, respectively. First, hyperspectral data of the upper
and lower leaf surfaces were obtained, and then the
polymerase chain reaction (PCR) was used to detect the
HLB bacterium in each leaf. The PCR test results showed
that all samples from the healthy orchard were negative,
and a portion of the samples from the infected orchard
were positive. According to these results, the leaf samples
from the orchards were divided into disease-free leaves and
HLB-positive leaves, and the least squares support vector
machine recognition model was established based on the
leaf hyperspectral reflectance. The effect on the model of
the spectra obtained from the upper and lower leaf surfaces
was investigated and different pretreatment methods were
compared and analyzed. It was observed that the HLB
recognition rate values of the calibration and validation
sets based on upper leaf surface spectra under 9-point
smoothing pretreatment were 100% and 92.5%, respec-
tively. The recognition rate values based on lower leaf
surface spectra under the second-order derivative pretreat-
ment were also 100% and 92.5%, respectively. Both upper
and lower leaf surface spectra were available for recogni-
tion of HLB-infected leaves, and the HLB PCR-positive
leaves could be distinguished from the healthy by the

hyperspectral modeling analysis. The results of this study
show that early and nondestructive detection of HLB-
infected leaves without symptoms is possible, which
provides a basis for the hyperspectral diagnosis of citrus
with HLB.
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1 Introduction

Huanglongbing (HLB, citrus greening) is a quarantinable
disease of citrus around the world. HLB has a history of
more than 100 years, and is impacting the global citrus
industry with increasing severity. After infection with
HLB, the vigor of citrus trees gradually declines, the fruit
set decreases and the production of fruits falls sharply. The
fruit becomes smaller with abnormal color commonly
known as “red fruit,” and lose nutritional value. When the
whole plant is infected, there is almost no yield, and finally
the tree will die[1]. So far, there is no effective treatment for
HLB disease. Therefore, real-time identification and
removal of the infected plants is the most important and
effective prevention and control measures.
Until recently, identification of HLB has been based on

appearance of symptoms. Now polymerase chain reaction
(PCR) tests have been developed that can rapid and
accurately identify pre-symptomatic HLB infection. How-
ever, identification of symptoms in the field is limited by
the knowledge and experience of the inspectors, and then
only by skilled inspectors when symptoms become
obvious. Molecular identification based on PCR technol-
ogy is costly and takes longer. Therefore, it is important to
develop accurate, efficient and real-time detection technol-
ogy for HLB. Real-time and high-efficiency detection of
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the infected plants before symptoms develop would be of
great significance for the prevention and control for HLB
disease. Near infrared (NIR) spectroscopy is a modern
analytical technology with the advantage of being a
simple, rapid and nondestructive means of inspection.
Compared with the multispectral information, the hyper-
spectral analysis technique developed in recent years has
higher spectral resolution, which can detect subtle changes
in the spectral information from the sample, and detect the
external sample features. With the rapid development of
hyperspectral remote sensing technology, hyperspectral
imaging technology used for the diagnosis of crop diseases
has become a key area of research. Hyperspectral imaging
technology combined with modern modeling and data
analysis techniques can accurately identify the internal
properties and external features of a test object and may
identify a disease before symptoms appear. Therefore, it
offers a great advantage for the early identification of plant
disease.
In recent years, many scientists have studied the use of

multi-spectral and hyperspectral analysis technology to
diagnose diseases of crops, such as wheat[2,3], rice[4,5],
Chinese cabbage[6], tomato, eggplant[7,8], cucumber[9],
soybean[10,11] and cotton[12,13]. It has also been applied to
some diseases of trees, such as apple, chestnut, and Pinus
massoniana. The spectral detection and ground-based
remote sensing technology for citrus HLB disease are also
receiving considerable attention. Sankaran et al.[14]

identified healthy leaves and HLB-infected leaves using
linear discriminant analysis, Quadratic discriminant ana-
lysis (QDA), K-nearest neighbor, and soft independent
modeling class analog classification. The results showed
that recognition using the second-order derivative spectra
combined with QDA was the best with an overall
classification accuracy of up to 95%. The Citrus Research
Center at the University of Florida also established a
recognition model of HLB disease based on aerial remote
sensing and multi-spectral technology[15,16]. Mei et al.[17]

and Deng et al.[18,19] studied early nondestructive detection
and diagnosis of citrus HLB disease based on hyperspec-
tral imaging. These studies showed the advantages and
value of spectroscopy applied to the identification of HLB
disease, and also provided a reference for the development
of identification technology for HLB disease. However, the
above studies mostly established models used citrus
samples with symptoms of HLB, but gave little considera-
tion to asymptomatic samples. In this study, two kinds of
samples, normal leaves (asymptomatic), and chlorotic
leaves (symptomatic) from orchards were collected, and
hyperspectral images of the upper and lower leaf surfaces
were taken. Based on PCR results for all the leaf samples,
the leaves were divided into two types: HLB-negative
leaves and HLB-positive leaves. Two kinds of models to
identify citrus with and without HLB were established, and
a new method is proposed for the simultaneously
identification of asymptomatic and symptomatic leaves,

which could provide the basis for the rapid diagnosis of
citrus HLB disease.

2 Materials and methods

2.1 Materials

Experiments were conducted using leaves collected from
citrus orchards in Xunwu County in Jiangxi Province on 11
October 2015. Ten- to 13-year-old naval orange trees
(Citrus sinensis cv. Newhall) on trifoliate orange (Poncirus
trifoliata) rootstocks were sampled. Leaves were collected
from orchards with and without HLB symptoms. Forty
trees with varying severity of disease were selected in the
HLB-infected orchard. Eight to 12 leaves were collected
from each tree to give a total of 400 leaves; 200 leaves of
normal color and 200 leaves with varying degrees of
yellowing. Twenty trees including visually healthy plants
and those with suspected nitrogen deficiency were chosen
in the orchard without HLB symptoms. Eight to 12 leaves
were collected from each tree to give a total of 200 leaves;
100 leaves with normal color and 100 chlorotic leaves. The
samples were transported in a cooler to the laboratory with
minimal delay, where the samples were cleaned and
numbered, and hyperspectral imaging and PCR testing
conducted.

2.2 Acquisition of leaf hyperspectral images

A hyperspectral imaging system was used to acquire the
hyperspectral data in a dark box as shown in Fig. 1. The
hyperspectral imaging system consisted of the following
parts[20]: (1) hyperspectral spectrometer (ImSpector,
V10E, Specim, Spectral Imaging Ltd. Oulu, Finland),
(2) EMCCD camera (Raptor photonics, Inc., FA285-CL,
Antrim, Northern Ireland), (3) light source (150 W/21 V
halogen tungsten lamp, Illumination Technologies, Inc.,
East Syracuse, NY, USA), (4) motion controller, and
(5) computer. The spectral range is 400–1000 nm, and the
spatial resolution is 2.8 mm.
The hyperspectral imaging system was turned on for

preheating for about half an hour before testing. The
camera height was set according to the imaging definition.
The parameters were set as follows. The distance between
camera lens and movable platform was 400 mm. The
exposure time was 60 ms. The speed of the movable
platform was 1.87 mm$s–1. To reduce the effect of
temperature on spectral reflectance, laboratory temperature
was maintained at 20°C, the samples were numbered and
placed on the platform, and the hyperspectral images of the
leaf sample were taken from both upper and lower
surfaces. Then the calibrated hyperspectral images were
obtained based on the following equation:

R ¼ ðRS –RDÞ=ðRW –RDÞ
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where R is the relative reflection density of sample, RS is
the reflection density of the sample original image, RW is
the reflection density of white calibration image, RD is the
reflection density of dark calibration image.

2.3 PCR test

After the measurement of hyperspectral image, the leaf was
tested by PCR Gene Amplification Instrument in the
laboratory (Table 1). The leaf midrib was removed and the
total DNA of the leaf was extracted using the CTAB
(hexadecyltrimethylammonium bromide) method[21].
Then a standard PCR method was used to detect HLB
bacteria of citrus[22]. The predicted PCR product from 16S
rDNA amplification primers was 1167 bp, including:
OI1: 5′GCGCGTATGCAATACGAGCGGCA3′;
OI2: 3′GCCTCGCGACTTCGCAACCCAT5′.
After the reaction, 5 mL of PCR amplification and 10 �

1 mL of loading buffer with GelRed dye were mixed. The
electrophoresis was conducted in 1% agarose gel and the
result photographed with a gel imaging system. The
positive lane was taken as the reference to determine
whether the sample was infected with the HLB bacterium.

3 Data processing

3.1 PCR testing results and data classification

Figure 2 shows the PCR electrophoresis pictures of
representative samples. It was found that the leaf samples
collected from the orchard without symptoms were
negative, which meant that the trees were not infected
with HLB. Of the leaves collected from the orchard with
HLB symptoms, 93 samples were positive including 21
samples of normal color and 72 chlorotic leaves. The rest
were negative. Since it is difficult to culture the HLB
bacterium and the pathogenic bacteria are unevenly
distributed in plant tissues, with low quantity and
complexity in sample preparations, false negative results
are sometimes found in PCR tests[23]. Therefore, this
research used both PCR-positive and -negative leaves for
modeling and predicting.
In the modeling analysis of spectral identification, 90

HLB-positive leaves from 93 PCR-positive samples and
90 HLB-negative leaves from PCR-negative orchard were
selected randomly. The two groups contained 20 leaves
with normal color and 70 chlorotic leaves. The grouping of
the modeling set and the predicting set are shown in
Table 2.

3.2 Spectral extraction and preprocessing

To eliminate background interference, HSI Analyzer
software (Isuzu Optics Corp.) was used to separate the
hyperspectral images, and the mask image of the leaf
region was obtained as shown in Fig. 3. The average
spectrum of white region, i.e., leaf region of citrus, was
extracted as the spectral value of this leaf sample. To

Table 1 The system and program of PCR reaction

20 µL reaction system Program

10 � buffer, 2.0 µL
10 mol$L–1 dNTP, 0.4 µL
OI1, 0.4 µL
OI2, 0.4 µL
rTaq, 0.2 µL
DNA, 2.0 µL
H2O, 14.6 µL

1st, pre-denaturation 94°C 5 min
2nd, denaturation 94°C 30 s

3rd, primer annealing 60°C 30 s
4th, extension 72°C 45 s

35 cycles
5th, extension 72°C 10 min

Fig. 1 Hyperspectral imaging system
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eliminate influence from adverse factors, such as noise,
baseline drift and shift, some algorithms such as 9-point
smoothing, first-order derivative (D1), second-order deri-
vative (D2), multiplicative signal correlation (MSC),
standard normal variate (SNV) transformation, and others
were adopted to preprocess the obtained leaf spectra.

3.3 Extraction of principal components

The principal components of the spectra from upper and
lower leaf surfaces using different data pretreatments were
extracted with Matlab® R2010a software (The Mathworks,
Inc., Natick, MA, USA) and the cumulative contribution
rate of the first N principal components was calculated. As
shown in Fig. 4, when the number of principal components
was 45, the cumulative contribution rate of principal
components of different pretreated spectra all reached to
99%. Therefore, the first 45 principal components were
selected as the input of the recognition model.

3.4 Least squares support vector machine modeling
analysis

The support vector machine (SVM) is a recent algorithm
for machine learning. It has many advantages in solving
practical problem, such as small sample set, nonlinear,
high dimensional pattern and local minimum values[24].
The least squares support vector machine (LSSVM) is an
improvement and expansion of traditional SVM, which
adopts a structural risk minimization principle instead of
empirical risk minimization principle. It has superior
generalization ability and global optimalization and,
compared with the forward neural network, it is not easy
to over-fit. This research used Matlab® R2010a to establish
the LSSVM discriminant model and adopted RBF kernel
function KðXi,XjÞ ¼ expð – γjjXi –XjjjÞ2 which had wide
convergence domain.

4 Results and analysis

4.1 Spectral characteristics of leaf samples

It was observed from the original spectra of both upper and
lower leaf surfaces that the variation trends of the spectral
reflectance curves were similar and coincident with each
other. Consequently, it was difficult to distinguish whether
the leaves were infected with HLB or not. The spectral
reflectance of leaf samples might be influenced by many
factors, such as the growth condition, leaf structure and

Table 2 Grouping of leaf samples from HLB-free and-infected orchards

Group
HLB-free orchard 　 HLB-infected orchard

Calibration group Validation group Total 　 Calibration group Validation group Total

Normal color leaves 15 5 20 15 5 20

Chlorotic leaves 55 15 70 55 15 70

Total 70 20 90 　 70 20 90

Fig. 2 Conventional PCR electrophoretogram of Newhall citrus leaf. (a) M, DL2000 marker; 1–9, nine leaf samples from HLB-free
orchard; (b) M, DL2000 marker; 1–9, nine leaf samples from HLB-infected orchard.

Fig. 3 Mask image of leaf region of citrus
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constituents, the surrounding environment, and other
factors. These factors can influence the external character-
istics of leaf, such as color, texture and structure, and
internal characteristics, such as chlorophyll, moisture and
tissue composition, which results in some differences in
spectral reflection characteristics of the leaf sample.
Therefore, the difference in leaf spectral reflectance is
not only caused by HLB infection, and it should be further
analyzed using a chemometric method to extract the
spectral information of the HLB-infected leaves.
The original average spectra of HLB-positive and

-negative leaves from upper and lower surfaces are
shown in Fig. 6. The curves have the typical NIR spectral
characteristics of plant leaves. However, in the range of
400–700 nm the average spectral reflectance of the lower
leaf surface was greater than that of the upper leaf surface,
which might be attributed to higher content of chlorophyll
in the upper surface, so that the leaves could absorb more
solar radiation and reduce the spectral reflectance. It was
observed that the average spectrum of HLB-positive leaves
was higher than that of the HLB-negative leaves from both

upper and lower surfaces, which showed that the leaf tissue
infected with HLB had different spectral response
characteristics.

4.2 Extraction of spectrum principal components

In this research, the scanned spectral range of Newhall
citrus leaves was 400–1000 nm with 760 wavebands in
total. Hyperspectral data contains large amount of
information including redundant information, which goes
against high-efficiency computational analysis. This
research adopted Matlab to extract spectral principal
components, which were treated as new variables. Those
new variables had no correlation with each other and could
represent most of the information contained in the original
spectra. Figure 7 shows the score scattering of the top three
principal components extracted from 140 modeling
samples. The contribution rate of the top three components
of upper leaf surface spectra were 81.0%, 16.5% and 1.5%
(99.0% in total). Also, the contribution rate of the top three
components of lower leaf surface spectra were 84.5%,

Fig. 4 The cumulative contribution rate of the principal components of the spectra from upper and lower leaf surfaces under different
pretreatments. D1, First-order derivative; D2, second-order derivative; MSC, multiplicative signal correlation; SNV, standard normal
variate.

Fig. 5 Original spectra of leaf surfaces. (a) Upper; (b) lower. HLB+ U, HLB positive upper; HLB+ L, HLB positive lower;
HLB–U, HLB negative upper; HLB–L, HLB negative lower.
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14.0%, and 1.0% (99.5% in total). From Fig. 7, it can be
seen that it was difficult to distinguish HLB-negative and
-positive leaves using principal component analysis
directly. Hence, it is necessary to use the extracted
principal components and perform further modeling
computation.

4.3 Calibration and validation of LSSVM model

This study used the spectral data of 180 leaf samples to
establish the LSSVM model for HLB disease identifica-
tion. The samples were divided into two sets, 140 samples
were used as the calibration set and the remaining 40
samples were used as the validation set. Since there were
760 wavebands in the 400–1000 nm range, the calibration
data set was a matrix of 140 � 760 and the validation data

set was a matrix of 40 � 760. The principal components
were extracted from the original spectra and pretreated
spectra such as 9-point smoothing, first-order derivative,
second-order derivation, MSC, and SNV. Then different
numbers of principal components were chosen for LSSVM
modeling analysis. Based on the LSSVM model, the
effects of the optimal principal components combined with
each spectral preprocessing method on the modeling
results were compared and analyzed and the results are
shown in Table 3. The kernel function used by LSSVM
was the RBF function, which had two important
parameters, γ and σ2. The combination of γ and σ2 could
determine the learning prediction ability of the LSSVM
model, and the best combination was obtained by grid
search and cross validation.
From Table 3 the highest recognition rate values of

Fig. 7 3-D clustering chart of top three principal components extracted from leaf surface spectra of Newhall citrus. (a) Upper; (b) lower.
HLB+U, HLB positive upper; HLB+ L, HLB positive lower; HLB –U, HLB negative upper; HLB –L, HLB negative lower.

Fig. 6 Original average spectra of surfaces of HLB-negative and -positive citrus leaves. (a) Upper; (b) lower. HLB+U, HLB positive
upper; HLB+ L, HLB positive lower; HLB –U, HLB negative upper; HLB –L, HLB negative lower. Yellow and green are leaf color.
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calibration set and validation set were obtained for the
upper leaf surface spectra obtained by 9-point smoothing
pretreatment, which were 100% and 92.5% with the
optimal γ and σ2 of 599.70 and 249.04. While the highest
recognition rate values based on lower leaf surface spectra
under the second-order derivative pretreatment were also
100% and 92.5% with optimal γ and σ2 of 73.14 and
107.28. The results showed that both the upper and lower
leaf surface spectra contained useful information for
recognizing HLB in Newhall citrus and could be used
for identification of HLB.
The visible and NIR spectra in the range of 400–

1000 nm can reflect the structure and biochemical
components of leaf samples, such as chlorophyll and
protein. The process of leaf infection with HLB is
complicated, and the leaf structure and biochemical
components will change. These changes would be
expressed in the spectra used to identify infected leaves.
The basis of the HLB disease identification model was the
correlation between the spectrum and the changes of leaf
constituents after infection rather than the direct relation-
ship between the spectrum and the HLB bacterium.
Table 4 shows the precision evaluation confusion matrix

of LSSVMmodels based on the spectra of upper and lower
leaf surfaces. As shown from Table 4, for both upper and
lower leaf surfaces spectra, 100% recognition rates of
calibration sets for HLB-negative and -positive leaf
samples were achieved. For LSSVM, the HLB recognition
model based on the upper surface spectra with 9-point
smoothing, three HLB samples were misjudged as HLB-
negative samples in the validation set. A similar result was
obtained from the model based on the lower surface spectra

with second-order derivative. In general, the reason for the
recognition error in the validation set was because the
HLB-positive samples were mistaken for HLB-negative
samples.
The best identification result was obtained from both the

upper leaf surface model with 9-point smoothing pretreat-
ment and the lower leaf surface model with D2 pretreat-
ment. Table 5 shows classification results of unknown
samples using the LSSVM model combined with the two
pretreatment methods. False samples included two yellow
samples, one normal leaf color, five normal color HLB-
positive, with four correctly recognized. This illustrates
that the high spectrum of citrus HLB early noninvasive
diagnosis is possible, which can identify symptomless
leaves infected with citrus HLB.

5 Conclusions

We used visible and NIR spectroscopy combined with an
LSSVM algorithm to establish an identification model for
HLB-negative and -positive Newhall orange leaves.
Through the comparison and analysis of five different
pretreatment methods, the best recognition result was
obtained from the LSSVM model based on the upper leaf
surface spectra after 9-point smoothing pretreatment.
Further, the model established using the lower leaf surface
spectra after D2 pretreatment achieved a better result. The
determined calibration and validation sets all contained
leaf samples with both normal color and different degrees
of yellow. The calibration and validation results showed
that the HLB-positive leaves whether of normal leaf color

Table 3 HLB identification models by least squares support vector machine model

Leaf
surface

Preprocessing
methods

γ σ2
Calibration data set 　 Validation data set

Number of
samples

Recognition
number

Recognition
rate/%

　
Number of
samples

Recognition
number

Recognition
rate/%

Upper Original spectra 658.28 463.28 140 140 100.0 40 36 90.0

9-point smoothing 599.70 249.04 140 140 100.0 40 37 92.5

D1 0.30 325.40 140 138 98.5 40 34 85.0

D2 1.90 160.30 140 140 100.0 40 36 90.0

MSC 0.76 451.43 140 138 98.5 40 35 87.5

SNV 0.75 511.31 140 138 98.5 40 33 82.5

Lower Original spectra 0.20 225.05 140 137 98.0 40 36 90.0

9-point smoothing 0.17 157.95 140 137 98.0 40 37 92.5

D1 0.51 126.82 140 140 100.0 40 34 85.0

D2 73.14 107.28 140 140 100.0 40 37 92.5

MSC 35.78 845.29 140 140 100.0 40 36 90.0

SNV 28.94 421.64 140 140 100.0 　 40 36 90.0

Note: D1, First-order derivative; D2, second-order derivative; MSC, multiplicative signal correlation; SNV, standard normal variate transformation.
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or yellow were predicted correctly, which indicated that it
was possible to use hyperspectral modeling to detect HLB
disease even when chlorotic symptoms were absent. Only
three misidentified samples were obtained, including two
yellow color and one normal color samples. It can be
concluded from this study that it is feasible to detect and
predict Newhall citrus HLB using an LSSVM discriminant
model established by the upper and lower leaf surface
spectra measured by visible and NIR hyperspectral
imaging technology. This method provided satisfactory
prediction accuracy and laid the foundation for the real-
time and nondestructive detection of citrus HLB disease.
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