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Abstract Primordial germ cells (PGCs) are regarded as
unipotent cells that can produce only either spermatogonia
or oocytes. However, PGCs can be converted into the
pluripotent state by first dedifferentiation to embryonic
germ cells and then by reprogramming to induce them to
become pluripotent stem cells (iPSCs). These two stages
can be completely implemented with mouse cells. How-
ever, authentic porcine iPSCs have not been established.
Here, we discuss recent advances in the stem cell field for
obtaining iPSCs from PGCs. This knowledge will provide
some clues which will contribute to the regulation of
reprogramming to pluripotency in farm species.
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1 Introduction

Pluripotent stem cells (PSCs) are defined as the cells that
can differentiate into multiple cell lineages. They include
embryonic stem cells (ESCs) derived from the inner cell
mass (ICM), embryonic germ cells (EGCs) derived from
gonadal primordial germ cells (PGCs) and induced
pluripotent stem cells (iPSCs). PGCs are unipotent cells
which can only produce either spermatogonia or
oocytes[1,2]. It is now undertood how to convert these
unipotent cells to the pluripotent state. One study[3]

showed that somatic cells could be reprogrammed into
iPSCs when the transcription factors, Oct4, Sox2, Klf4 and
cMyc (also called OSKM), are introduced into target cells.
This is a preliminary study that has received a great deal of
attention and much public interest. Subsequently, many
groups around the world independently replicated the

protocol[4–7]. By contrast, the PGCs are quite different
from somatic cells in their differentiation potential because
they can give rise to EGCs under appropriate in vitro cell
culture[2,8]. However, they can also be reprogrammed into
iPSCs using the standard protocol of inducing somatic
cells into iPSCs[9]. However, the reprogramming of PGCs
into PSCs for lager animals is still largely unachieved. In
this review, we discuss the recent advances and procedures
for obtaining PSCs from pig PGCs.

2 Specification of primordial germ cells

Many studies have shown that PGCs are derived from the
proximal epiblast cells. Then PGCs migrate through the
dorsal mesentery to the genital ridges[10]. In the earlier
studies, PGCs could be identified by alkaline phosphatase
activity in mice[11]. With the advent of transgenic and
molecular markers, the methodology for identification of
PGCs has been updated. Evidence suggested that Blimp1
(also called Prdm1) is critical for the process of PGC
formation at E6.5–7.5 embryos[12]. Moreover, Blimp1 is
regarded as a pluripotency gatekeeper protein in PGCs
because Blimp1 deletion promotes PGCs dedifferentiation
into EGCs[13]. However, Blimp1 is not an exclusive
marker of PGCs because it also controls expression of
visceral endoderm[1,12]. In addition, studies have suggested
that Prdm14, a PR-domain containing transcriptional
regulator, is exclusively expressed in pluripotent cells
and the germ cells[14].
In porcine PGCs, previous studies have shown that the

Sda/GM2-glycan is a surface marker of porcine PGCs[15].
Basic fibroblast growth factor (bFGF) is not only important
in the initiation of PGCs dedifferentiation by impeding
Blimp1 nuclear expression, but also maintains the viability
of PGCs[16]. Dolichos biflorus agglutinin (DBA) can bind
to PGCs and gonocytes, and a small number of
spermatogonia can also be marked by DBA[17]. After
arriving in the genital ridges, porcine PGCs undergo
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extensive DNA methylation, which is similar to murine
PGCs. The methylation levels of early migrating porcine
PGCs are remarkably low, compared to somatic cells at
E15[18]. PGCs from 26-day-old embryos can generate a
cell line possessing DNA methylation, including imprints,
regardless of their sex chromosomes[19]. With the excep-
tion of DNA methylation, porcine PGCs also undergo a
major histone modification between E15 and E21, where
the levels of histone H3 lysine9 mono- and dimethylation
1/2 (H3K9me1⁄2) decrease and levels of H3K27me3
increase[20].

3 Pluripotent stem cells derived from
primordial germ cells

Compared to other cell lines, PGCs are unique cells,
because they can express specific genes of the germ-cell
lineage, such as Dazla and Vasa[21,22], and also pluripo-
tency marker genes, such as Oct4 and Nanog[23,24].
Moreover, these cells can dedifferentiate into EGCs
when cultured in vitro in the presence of bFGF, stem cell
factor and leukemia inhibitory factor (LIF)[8,25]. EGCs are
in the pluripotent state, and the developmental potency of
EGCs are equivalent to PSCs. A study by Kimura et al.[2]

showed that PGCs can be reprogrammed into induced
EGCs using small molecule compounds and transcription
factors Oct4 and cMyc. They replaced Sox2 with
SB431542 (TGF-β receptor inhibitor) and replaced Klf4
with kempaullone (inhibitor of glycogen synthase kinase-3
and cyclin-dependent kinases). In addition, hypoxia
induces reprogramming of PGCs by deregulating expres-
sion of Oct4[26]. In human PGCs, endogenous expression
of Klf4 and cMyc is similar to EGCs, but the expression of
Sox2 and Oct4 is lower than EGCs. Thus, the reprogram-
ming of PGCs into iPSCs can be achieved with two
transcription factors, Sox2 and Oct4[9].
However, the establishment of ESC or iPSC lines for

large animals is more difficult than for mouse ESCs or
iPSCs, especially for pig. In Table 1, we summarize the
differentiation potential of pig PSCs. Briefly, Shim et al.[29]

isolated EGCs from cultured porcine PGSCs and these
cells could differentiate and contribute to tissues of a
chimeric piglet. Piedrahita et al.[30] isolated a porcine EGC

line and made transgenic chimeras.
The scientists have tried to gain authentic iPSC lines

using reprogramming factors. Remarkably, however, there
is only one study reporting that porcine iPSC lines were
established by transfection with the six human reprogram-
ming factors (Oct4, Sox2, Nanog, Klf4, Lin28 and cMyc)
and the production of chimeric offspring[32]. However,
there have been no subsequent reports on the production of
porcine chimeras. Most iPSC lines fulfilled most pluripo-
tency criteria, but their cells could not contribute to
chimeras or generate cloned piglets[33–37].

4 Difficulties for acquisition of porcine
induced pluripotent stem cells

Pigs, as an ideal animal model for human diseases and
organ donation, are drawing more attention than before.
However, porcine ESCs are quite different from those of
mice in that porcine preimplantation development is
distinctly different from mice and humans, and expression
levels of Oct4, Nanog and Sox2 in the zona-enclosed
porcine blastocyst are different from those in mice and
humans[38]. Thus, porcine iPSCs are probably different
from those of mice. In the Fig. 1, we describe the
differentiation fate of pig PSCs. The ESCs are derived
from the ICM of blastocysts, and these cells cultured in
vitro can form chimeric piglets when they are injected into
blastocysts. PGCs can dedifferentiate into EGCs when
they are cultured in vitro in the presence of bFGF and LIF,
and EGCs can form chimeras. Porcine somatic cells can be
reprogrammed into iPSCs by transfected transcription
factors Oct4, Sox2, Nanog, Klf4, Lin28 and cMyc, and
form chimeric offspring. However, there have been no
subsequent reports about porcine chimeras produced from
porcine iPSCs. In particular, there are no reports that
porcine PGCs can be reprogrammed into iPSCs.
The biggest obstacle for obtaining porcine iPSCs is that

these cells cannot be induced into an authentic pluripotent
state, which generates chimeric offspring[33,39,40]. Further-
more, the evidence suggests that the expression of
exogenous reprogramming transcription factors must be
strongly silenced when endogenous reprogramming tran-
scription factors are already activated to generate

Table 1 Differentiation potential of pig pluripotent stem cells

Cell type Cell source Induction/culture system Differentiation potential Reference

ESCs Blastocysts days 6–8 (in vivo) STO feeder layer+ FCS Chimera [27]

Blastocysts day 7 (in vitro) MEF+ bFGF+ EGF+ LIF+ activin+ 10% KSR Chimera [28]

EGCs PGC-derived cells STO feeder layer+ LIF+ 15% FBS Chimera [29]

PGC-derived cells STO feeder layer+ 15% FBS+ LIF+ bFGF Chimera [30]

PGC-derived cells STO feeder layer+ 10% FCS+ bFGF+ SCF+ LIF Chimera [31]

iPSCs Porcine mesenchymal stem cells Transduction with Oct4, Sox2, Nanog, Klf4, Lin28 and cMyc Chimera [32]
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chimeras[41,42]. One study showed that the reprogramming
genes in porcine iPSCs could not be silenced or removed,
which lead to failure in formation of chimeric offspring.
The researchers suggested these genes probably are
necessary to maintain the self-renewal of porcine
iPSCs[33].

5 Induced pluripotent stem cells derived
from pig primordial germ cells

As we have discussed, the generation of porcine iPSCs
derived from somatic cells faces many obstacles. To our
knowledge, currently there are no reports that pig PGCs
can be induced into iPSCs. However, iPSCs derived from
PGCs probably have more advantages over somatic cells
because they can express many key transcription factors
that facilitate pluripotency. In addition, PGCs have similar
epigenetic characters to stem cells compared to somatic
cells[43]. As PSCs, expression profiles of genome-wide
DNA demethylation in EGCs shows a high similarity to
PGCs[44]. Human PGCs can only be directly repro-
grammed into iPSCs by using two transcription factors,
Sox2 and Oct4[9]. As an important reprogramming factor,
Oct4 is continuously expressed in porcine PGCs[10].
Compared to ESCs, the transcriptional profiles of Oct4
and its target genes in mouse PGCs show considerable
differences because of the reduction of Klf4[45]. This is
because these differences lead to different consequences
for the differentiation, dedifferentiation or self-renewal of
PGCs and ESCs[45,46]. Nanog, as another key pluripotency

marker gene, determines the entry to pluripotency. Nanog
is transiently repressed during mouse PGC 6.5–7.5 day[47],
but, notably, it can be continuously expressed in porcine
PGCs[10]. These studies imply that the endogenous
reprogramming genes of porcine iPSCs derived from
PGCs may be more easily activated, and the exogenous
reprogramming genes might be more likely to be removed
because the endogenous reprogramming genes can
probably maintain the self-renewal of porcine iPSCs. As
for the problem that exogenous reprogramming genes in
porcine iPSCs cannot be silenced or removed, we think
that exogenous genes induced by small molecule com-
pounds might be easily silenced compared with integrative
lentiviral genes.

6 Conclusions

Together, these studies suggest that, unlike mouse iPSCs,
Yamanaka 4 transcription factors (OSKM) may not be
directly applied to induce porcine somatic cells into iPSCs
with authentic pluripotentcy. The in vivo data for porcine
iPSCs needs to be confirmed for pluripotency and
complemented with further analyses. Here, with respect
to porcine iPSCs, we hypothesize that porcine PGCs can
probably be reprogrammed directly into iPSCs to reach an
authentic pluripotent state.
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