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Abstract Cryopreservation has undergone tremendous
advances and is widely used in animal production based on
decades of study of cellular permeability, freezability and
empirical generalization. Several improvement are parti-
cularly important: the cryopreservation protocol has been
continuously refined over the years to achieve greater
reproductive performance; cryoprotective agents are more
effective and less toxic than previously; there has been
significant innovation in advanced cryopreservation sys-
tems and carriers. Despite this, there are still problems that
urgently require practical solutions, such as remedies for
cryodamage and encouraging the use of frozen–thawed
porcine sperm in pig production.
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1 Introduction

Because of its important contribution to animal production,
genetic resource preservation, embryo biotechnology and
human assisted reproduction technology, there has been
much progress in cryopreservation over a long period,
which has been driven predominantly by research in
humans, cows, sheep, pigs and mice[1]. Cryopreservation
protocols have evolved substantially for gametes, embryos
and reproductive tissues (ovarian and testicular tissue),
resulting in a significant increase in the proportion of
fertilizable sperm, viable oocytes and transferable
embryos.
The cattle industry has benefited the most from the

application of cryopreserved semen or embryos over past
decades. International exchange of high quality breeder
bull resources has accelerated with semen cryopreserva-

tion. Cryopreserved semen allows the mating of female
cattle that is neither bound by time nor place, while
minimizing the risk of disease transmission[2]. The USDA
indicated that frozen bovine sperm and artificial insemina-
tion contributed 97% to the genetic improvement of cow
herds in 2008. Cryopreservation enabled embryo transport
to be more practical and cost effective; remarkably, 30
years of international trade with frozen embryos has not
resulted in the transmission of a single infectious disease
agent[3]. According to the census from the International
Embryo Technology Society, in 2015, more than 60% of
bovine embryo transfer was conducted using frozen–
thawed embryos[4].
There are two strategies that may fulfill the requirements

for successful cryopreservation of mammalian gametes
and embryos: slow freezing (programed) and vitrification.
A typical cooling rate of slow freezing is about 1 °C$min–1

which is appropriate for many mammalian cells after
treatment with cryoprotective agents (CPAs) such as
glycerol or dimethyl sulphoxide (DMSO), and this rate
can be achieved by using devices such as a rate-controlled
freezer or a benchtop portable freezing container[5].
Vitrification is an ultrarapid cooling technique, for which
the protocols are simple, allowing cells and tissue to be
placed directly into CPAs and then plunged directly
into liquid nitrogen. In vitrification, ice crystal formation
is prevented by using high concentrations of CPAs
and high cooling and warming rates[6]. Although
vitrification as a method of cryopreserving embryos
was developed in the mid-1980s as an alternative to the
then standard slow freezing, its suggested advantages
(simplicity, cost and speed) have had little impact on
commercial embryo transfer operations and its application
has remained largely confined to research studies[7]. In
comparison to slow-freezing, which requires more than 2h,
vitrification only requires a few minutes, minimizing the
time of exposure to subphysiological conditions[8].
Vitrification also has the attraction of avoiding the need
for expensive equipment required for cryopreservation by
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slow freezing (Fig. 1). It is notable that the literature on
cryopreservation technology makes a distinction between
‘thawing’ as applied to embryos and oocytes preserved by
slow freezing and ‘warming’, which is the term used in
bringing embryos back to ambient temperature after
vitrification.
In this review, the major updates and progress in the

development of cryopreservation technologies are sum-
marized in order to highlight aspects that still require
improvement and to encourage further developments in
this field.

2 A short overview of the basic principles of
cryopreservation

2.1 The physical chemistry of cryopreservation and
warming

Although the cytosol of gametes or embryos contains a
high proportion of water[10], it is still feasible for them to
be vitrified. Water is not very viscous and it can be vitrified
only by an extremely rapid flash-freezing of a small
sample[11], about 3 � 106 °C$s–1 from room temperature to
-135°C[12], consequently, dehydration of the sample is
critical, and is achieved by exposure to high concentrations
(≥6 mol$L–1) of CPA as pretreatment, followed by
plunging the sample into liquid nitrogen. Under such a
rapid cooling rate, water molecules do not have time to
arrange themselves into a crystalline lattice structure[13]

and the physiological structure of gamete or embryo can
be maintained[14]. Using the standard French mini-straw
as an embryo container, vitrification enabled a maximum
cooling rate of about 2 � 103 °C$min–1, while Vajta’s OPS

method permits much higher cooling and warming rates
(> 2 � 104 °C$min–1).
Shrinkage occurs during vitrification (Fig. 2), so during

warming the gamete or embryo is placed into solution at
lower concentration and the CPAs are replaced with water
and gradually swell to its original size. Thawing solution
contains sucrose, which does not penetrate through the cell
membrane because of its size, but it does control the rate of
swelling[16], striking a balance between swelling and
shrinkage.

2.2 Cryoprotective agents

Some amphibians have freezing resistance due to glycerol
manufactured by their livers[17]. Glycerol is an antifreeze,
like ethylene glycol (EG) used as an automobile antifreeze,
and reduces ice formation and lowers the freezing point,
which can make frozen water look like glass — with no
crystal formation — a process called vitrification. In 1959,
DMSO was demonstrated to be useful as a CPA owing to
its high penetrating rate[18], though it can be more toxic at
higher temperatures[19]. In 1972, eight cell mouse embryos
were cryopreserved to liquid nitrogen temperature and
rewarmed to obtain live mice, by slow cooling and skillful
combination of DMSO with glycerol[20]. The higher the
concentration of CPA, the higher the glass transition
temperature, thus lowering the chance of ice nucleation
and crystallization[21].
Some non-permeating CPAs like trehalose, sucrose and

ficoll, are also added because they can increase the osmotic
pressure which is conducive to both dehydration and
penetration of EG and DMSO. It was also demonstrated
that trehalose could improve the freezing tolerance of
oocytes[22–24]. Then during thawing, an appropriate

Fig. 1 Comparison between slow freezing and vitrification[9]
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concentration of sucrose can be used to remove the
permeated CPAs by establishing a proper osmotic pressure
and this process is called detoxification.

2.3 Volume

Smaller volumes allow more efficient heat transfer, thus
facilitating rapid cooling rates. Furthermore, the smaller
the volume, the higher the probability of vitrification[25].
Compared to freezing in 0.25-mL straws, the cooling rate
is enhanced two to six times when freezing occurs in a
more refined device, such as open-pulled straw or electron
microscope grid[26]. Decreasing the vitrified volume and
increasing the cooling rate allow a moderate decrease in
CPA concentration so as to minimize its toxic and
hazardous osmotic effects[27]. It was shown for oocytes
and embryos that increasing the cooling rate improves
survival rates by up to 37%[1].

3 Cryopreservation of mammalian preim-
plantation embryos

Embryo cryopreservation has been widely used in animal
reproduction since a calf was born from frozen–thawed
embryos for the first time in 1973[28,29]. Vitrification of
embryos was invented in 1985[30] and successive break-
throughs have been achieved for farm animals including
cattle[31], goats[32], sheep[33] and pigs[34] (Table 1).
There are several important characteristics for embryo

cryopreservation, for example, the permeability of the
plasma membrane of embryos varies during developmen-
tal stages, because permeation velocity improves along

with the formation of blastomeres[35]. Different farm
animals have distinct responses to freezing, i.e., freez-
ability, for example, porcine embryos are particularly
sensitive to low temperature due to their high lipid
content[36,37], and the freezability of ovine embryos
increases along with their development[38]. Studies
indicate an increased survival rate, development potential
and freezability with development after vitrification of
ovine four cell embryos, eight cell embryos, 16-cell
embryos, morulae and blastocysts[39,40].
As the most widely used embryo biotechnology,

cryopreservation of bovine embryos has developed rapidly
and according to the data from the International Embryo
Technology Society, more than 300000 frozen–thawed
embryo transfers were conducted around the world in
2015[4]. Studies indicated that use of conjugated linoleic
acid[41] or lipolysis agents[42] during bovine embryo
culture and cryopreservation could enhance the post-
warming survival rate. Embryo culture in medium with

Fig. 2 The morphological changes of human MII oocytes in vitrification solution[15]. (a) Before vitrification; (b) in equilibration
solution; (c) in vitrification solution; (d) in dilution solution; (e) in washing solution; (f) in the culture media 5 min after final washing.

Table 1 Milestones in vitrification of embryos[3]

Year Species Researcher

1985 Mouse Rall and Fahy

1986 Cow Massip et al.

1986 Hamster Critser et al.

1988 Rat Kono et al.

1989 Rabbit Smorag et al.

1990 Sheep/goat Scieve et al.

1994 Horse Hochi et al.

1998 Pig Kobayashi et al.
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lower concentrations of serum and metabolism regulator,
which could inhibit lipogenesis, also led to a higher post-
warming survival rate[43]. Similar outcomes have been
obtained by adding cytochalasin or using centrifugation to
decrease lipid content[44], and addition of caspase inhibitor
Z-VAD-FMK could improve freezability of in vitro
derived bovine embryos[45]. To improve embryo thawing,
the one-step method for direct nonsurgical transfer of
frozen–thawed bovine embryo[16] has proven to be
efficient for the cattle industry because it simplifies the
thawing procedures and prevents embryo loss during
thawing.
Vitrification of ovine embryos has become common

practice in animal production for nearly 30 years since the
first success in 1990. Pregnancy rate and lambing
percentage were significantly higher in vitrified-warmed
blastocyst transfer using open-pulled straw (OPS) vitrifica-
tion compared to slow freezing[46]. It was demonstrated
that DMSO could lead to a lower development rate after
ovine embryo vitrification compared to EG[47]. To improve
culture systems, a growing number of studies have shown
that adding an antioxidant such as melatonin[48,49], or lipid
lowering agent, such as conjugated linoleic acid[50], can
improve the outcome after vitrification. Adding cathepsin
B to in vitro cultures cannot only improve quality and
quantity of ovine blastocysts but also improve the cryo-
survival of in vitro derived blastocysts[51]. Also, vitamin
K2 can improve the developmental competency and
freezability of in vitro derived ovine blastocyst[52].
Progress in porcine embryo vitrification has been slow

compared to other farm animals and there was no
successful frozen-warmed porcine embryo transfer until
1989, probably because of its high intracellular lipid
content[53]. Neither mechanical methods like centrifuga-
tion[54,55] nor adding chemicals into the culture medium[56]

to lower the lipid content within blastocysts was able to
improve the freezability or the post-warming survival rate.
The application of hydrostatic pressure before vitrification
has improved blastocyst survival rates after warming, to
over 10%[57]. Disrupting the lipid bilayers by micromani-
pulation and then centrifuging embryos before vitrification
has improved post-warming survival, and using this
approach, vitrification in a closed system was as successful
as using open-pulled straws, which was a major step
forward in porcine embryo cryopreservation[58]. Carboxy-
lated ε-poly-L-lysine is an effective CPA for porcine
embryo vitrification and it can improve the developmental
ability of pig embryos vitrified at the pronuclear stage[59].
Vitrification of expanding blastocysts using cryotop has
given a higher survival rate and a piglet was successfully
born after blastocyst transfer[60].

4 Cryopreservation of mammalian oocytes

Recent researches have focused on refinement of oocyte

vitrification, specifically, screening optimal CPAs,
selecting cryopreservation carriers, and refining the timing
of pretreatment and vitrification procedures. Apart from
empirical generalization, cryopreservation protocols need
to be specialized based on the biological characteristics of
oocytes of different species.
One particular challenge pertaining to mammalian

oocyte cryopreservation is their extremely high cellular
volume compared with other cell types, making them
particularly sensitive and even more susceptible to
intracellular ice formation during the process of cryopre-
servation due to a lower surface-to-volume ratio[61]. Also,
the elasticity of oocyte membrane is inferior to that of the
embryo, which could explain why it is easily injured
during freezing[62]. Moreover, CPAs can induce an
increase of cytosolic calcium concentration in oocytes
during vitrification and warming. For instance, DMSO
stimulates the release of cytosolic calcium and EG
improves calcium influx; the increase of cytosolic calcium
concentration induces zona hardening and affects the
penetration of sperm and fertilization[63]. Cytosolic lipids
are critical to oocyte maturation and development, but are
the biggest obstacle to cryopreservation by increasing
freezing sensitivity[64], especially in porcine oocytes,
which contain 6.8 times as much lipid as mouse
oocytes[65]. From the perspective of developmental stage,
under the same treatment, MII oocytes have a higher post-
warming survival rate than germinal vesicle (GV) oocytes
but there is no obvious difference in their subsequent
development[66]. One study indicated that GV breakdown
oocytes have a better development compared to GVor MII
oocytes after vitrification[67].
Given the particular biological characteristics of bovine

oocytes, they have better freezability than porcine or ovine
oocytes[68], consequently, the frozen–thawed bovine
oocytes are more likely to develop into blastocysts after
in vitro fertilization. The first calf from a frozen–thawed
oocyte was born in 1992[69] and the first successful
vitrification of a bovine oocyte by OPS was in 1998[13].
Vitrified-warmed bovine oocytes producd by the OPS
method can be used for somatic cell cloning, and a cloned
calf was successfully born after embryo transfer[70].
Improvements of bovine oocyte cryopreservation have
been made over the years, for example, using macro-
molecule polymers as CPAs to lessen toxicity[71], using
cryotop can lead to a better outcome of vitrified bovine GV
and MII oocytes[72], and using solid-surface vitrification
reduces the ultrastructural injuries[73]. Docetaxel treatment
before vitrification can significantly decrease injury to the
cytoskeleton of bovine oocytes, thereby improving their
post-warming survival rate and development potential[74].
Other chemicals, such as conjugated linoleic acid[75],
L-carnitine[76], glutathione[77] and a cAMP agonist[78]

have also improved outcomes. Cholesterol, coenzyme
Q10, BAPTA-AM (Ca2+ chelator) and ruthenium red have
also improved the freezability of in vitro matured bovine
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oocytes[79–81]. Liquid helium vitrification of immature
bovine oocytes had better outcomes for reducing injury to
the cytoskeleton structure and improving the viability
compared with liquid nitrogen vitrification[82].
Progress in ovine oocyte research has lagged far behind

that carried out with bovine oocytes. Most studies have
focused on optimizing the oocytes stage, cryopreservation
carriers and specialized drugs. The first successful
vitrification (using a cryoloop) of ovine GV oocytes was
reported in 2013; vitrified oocytes had the ability to
mature, to be fertilized and to subsequently developed in
vitro to produce good-quality blastocyst embryos at
frequencies comparable to those obtained using fresh
oocytes[83]. Also GV oocytes vitrified by cryotop had a
higher polar body extrusion rate[84]. Open vitrification
carriers like cryotop and cryoloop have proven to have
better outcomes on ovine MII oocyte vitrification com-
pared to closed or half-closed systems, having higher
percentage of survival[85], cleavage[86] and in vitro
maturation[87], but there was no significant difference
between OPS and cryoloop with respect to the rate of
blastocyst formation[88]. The addition of angiotensin II to
the in vitro maturation and in vitro culture media could
improve blastocysts formation in vitrified sheep
oocytes[89]. To maintain the oocyte cytoskeleton of MII
oocyte during vitrification, pretreatment with 7.5 mg$L–1

CB or 0.5 mmol$L–1 taxol has been shown to improve
outcomes[90], but CB did not improve the survival and
development of GV oocytes[83,91]. Additionally, 1 min
treatment with 2.5 mmol$L–1 ionomycin effectively
improved the activation of vitrified-warmed MII oocytes
and led to a higher blastocyst rate[92].
After decades of study, vitrified-warmed porcine GVand

MII oocytes can now be developed to healthy embryos
after in vitro maturation and fertilization, and piglets were
successfully born in 2014[93,94]. For improved carriers,
there is a consensus that cryotop is superior to OPS[95,96].
Studies on permeating CPAs indicated that EG+ DMSO
and EG+ propylene glycol are both efficient in improving
post-warming survival after vitrification[97,98]. For non-
permeating CPAs, adding Lycium barbarum polysaccha-
rides is beneficial for GV oocyte vitrification[99]. Before
vitrification, taxol treatment can maintain spindle integrity,
spatial distribution of mitochondria and lipid dro-
plets[100,101]. It also increases the percentage of vitrified-
warmed MII oocytes that develop into blastocysts after
parthenogenetic activation[102]. It has been demonstrated
that the cytosolic lipid content of porcine oocyte can
be lowered by adding Forskolin (stimulator of lipolysis)
to improve the freezability of in vitro maturated
porcine oocytes[103]. The addition of antioxidants, such
as glutathione, taurine, vitamin E and resveratrol,
minimizes oxidative damage and reduces the rate of
apoptosis[104–108]. Thioglycol can counter the increase in
reactive oxygen species level induced by vitrification[109].
During in vitro maturation of vitrified-warmed porcine GV

oocytes, adding cyclosporine A and BAPTA-AM to the
culture medium can decrease mitochondria calcium
concentration, and increase survival and maturation
rate[110].

5 Cryopreservation of mammalian semen

Sperm cryopreservation has the longest history and is the
most widely used in animal production and human
reproductive medicine, due to high freezability, large
numbers and straightforward protocols[111]. Successful
sperm cryopreservation is based on the peculiar structure
of sperm. The head of the sperm contains lipoprotein and
enzymes used for penetrating the oocyte, with weaker
freezability. The midpiece has a central filamentous core
with many mitochondria spiraled around it for ATP
production. The tail or flagellum executes the lashing
movements[112], and had stronger freezability than the
head because of their solid structure and lower water
content.
Bovine sperm is not sensitive to low temperature,

while porcine and ovine sperm are quite sensitive to
temperature changes, and more likely to suffer from
cold shock between 5 and 22°C leading to rapid loss of
vitality. Compared to bovine sperm, the porcine sperm
membrane contains less lecithin[113], which is necessary
for maintaining membrane fluidity. Anti-oxidase is
easily lost during cryopreservation, combined with
high content of unsaturated fatty acid in farm animal
sperm, resulting in their vulnerability to oxidant
damage[114]. It was reported that the expression of heat
shock protein 90 in porcine sperm was significantly
downregulated after cryopreservation[115] and decreased
to 64%[116] compared to fresh sperm, which might be
related to the vitality loss after thawing. In general,
freezing-thawing of mammalian sperm harms the cell, the
extent of that damage varies across species and depends
heavily upon the sperm resilience to withstand cryopre-
servation procedures[111,117].
Egg yolk-sodium citrate diluent (EYC) was the first

extender used for bovine sperm preservation[118], and was
gradually replaced with tris-buffered egg yolk (TRIS-
EY)[119] or tris-fructose yolk-glycerol[120]. Accordingly,
tris and citrate are now used as the major components
of bovine sperm extender for cryopreservation and widely
used in industry. Bovine sperm cryopreservation was
developed in the 20th century, when glycerol was used as a
CPA for mammalian sperm[121]. Glycerol has been
demonstrated to be the best CPA with an optimal
concentration that ranges from 2% to 3%[122] and
cryopreserved bovine sperm is often packaged in
0.25-mL or 0.5-mL straws with EYC or TRIS-EY
combined with glycerol[123]. For non-permeating CPAs,
sucrose has been shown to have better efficacy than
trehalose[124]. Low density lipoprotein can be substituted
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for egg yolk because it can counter the injuries induced by
cold shock, as well as maintaining the physiological
structure of sperm, resulting in higher vitality after
thawing[125,126]. Other additives such as vitamin E or
melatonin, have been found to increase the integrity of
acrosome, improve vitality, decrease abnormality rate and
prevent oxidative damage[127–129].
The earliest report of ovine sperm cryopreservation was

in 1937[130] and later, Smirnov successfully cryopreserved
0.05–0.10 mL of ovine sperm without using gly-
cerol[131,132]. Ram has distinctive seminal plasma contain-
ing phospholipase A, which can hydrolyze the lecithin in
egg yolk to fatty acid and lysolecithin, then induce the
condensation of egg yolk[133] and the incidence of
acrosome reaction[134]. It turned out that the development
of ovine sperm cryopreservation was not as fast as for
bovine sperm. In the 1960s, the conception rate from
frozen–thawed ovine sperm was 37.9%–66.2%[135,136], but
improvements in cryopreservation have been made over
the decades. Trehalose was introduced as an efficient non-
permeating CPA to cryopreserve ovine sperm, leading to a
higher vitality along with increasing concentration of
trehalose, reaching more than 60%[137]. Similarly, sucrose
was proved to be capable of effectively preserving sperm
morphology and DNA integrity[138]. This was explained
by studies which demonstrated that hypertonic extender
was more suitable for ovine sperm cryopreservation since
it can withstand twice the osmotic pressure of an isotonic
glucose solution[139]. Centrifugation was introduced to
remove seminal plasma, resulting in higher post-warming
survival rates and integrity of acrosome[134,140]. However,
the conception rate of frozen–thawed ovine sperm could
not be stabilized at more than 60%[141]. Granule frozen and
straw frozen sperm are commonly used in sheep produc-
tion, but there is no study on frozen ovine sperm thawing,
and the diluents for thawing are basically 2.9% sodium
citrate, inositol-citrate, glucose-citrate or fructose-citrate.
Piglets from frozen–thawed sperm were first born in

1957. The 1970s represented a significant period of
advancement for porcine sperm cryopreservation with the
establishment of two methods. The Beltsville method[142]

used carbonic ice and the Westendorf method[143] used
liquid nitrogen vapors, however, cryopreservation success
was further increased through the introduction of con-
trolled-rate freezers, which gave better results (i.e., sperm
quality at post-warming) than the standard method (i.e.,
nitrogen vapors in a polystyrene box containing liquid
nitrogen)[144,145]. Porcine sperm cryopreservation exten-
ders including the buffered type, such as EY-Glucose[146],
EY-Sucrose-EDTA-calcium or magnesium salts[147] and
EY-lactose[148], or unbuffered type, such as Beltsville F5
(BF5)[142], EY-glucose-citrate-EDTA-potassium-unitol-
urea[149] and tris-glucose-EDTA-EY[150]. Studies on
CPAs indicated that using 0.09 g$mL–1 low density
lipoprotein to substitute EY[151] can lead to better post-
warming sperm quality and glycerol combined with acid

amides was better than glycerol alone[152]. Also, adding
hyaluronan[153], cholesterol[154] or butylated hydroxyto-
luene[155] to extenders, diluting semen and adjusting the
pH to 8 could improve quality maintenance[156]. Cryopre-
served porcine sperm are often packaged in 0.5-mL straws
and the most recent figures indicate that farrowing rates
following artificial insemination with frozen–thawed
sperm are around 75%–80%[144].

6 Conclusion and future perspectives

While there has been considerable success with cryopre-
servation of oocytes, embryos and semen in farm animals,
this technology still requires refinement and further studies
of the basic principles is needed so that greater success and
higher efficiency can be achieved.
Oocyte and embryo cryopreservation are applied across

many areas of animal production, and cryopreservation
protocols are established according to different objectives
because cellular characteristics vary among different
species, and even within a species at different develop-
mental stages. For example, for porcine oocyte or embryo
cryopreservation, high hydrostatic pressure application
may be worthy of further development as a potential way
to improve results, in combination with the use of
improved vitrification solutions and possibly delipidation
of the cytoplasm, it could yield better and more consistent
results[57]. The prominence of cryodamage in this species
deserves further investigation as a possible limiting factor
for successful vitrification. For ovine oocytes, further
attention to the effects of vitrification on transcription
factors could be fruitful for overcoming the developmental
blocks seen in this species. Furthermore, the interaction
between cytoplasmic calcium and extracellular fetal calf
serum with transcription factor expression warrants further
study[86,157,158]. Generally speaking, studies on molecular
and biochemical evaluation of CPAs and careful selection
of less toxic CPAs, close monitoring of their temperature,
time of exposure, concentration, and their stepwise
addition and removal from cells[9] are needed.
The use of frozen–thawed porcine sperm is still

considered suboptimal[159] because of the specific features
of the sperm cryopreservation protocols and pig breed-
ing[160]. Future studies on cryodamage (Fig. 3) should
focus on physiological structures (integrity of sperm
membrane, sperm chromatin and mitochondrial function),
factors that influence ejaculate freezability (season, diet,
genetic differences, spermatogenesis and epididymal
maturation), and identification of effective additives and
freezability markers.
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