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Abstract Phenomics studies a variety of phenotypic
plant traits and is the key to understanding genetic
functions and environmental effects on plants. With the
rapid development of genomics, many plant phenotyping
platforms have been developed to study complex traits
related to the growth, yield, and adaptation to biotic or
abiotic stress, but the ability to acquire high-throughput
phenotypic data has become the bottleneck in the study of
plant genomics. In recent years, researchers around the
world have conducted extensive experiments and research
on high-throughput, image-based phenotyping techniques,
including visible light imaging, fluorescence imaging,
thermal imaging, spectral imaging, stereo imaging, and
tomographic imaging. This paper considers imaging
technologies developed in recent years for high-throughput
phenotyping, reviews applications of these technologies in
detecting and measuring plant morphological, physiologi-
cal, and pathological traits, and compares their advantages
and limitations.
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1 Introduction

It is projected that the human population will reach 9
billion by 2050. This increase requires a 3.3% annual
growth in crop production, while the current annual growth
rate is only 1.3%[1]. Accelerated crop improvement is
needed to satisfy the global food demand[2] and counter the
increasingly worsening abiotic and biotic stress conditions
for plants[3]. Advances in genetic technologies provide
crop breeders with the potential to develop high-yielding,
stress-tolerant plants through genetic selection[4]. How-

ever, the lack of access to phenotypic data hinders this
effort. Plant breeders and farmers have been making
cultivar selections based on phenotypes long before the
discovery of DNA and molecular markers[5]. They have
learned that superior genetic variations can only be
identified through a large number of crosses between
breeds and cultivars under various environmental condi-
tions. Advances in high-throughput phenotyping (HTP)
offer much faster and less expensive genomic information,
and pave the way for the development of large mapping
populations and diverse panels of thousands of recombi-
nant inbred lines[6]. Existing phenotyping technologies, in
contrast, simply cannot provide sufficiently fast and
accurate measurements of the traits of a sufficient number
of lines and have, thus, become the bottleneck for crop
breeding and development. Current phenotyping technol-
ogies can be characterized as slow, expensive, labor-
intensive, and often destructive[7].
Plant performance is affected by the nature of the

genome and the characteristics of the surrounding
environment on growth, quality and productivity, such as
temperature, light, weather events, and soil characteristics,
along with plant disease, weeds, and insect pests. A large
number of recent studies have shown that these factors can
be effectively monitored using various imaging technolo-
gies[8]. Examples include applications of fluorescence
sensing for quantitative analysis of photosynthesis, visible
imaging for shoot biomass estimation, visible-near infrared
spectroscopy for identifying physiological changes
induced by nutrient deficiencies, and thermal imaging for
detecting water stress[9].

1.1 Phenotyping platforms

Over the last few years, various types of ground-based
HTP platforms, including stationary, vehicle-based, self-
propelled, and portable, have been developed. The
stationary phenotyping platforms run on cranes, towers
or cables (similar to stadium cameras). The vehicle-basedReceived March 2, 2018; accepted September 10, 2018
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phenotyping devices are mounted on a tractor or pulled by
a vehicle[10]. Self-propelled phenotyping platforms are
specifically designed to carry sensors and data acquisition
systems. Some of the self-propelled phenotyping machines
are robotic, with automatic drive/steering mechanisms or
automatic guidance systems. The portable phenotyping
platforms are carried by human operators or moved on
wheeled carts[11,12]. Some HTP platforms are fully
automated facilities consisting of robots, precise environ-
ment control, and sensing equipment.
Aerial phenotyping uses satellites, low-altitude aerial

vehicles and unmanned aerial vehicles. Both ground-based
and aerial phenotyping platforms can effectively assess
overall growth and development of the plants, although
each type has its disadvantages and limitations. For
example, stationary phenotyping platforms often have
limited area of coverage, tractor-mounted phenotyping
platforms rely on experienced operators, robotic pheno-
typing platforms are expensive and often have safety
concerns, and portable phenotyping platforms are gener-
ally less efficient. The main concerns for the aerial
phenotyping systems are limited resolution and available
payload.
Early HTP platforms were mainly used to measure the

traits of individual plants in a controlled environment.
However, some important plant traits are best expressed
when they are grown in populations under field conditions.
Therefore, efforts have been intensified to develop field-
based HTP platforms[13]. The earliest platforms carried a
single type of sensor. For example, Sui et al.[14] used a
three-wheeled cart with multiple ultra-sonic sensors
around a single row of a crop to scan the plant canopy.
Montes et al.[15] used tractor- and harvester-mounted
reflectance sensors to collect spectral data. More recently,
McCarthy et al.[16] used a machine vision system to
measure internode length in cotton. However, the major
limitation of these systems was their inability to measure
multiple traits, which is often needed in crop breeding
experiments.
To measure multiple traits, Lan et al.[17] devised a

system that uses integrated sensors and multispectral/
hyperspectral imaging devices to measure crop canopy
height, leaf area index (LAI), and normalized difference
vegetation index (NDVI). Crain et al.[12] developed a
pushcart-type phenotyping platform that used an infrared
thermometer, an ultrasonic sensor, a digital camera,
and a portable GPS to measure georeferenced leaf
temperature, crop height and other morphological traits.
Comar et al.[18] used a platform with multiple instruments,
including a passive spectrometer, an irradiance probe, a
GPS unit and a digital camera, to monitor micro-plots of
wheat cultivars in field conditions. Similarly, White and
Conley[19] used a handcart to position multiple sensors
over two rows. Although these platforms provided
opportunities for fast acquisition of phenotyping data,
they required continuous labor to move the carts in the

field. Furthermore, these platforms were incapable of
providing truly “high-throughput” phenotyping data for
modern varietal development programs. To improve the
throughput, Andrade-Sanchez et al.[20] used a high-
clearance vehicle to carry four sets of sensors to measure
canopy height, reflectance, and temperature simulta-
neously on four adjacent rows of cotton at a rate of
0.84 ha$h–1. A similar HTP platform was developed by
Barker et al.[11] to collect multiple crop trait data at a high
throughput. Low-altitude, manned and unmanned aerial
vehicles have also been used for phenotyping in recent
research[20], but aerial vehicles are usually weight limited
and cost is another concern.

1.2 Plant phenotypical traits and their significance

Crop traits measured by phenotypers can be classified
into three categories: morphological, physiological, and
pathological. Morphological traits are direct measures of
the forms and structures of plant organs and their structural
features, such as shape, color (spectral reflectance), texture,
pattern and size. Physiological traits are direct measures of
the functions of plant organs, such as photosynthesis,
respiration, nutrition, hormone functions, stress resistance
and plant water relations (stomata function and transpira-
tion). Pathological traits are direct measures of plant
diseases caused by pathogens (infectious organisms) and
environmental conditions, including fungi, bacteria,
viruses, nematodes, insects and parasitic plants. Due to
difficulties in direct measurement, physiological and
pathological traits are often indirectly assessed through
morphological measurement. For example, the photo-
synthesis function of a plant, as a measure of plant
stress, may be indirectly estimated by measuring chlor-
ophyll fluorescence emission, because light energy
absorbed by a leaf is used to drive photosynthesis. More
chlorophyll fluorescence emission indicates less photo-
synthesis.

1.2.1 Morphological traits

Leaf area and fruit color are typical examples of
morphological traits. Given that all green surfaces of
crops, such as spike, stem, sheath, and leaf lamina, are
related to the above-ground biomass, surfaces for tran-
spiration/water loss, photosynthetic potential, and light
interception[21], leaf measurements are important for
studies of plant growth. LAI is a trait relating to leaf area
that indicates the interception of radiation by the canopy
and reflects the photosynthetic activity of the crop
canopy[22]. LAI also is a useful feature reflecting plant
transpiration and carbon dioxide exchange, providing
quantitative structured information on the energy exchange
between the plants and their external environment[23].
Changes in stem and leaf colors at different growth
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stages often are important indicators of crop growth status.
Nutritional status, population structure, and diseases affect
the growth and development of crops, causing color
changes in different parts of the plant. Thus, using color
recognition combined with a variety of classification
schemes, many phenotypic parameters involving colors
can be established.
Plant roots usually are complex, three-dimensional

systems that contain many standard traits (such as root
length density, number of roots, root size, total root
surface, root length, root growth response, average root
radius, average root length, number of lateral roots), and
several newly defined traits, such as network perimeter,
solidity, and convex area[24].

1.2.2 Physiological traits

Examples of plant physiological traits include canopy
temperature, leaf water potential, stomatal conductance,
and chlorophyll content. Water metabolism is an important
physiological process of crops. It has an important
influence on the growth, development, yield, and quality
of crops. Through transpiration, crops lose water, which
takes away the heat, thus regulating the plant body
temperature (canopy temperature). Therefore, canopy
temperature is closely related to the water status of crops
and can affect water use efficiency, stomatal conductance,
photosynthesis activity, and transpiration rate[13]. Mea-
suring canopy temperature is one of the most important
methods used to monitor crop water conditions.
Leaf water potential is a trait related to plant water status.

Water in plants is transported within the xylem system
under negative pressure which is positively related by the
degree of water stress[25]. Stomatal conductance is a trait
related to leaf and canopy gas exchange. It responds
rapidly to soil water status and controls photosynthetic
activity and growth[9]. Higher density, larger size, and a
greater degree of opening of the stomata allow increased
conductance and potentially higher photosynthesis and
transpiration rates. Stomatal conductance is important for
breeding because it is closely related to heritability and
yield. Greater leaf conductance under warm temperatures
has been associated with cooler canopy temperatures[13].
Leaf chlorophyll content has a positive relationship with

dry root biomass, seed yield, and tolerance to iron-
deficiency chlorosis. Nodulation and nitrogen fixation
status can also be identified by leaf chlorophyll measure-
ment[13].

1.2.3 Pathological traits

Like humans, plants can be infected by diseases. Plant
disease is a major threat to global agriculture, accounting
for at least 10% reduction in global yields[26]. Plant
diseases affect the growth and development of crops,

limiting crop yields and making agricultural products unfit
for consumption[27].
Plant roots are critical for plant growth and develop-

ment. Indispensable aspects of a plant’s life, such as water
and nutrients, are absorbed by the roots. At the same time,
plant roots store carbohydrates and other substances, and
enable biosynthesis of hormones which are required for
growth[28]. Therefore, the impact of diseases on the root
structure may affect crop yields[29].

2 Imaging systems for plant phenotyping

Various types of imaging systems provide important
sensors for plant phenotyping. Morphological traits of
plants, including colors of seeds, leaves, canopies, fruits,
and roots, shapes and sizes of seeds, sizes, numbers, areas,
textures, angles, architectures, and total volumes of
canopies, leaves, and roots, and volumes sizes, shapes,
numbers, and spatial distributions of fruits, can be directly
measured using two- or three-dimensional imaging
systems.
The physiological characteristics related to plant organ

functions and the pathological features related to pests and
diseases may be directly or indirectly measured by using
visible light, thermal, fluorescence, spectral, and three-
dimensional imaging technologies. Araus and Cairns[5]

give examples of images taken with different imaging
systems for crop monitoring.

2.1 Visible-band imaging

Visible-band imaging systems are the fundamental tools
for measuring morphological traits (color, shape, size, and
texture) of plants. As the technology advances, digital red-
green-blue (RGB) cameras that are suitable for aerial and
ground applications have become available at affordable
prices. With their speed and high quality under low light
conditions, digital single lens reflex (SLR) cameras have
become the first choice for many phenotyping applications.

2.2 Fluorescence imaging

Fluorescence is the light emitted from a plant when the
plant absorbs radiation in a shorter wavelength. The typical
fluorescent part of a plant is the chlorophyll complex[30].
Irradiating the chloroplasts with blue or actinic light will
result in re-emission of a portion of the absorbed light by
the chlorophyll, which is the fluorescence. The proportion
of the re-emitted light in the absorbed radiation is
positively correlated with the ability of the plant to
metabolize the harvested light. Thus, chlorophyll fluores-
cence is a good indicator of the ability of plants to absorb
actinic light. Moreover, the combination of an actinic light
source with brief, saturating blue pulses may be used to
estimate the efficiency of photo-assimilation, non-photo-
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chemical quenching and other physiological parameters of
plants. The theoretical basis of fluorescence imaging is that
the intensity of the fluorescence signal emitted after the
excitation of the fluorescent substance is linearly related to
the amount of fluorescence within a certain range. In short,
fluorescence imaging is the imaging of fluorescent signals.
The fluorescence imaging system includes a fluorescence
signal excitation system (excitation light source and optical
transmission component), a fluorescence signal collection
component, and a signal detection and amplification
system[31].
The principle of multicolor fluorescence imaging is

that UV illumination (ranging from 340 to 360 nm)
produces two types of fluorescence, in the red-infrared and
blue-green spectral regions, respectively[31]. This techni-
que allows simultaneous capture of fluorescence signals in
four bands— blue (440 nm), green (520 nm), red (690 nm)
and infrared (740 nm). The emission of fluorescence
signals within the blue-green region (with maxima near
440 and 520 nm) is an indicator of the cinnamic acids
(primarily ferulic acid) that is present mostly in the cell
walls; and the emission within the red-infrared region (with
maxima near 690 and 740 nm) is a good indicator of
chlorophyll α molecules in the antenna and reaction center
of the photosynthetic photosystem II (PSII) from chlo-
roplasts in the mesophyll cells. The leaves tested for
chlorophyll fluorescence are also used to measure
chlorophyll content[13]. Changes in the fluorescence
emission and the ratios between emissions in different
regions, such as F440/F690 and F440/F740, may be
used as indicators of stress, and the F690/F740 ratio has
been shown to be a good indicator of the chloroplast
content[32].

2.3 Thermal imaging

Thermal imaging allows for visualization of infrared
radiation, giving indications on temperature distribution
across an object’s surface. The sensitive spectral range of
thermal cameras is 3–14 µm, and the most commonly used
wave bands for thermal imaging are 3–5 or 7–14 µm,
respectively. Within these two wave bands, transmission of
infrared radiation through the atmosphere is close to its
maximum value. The thermal sensitivity in the 3–5 µm
band is higher than that in the 7–14 µm band because
shorter wavelengths correspond to higher energy levels.
However, the use of longer wavelengths may be
advantageous for certain applications. For example, for
targets at a long distance, wavelengths between 8 and
14 µm would minimize errors caused by atmospheric
absorption of infrared radiation[33,34]. Thermal imaging is a
practical alternative to measurement of various plant traits.
Thermal measurement of plants mostly relies on evapora-
tion, with high and low levels of temperature reflecting
closing and opening of stomatal structure, respectively. In
recent years, with improved thermal sensitivity, reduced

price, more friendly user interface, and enhanced resolu-
tion, thermal imaging has found many applications in plant
phenotyping[34].

2.4 Spectral imaging

Multispectral and hyperspectral imaging technologies have
become powerful tools for plant sensing and monitoring.
These technologies provide both spatial and spectral
information on the plants. The range of wavelength in
the spectral domain can be from 400 to 2500 nm. In the
visible spectral range (400–700 nm), the reflectance of
leaves or canopies is particularly low due to the absorption
of light by leaf pigments, especially chlorophyll. As the
wavelength increases to the near infrared band, the
reflectivity increases dramatically[32]. In the near infrared
(700–1200 nm) range, scattering within the leaves reflects
a large amount of incident radiation. As the wavelength
gradually increases to 2500 nm, the reflectivity gradually
decreases, due to the absorption by water present in the
leaves.

2.5 Other imaging technologies

2.5.1 Stereo imaging

Commercially available image sensing technologies for 3D
mapping of plants include light detection and ranging
(LiDAR; or laser scanner) sensors, stereo vision, ground
penetration radar, photon mixer devices, time-of-flight
(ToF) cameras, and devices designed for consumer-gaming
interface, such as Microsoft Kinect[32].
LiDAR is a remote sensing technology that measures the

distance to a target by illuminating the target with a pulsed
laser light and measuring the reflected pulses. By scanning
through the measured target, LiDAR can create digital 3D
representations of the target. LiDAR devices can be used to
acquire multi-source phenotypic data during the entire crop
growing period and extract important plant morphological
traits, such as plant height, plant width, leaf area, leaf
length, leaf width, and leaf inclination angle for plant
biological and genomic studies[32].
Ground-penetrating radar uses pulses of high-frequency

radio waves to image subsurface structures based on
differences in dielectric constant[13]. In addition, cross-
borehole GPR has been shown to be a valuable means of
assessing the presence and amount of soil water within the
field of hydrogen physics[35].
Stereovision is an important subject in the field of

computer vision for reconstructing the three-dimensional
geometry of scenes. Stereo vision uses two or more
cameras to study 3D structures and their motions[32].
The ToF detects the distance by measuring the round trip

time of light pulses from the sensor to the target. This
technology is similar to the 3D laser sensor principle,
except that the 3D laser sensor provides only point-by-
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point scans, and the ToF camera gives the depths of all
pixels within the entire image.

2.5.2 Tomographic imaging

Magnetic resonance imaging (MRI), positron-emission
tomography (PET), and computed tomography scanning
(CT) are three important technologies for tomographic
imaging. MRI scanners use strong magnetic fields,
electric field gradients, and radio waves to generate images
of the organs[32]. The PET generates changing three-
dimensional images by detecting a pair of gamma rays
emitted by a positron-emitting tracer introduced into the
plant. CT uses an accurately collimated beam of X-rays to
scan one section of an object at a time with a highly
sensitive detector and reconstructs the object in 3D. In
recent years, these technologies have been tested for plant
phenotyping, although there are few examples found in the
literature.

3 Applications of imaging systems in plant
phenotyping

Various imaging technologies have been applied in plant
phenotyping. Applications found in recent literature are
summarized in this section.

3.1 Visible light imaging

Visible light imaging has been widely used in the
measurement of various aspects of plant structure for its
low price and ease of maintenance. In a controlled
environment such as a growth chamber or a greenhouse,
visible light imaging has been primarily adopted for
analyzing the yield traits, shoot biomass, biomass at
anthesis, imbibition and germination rates, panicle traits,
coleoptile length, leaf morphology, seedling vigor, seed
morphology, leaf area, and root architecture[13]. Applica-
tions of visible light imaging in measuring different types
of plant traits are reviewed in the following sections.

3.1.1 Morphological traits

For many horticultural crops, the color of fruits obtained
by visible light imaging often can serve as an effective
indicator of the maturity, flavor, and freshness of the fruits.
A number of breeding programs have conducted research
to understand the genetic and physiological mechanisms
that lead to fruit color. Computer-based analysis of objects
from digital images provides high-quality data and
characterization[13].
Darrigues et al.[36] developed a new software tool,

tomato analyzer color test (TACT), to analyze the
genotypic differences associated with color parameters.

Their research shows that TACT is applicable to other
fruits and vegetables of various colors, and can accurately
capture and describe the characteristic color of each crop.
Similarly, Gonzalo et al.[37] used the Tomato Analyzer
program to analyze the shape attributes of tomato.
Various monitoring platforms using visible light ima-

ging technology have been developed to observe the
distribution of plant roots of different genotypes. For
example, Anjalis's gel-based growth platform enabled non-
destructive detection and real-time observation of the root
structure by rotating the platform to different angles[29].

3.1.2 Physiological traits

Wang et al.[38] used visible light imaging to analyze the
sugar content of citrus fruits. They found a clear correlation
between the sugar content and certain parameters of the
color image. They also found that smaller citrus fruits
usually have higher sugar contents. Zakaluk and Ranjan[39]

conducted studies using RGB reflectivity to predict the leaf
water potential of potato plants. They found that the G and
R image bands can be used to separate shadows, soil,
senescent leaves, green leaves, and flowers. They also
found an inverse linear relationship between the green
image band and soil nitrogen content.
Golzarian et al.[40] presented a method for accurate

estimation of plant shoot dry weight from two-dimensional
images. This method enables high throughput, nondes-
tructive estimation of biomass for cereal plants under salt
stress.

3.1.3 Pathological traits

Wang and Li[41] used visible light imaging to achieve non-
destructive detection of external defects (green, germinated
and diseased areas) of potato. The green areas were
detected using multicolor models of RGB, HSV and
LABORATORY. For germination and disease, they used
the Laplace Operator Gray Variance method.
Mutka and Bart[27] used visible light imaging technol-

ogy to study the Xanthomonas in a leaf spot caused by
citrus ulcer disease on grapefruit leaves. They found that
automated image analysis was more reproducible than
visual assessment in multiple measurements, and image
analysis enhanced the ability to distinguish genotypes with
varying degrees of disease severity. Raza[42] reported an
algorithm for registration of thermal and visible light
images of diseased plants based on silhouette extraction
with high accuracy. The combination of visible light and
thermal imaging technologies was found to be helpful in
early discovery of diseases in plants.

3.2 Fluorescence imaging

Fluorescence imaging can be used to characterize plant
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health and photosynthetic activities related to physiologi-
cal and pathological traits. Fluorescence imaging also
can be used to assess the respiration function of plants,
to detect effects of plant insect- and disease-resistance
genes, and to monitor plant pathogens. In addition,
fluorescence imaging can be used to diagnose plant
responses to abiotic and biotic stresses, such as drought
and salinity, prior to growth recession[43]. Applications of
fluorescence imaging in measuring plant physiological and
pathological traits found in the literature are summarized
below.

3.2.1 Physiological traits

Fluorescence imaging is a very sensitive detection system
that can provide rapid assessment of plant physiological
status under a variety of situations. In crop improvement
programs, fluorescence imaging is often used for the
detection and screening of plant resistance genes. For
example, Swarbrick et al.[44] used quantitative imaging of
chlorophyll fluorescence to study the resistive response of
barley leaves against Blumeria graminis. Chaerle et al.[45]

screened sugar beet lines that differed in susceptibility to
Cercospora beticola infection using chlorophyll fluores-
cence imaging and found that differences in fluorescence
intensity were measurable between susceptible and
resistant plants.

3.2.2 Pathological traits

Fluorescence imaging can be a direct measure of the
physiological characteristics of plant photosynthesis
and related metabolic disorders, and an indirect measure
of the pathogenical/physiological characteristics such as
herbicidal effects, stomatal heterogeneity, disease resis-
tance, and resistance to other biotic and abiotic stresses.
Barbagallo et al.[46] used changes in parameters Fv/Fm
in fluorescence images to detect growth of seedlings
and herbicide-induced metabolic perturbations. Bürling
et al.[47] found that by using pulse amplitude modulated
(PAM) chlorophyll fluorescence imaging technology, the
level of resistance of wheat cultivars to the leaf rust
(Puccinia triticina Erics.) pathogen can be evaluated.

3.3 Thermal imaging

Thermal imaging can be used to measure plant canopy
temperature, thus monitoring leaf stomatal opening and
plant transpiration intensity. This technique can also be
used to analyze the leaf water potential of plants to monitor
plant water energy. In addition, it can be used to monitor
the genetic variations of plants and detect pathogens
(bacteria, fungi, and viruses). Applications of thermal
imaging in measuring various types of plant traits are
summarized below.

3.3.1 Morphological traits

Thermal imaging technology has been used to monitor the
health state of fruit trees, to study their three-dimensional
structures, and to identify fruits. Narváez et al.[48] used
ground-based thermal imaging technology to extract three-
dimensional features of fruit trees in an orchard. The
experiments showed that this technology is capable of
determining heat-related morphological characteristics of
the trees. Xu and Ying[49] used infrared thermal imaging
technology based on the fact that different parts of the fruit
tree have different heat radiation characteristics, and
combined the thermal image with a grayscale image.
With the help of edge detection operators, they were able
to successfully recognize the fruits using temperature
differences.

3.3.2 Physiological traits

Infrared thermography is a non-invasive technique which
does not cause damages to the objects to be measured.
Thermal imaging systems can provide information on the
spatial distribution of surface temperature of an object and
the temporal changes of this spatial distribution if the
measurement is repeated over a period of time.
Cohen et al.[50] used a radiation infrared camera to take

thermal images to estimate the moisture status of cotton.
Their result showed that leaf water potential can be well
estimated by combining thermal images with spatial
analysis. In another study, thermal canopy imaging of
vines was analyzed to study stress responses under
different watering regimes[51]. The International Maize
and Wheat Improvement Center (CIMMYT)[52] performed
a high-throughput thermal stress analysis of maize
phenotypic adaptation to water stress using thermal
imaging technology. The main goal was to evaluate corn
canopy temperature and crop water stress index (CWSI)
and to determine the role of genotypic variation in corn
moisture traits. The results indicated that infrared thermo-
graphy is potentially useful as a high-throughput screening
method for drought resistant breeding programs[53].

3.3.3 Pathological traits

Invasions of pathogens may cause closures of stomata in
plants, which may in turn lead to a decrease in transpiration
rate and changes in temperature of the plant body. This
phenomenon has a strong influence on the infected parts of
plants and can be located and monitored by thermal
imaging technology. In 2013, Calderón et al.[54] used aerial
thermal and spectral imaging technologies to monitor
Verticillium wilt caused by Verticillium dahliae, a soil-
borne fungus, in traditional olive growing areas for three
consecutive years. They found that, when the olive trees
were infected with Verticillium wilt at an early stage, as the
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degree of disease intensified, the temperature of the crown
increased significantly and the stomatal conductance of the
leaves was significantly reduced, demonstrating the
possibility of using thermal imaging to monitor the early
stages of disease in trees.
In 2015, Dumont et al.[55] used thermal imaging to

detect the seed quality of Norway spruce and identified
active, empty, disease-causing seeds using support vector
machines and sparse logistic regression based on feature
selection. In 2017, Jafari et al.[56] used visible light
and infrared thermal images to detect the preclinical
characteristics of roses infected with powdery mildew and
gray mold. Thermal images were used to separate healthy
from susceptible plants.

3.4 Spectral imaging

Spectral imaging technology can be used to quickly and
efficiently analyze the plant’s morphological, physiologi-
cal, and pathological characteristics without causing
damages to the plants. Examples include detection of
canopy chlorophyll content, leaf and canopy senescence,
and plant water status, identification of crop types,
detection of plant health status and analysis of plant
resistance to pests and disease. Applications of spectral
imaging in measuring different types of plant traits found
in recent literature are summarized below.

3.4.1 Morphological traits

Borregaard et al.[57] used an imaging spectrometer to
identify potato, sugar beet, and three kinds of weeds under
artificial lighting conditions. Through acquisition, analy-
sis, and comparison of images taken within different
spectral bands, the crops and weeds could be effectively
distinguished. In addition, Mao et al.[58] used Fourier
transform infrared (FTIR) spectroscopy to obtain the
spectral reflectance of several crops, including wheat and
amaranth. Seven characteristic wavelengths for modeling
were extracted to discriminate wheat against weeds. This
technology can effectively provide reliable technical
guidance for herbicide and fertilizer applications in
precision agriculture.

3.4.2 Physiological traits

Multispectral and hyperspectral imaging data have
been used to form various moisture indexes in the
infrared absorption band to estimate canopy moisture
content[59–61]. By using wavelet transformation to enhance
the data analysis, the sensitivity of canopy water content
measurement is improved. In combination with liquid
crystal tunable filters, multispectral imaging can be used
to capture green fluorescent protein, natural red light,
and near-infrared chlorophyll fluorescence, and is thus

becoming a powerful tool for plant health monitoring. A
multispectral plant health monitoring system developed by
Abboud et al.[62].

3.4.3 Pathological traits

Near-infrared reflectance spectroscopy has been used as a
high-throughput screening tool in a sugarcane breeding
program to study pest and disease resistance. Hyperspec-
tral imaging and non-imaging sensors have been shown to
be effective in detecting changes in plant vigor[63]. When
the biophysical and biochemical properties of plant tissues
change, their emissivity changes accordingly. Therefore,
the pathological characteristics of the plant can be
effectively detected. Disease-specific symptoms, such as
changes in optical characteristics, and typical fungal
structures, including powdery mildew, rust, and downy
mildew, caused by continuity of chlorotic and necrotic
tissues can also be detected[64,65].
In 2011, Moshou et al.[66] developed a real-time remote

sensing system that can be mounted on a tractor or a
robotic platform. Hyper- and multi-spectral imaging
systems were used to simultaneously perform on-site
evaluation of crop canopies to predict plant disease in its
early stages.
Hyperspectral imaging has also been used to detect head

blight infections in wheat. At present, aerial and terrestrial
hyperspectral imaging systems are being developed for
applications in agriculture and natural environment
monitoring[27].

3.5 Other imaging techniques

Other imaging techniques used for high-throughput plant
phenotyping are three-dimensional mapping/imaging and
tomography. Three-dimensional mapping/imaging devices
include light detection and ranging (LIDAR or laser
scanner) sensors, stereo vision, photon mixer devices
(PMD) and ToF cameras. The main means of tomographic
imaging are MRI, PET or CT imaging. Applications of
these sensors in measuring various types of plant traits are
reviewed in the following sections.

3.5.1 Morphological traits

Takizawa et al.[67] used stereovision to build 3D models of
plants. From these models, information related to plant
characterization, such as plant height, leaf area, and shape,
can be obtained. Kazmi et al.[68] changed the exposure time
of a sensor to analyze and compare indoor and outdoor
(with shadow and sunlight) depth images of leaves with a
ToF camera, which is sensitive to ambient light. The ToF
camera had a low resolution, however, under appropriate
conditions, it can provide precise depth data with a high
frame rate. Kraft et al.[69] tested ToF imaging with a
commercial camera, and concluded that, for large leaves of
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plants (such as corn and maple), the distance measurement
is reasonably accurate. However, the measurement
depends on the color contrast between the leaves and the
background. The sunlight was not found to have a
significant effect on the measurement.
Hargreaves et al.[70] used a gel room to analyze the root

characteristics of five different barley genotypes in 2D
and used X-ray imaging for non-invasive measurement. Li
et al.[71] used a combination of stereovision and image
processing to acquire important coordinate points from
acquired images and then mapped them into a world
coordinate system to complete the measurement of plant
height. Omasa et al.[72] used 3D LIDAR imaging to
evaluate plant canopy height, canopy structure, carbon
storage, and species characteristics at a large scale. By
comparing the LIDAR data of the leaves and the canopy,
the growth and morphological responses of plants were
evaluated. Hosoi and Omasa[73] used a hand-held 3D
LIDAR system and a voxel-based canopy analysis to
estimate the distribution of vertical canopy density
structures at four growth stages of wheat: tillering, stem
elongation, anthesis, and maturation. A regression analysis
was conducted to extract the dry weight of each organ,
which was then used as an effective indicator of plant
growth status, allowing effective agricultural management.

3.5.2 Physiological traits

Windt et al.[74] used a special MRI device to study the
phloem and xylem transport of large potted plants. They
compared dynamics of the xylem and phloem of four types
of plants- poplar, castor, tomato and tobacco, and derived
the parameters of velocity, area of diversion, and volume
flow (flux). Jahnke et al.[75] used MRI to evaluate the
storage organs of beet (Beta vulgaris) and Raphanus
sativus. At the same time, they used PET to measure the
distribution and assimilation characteristics of the transport
sector of a particular species. Han and Yi[76] used MRI to
monitor the water status of lily bulbs in the dormant state
after being stored for 11 weeks and the changes in their
metabolite contents to understand the release of dormancy
in lily bulbs.

3.5.3 Pathological traits

Studies of pathological traits mainly used the visible light
imaging, fluorescence imaging, thermal imaging and
spectral imaging technologies, and little has been done in
stereo imaging and tomographic imaging technologies.

4 Advantages and limitations of imaging
systems in plant phenotyping

It is important to select the right equipment for specific
phenotyping tasks. Thus, researchers must have a good

understanding of the advantages and limitations of each
imaging system to accomplish the tasks with good quality,
accuracy, and efficiency at an affordable cost.

4.1 Visible light imaging

Visible light imaging has been widely accepted as the
primary tool for plant phenotyping. The major advantages
of visible light imaging are the high imaging rate, low cost,
and simple operation. Many morphological traits of plants
can be directly obtained from visible light images, whereas
physiological and pathological traits can be indirectly
inferred from analysis of visible light imaging. Major
limitations include the dependence on illumination and
difficulties in segmenting objects of interest, such as leaves
and stems, from the background, especially when the
background color is close to the color of the objects of
interest. Moreover, shadows and occlusion of plant
canopies often cause errors in image analysis. Some of
these difficulties can be alleviated by improvements in
image processing algorithms, however, and many such
improvements have been reported in recent literature.

4.2 Fluorescence imaging

Fluorescence imaging is widely used for the measurement
of physiological and pathological features of plants. A
unique feature of fluorescence imaging is its ability to
observe some physiological changes in plant tissues that
are not visible to either a naked eye, or a visible light
camera. This feature enables researchers to detect early
signs of biotic or abiotic stresses and to take preventive or
corrective measures against them. However, fluorescence
imaging has been found not to be sensitive enough to water
stress. In the past, fluorescence imaging has only been
applied to small objects such as leaves and seedlings.
Further development requires effective fluorescence ima-
ging for larger shoot geometries and the capabilities of 3D
reconstruction at an acceptable cost. Robustness and
reproducibility also need to be improved. Because of
large power requirement, fluorescence imaging has been
mainly used in a controlled environment[77].

4.3 Thermal imaging

Many thermal imaging systems offer high sensitivity, high
precision, and a wide measurement range. Thermal
imaging is a non-contact measurement tool and its
operation can be easily automated for real-time measure-
ment. Thermal cameras provide temperature measurement
within an area at a high spatial resolution, which makes up
for the shortcomings of other temperature measurement
tools that only provide point measurements. Thermal
imaging allows canopy temperature measurement under
changing environmental conditions. It also allows fast
measurement of a large number of plots at the field scale.
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Thermal cameras can be used to study patterns of
temperature variations within the canopy even if the
temperature measurement is not well calibrated. On the
other hand, because thermal imaging is strongly affected
by the surrounding objects and the environment, accurate
calibration for temperature measurement can be extremely
difficult. In many cases, corrections based on soil back-
ground and weather conditions, such as transient wind and
cloud cover, need to be considered in calibration.

4.4 Spectral imaging

Spectral imaging is very promising for plant high-
throughput phenotypic analysis. In recent years, spectral
imaging technologies have been continuously improved,
providing higher spectral and spatial resolutions and
stronger stability under varying environmental conditions.
This technology has been widely used in controlled
environments. When carried on aerial platforms (helicop-
ters, balloons, drones, and cranes), it also has been proven
effective in large-scale field phenotyping. A factor limiting
wide adoption of the spectroscopic imaging technology in
high-throughput phenotyping is the high cost of the
equipment and the need for proper illumination, which
further increases the cost. Perhaps the most important
limiting factor is the huge amount of data it generates,
which requires large computing power and storage
capabilities. The situation is worsened when images are
taken from multiple cameras and when motions of the
camera are involved. To reduce the complexity, appro-
priate wavelength selection and data dimensional reduction
schemes must be studied. To a larger extend, this is a “big
data” problem that requires a tremendous amount of work
in the future.

4.5 3D imaging technique

For both controlled environments and field conditions, 3D
imaging technology is a powerful tool for the measurement
of complex morphological features, such as branch
structure, leaf angle distribution, and root structure.
However, the scale, resolution, throughput, accessibility,
and cost of this technology often limit its use[8].
Stereovision is highly dependent on the algorithm.

Performance of stereovision in plant phenotyping is often
affected by the lighting condition and optical features of
the plant, such as texture of plant surfaces. Some
stereovision systems require rotations of the plant, which
requires a control system. When a stereo system is
deployed to field, canopy movement due to wind becomes
a major problem.
For root phenotyping, tomographic technologies have

shown advantages in the detection and reconstruction of
root systems, measurement of water transportation, and
quantitative analysis of photosynthesis in plants. However,
MRI is very sensitive to the type of media used for plant

growth. Furthermore, due to the high cost, low resolution,
and long scanning time, these technologies cannot be
applied on a large scale in the field.
Laser scanning requires relatively long imaging times.

Use of ground-penetrating radar is generally limited to
thick roots (at least 0.5 cm in diameter) at relatively
shallow depths, depending on the soil type and is most
effective on dry, sandy soils. These limitations make
ground-penetrating radar useful only for measuring root
biomass of woody species. X-ray CT applications in plant
research have been strictly limited.
3D imaging technologies have not found wide applica-

tions mainly due to their high cost and complexity of data
analytics— a “big data” problem. Again, with the
advances in technology and “big data” research, a rapid
development in plant phenotyping using 3D technologies
can be expected.

5 Image processing techniques for plant
phenotyping

To analyze the phenotypic characteristics of plants, we
must first analyze and process the images acquired by
various imaging technologies. Commonly used image
processing procedures include image coding, transforma-
tion, compression, enhancement, restoration, segmenta-
tion, description and classification. In general, image
segmentation is the most important preprocessing
operation, followed by feature extraction. The target
plant traits are then obtained from these features through
data analysis.

5.1 Image segmentation

Image segmentation determines the quality of the final
image analysis result. Therefore, it is one of the most
important steps and, in many cases, the most challenging
task in image processing[78]. Thresholding is one of the
oldest and most common techniques for segmentation. The
thresholding methods group pixels by similarity, assuming
that individual objects within an image contain pixels with
similar properties. These thresholds can be empirically
determined from training examples (supervised approach).
They can also be computed using only the information in
the image (unsupervised approach). Usually, an image is
divided into sections with a threshold determined for each
section. A histogram is often constructed based on pixel
properties. Various statistical methods can then be used to
derive the thresholds that separate the sections.
Edge detection is a common method to identify

discontinuous areas. This segmentation technique relies
on the assumption that the boundaries of objects of interest
in the image correspond to sharp changes in pixel
properties. Many edge detection methods use kernel-
based filters which rely on calculated discrete derivatives.
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5.2 Feature extraction

Feature extraction is a concept in computer vision that
extracts the higher level of feature information from
images to be used in the next step of machine learning.
Common types of measurements extracted from imagery
include those related to color (spectral), shape, and
texture.
Color characteristics are the most common type of

feature extracted from images, because color features are
often relevant to specific objects or scenes. In addition,
color characteristics are more robust than other visual
features. As such, a more compact representation of the
color in an image or a region of interest is often of great
value. In the image realm, colors are represented using a
particular color model. Commonly used color models
include the RGB, hue-saturation-intensity, and hue-satura-
tion-value models. The most common representation for
spectral characteristics is that of the histogram that
measures the global distribution of colors in these models.
Texture features refer to the parameters that quantify the

spatial patterns of gray-scale or color changes within an
image[79]. The most commonly used texture classes are:
(1) statistical, (2) transformational, and (3) model-based. In
plant phenotyping, texture features are often used to
identify various types of objects, such as leaves, stems,
flowers, seeds, and fruits.

5.3 Data analytics

Data analytics is the central task in accomplishing specific
plant phenotyping goals. For example, spectral data can be
converted to different forms— difference spectra, ratio
spectra, and derivative spectra— to identify healthy and
diseased plants[80]. Based on the understanding of
reflectance characteristics, spectral signatures have been
developed to correlate biochemical and biophysical
plant parameters with plant health and vigor[63]. Spectral
vegetation indices (SVIs) have been developed and widely
applied for monitoring, analyzing, and mapping temporal
and spatial variations in vegetation. By calculating ratios
between spectral bands, SVIs result in a reduction of
data dimension for disease discrimination. As pigment
concentration provides information on the physiological
state of leaves, pigment-specific SVIs are likely to be
useful in the detection of stresses caused by fungal
diseases[81].
Classification is a procedure to assign image or spectral

signatures to characteristic groups or classes, and dis-
criminate these groups from each other. Principal compo-
nents analysis (PCA), spectral angle mapper (SAM) and
machine learning methods, such as ANN or support vector
machines, are the most common methods used for
classification[82]. Since disease epidemics and symptom
development cause temporal and spatial changes in crop
reflectance, most classification techniques developed for

remote sensing can be used to detect disease-induced
spectral changes. Rumpf et al.[82] successfully differen-
tiated foliar diseases of sugar beet in a pre-symptomatic
stage using Support Vector Machines (SVMs). The SAM
method compares vectors representing experimentally
determined spectra with reference spectra, and calculates
an angle to represent the degree of difference between the
two at each pixel. Moshou et al.[83] used ANNs to classify
healthy from diseased wheat plants. Data mining techni-
ques have been shown to be superior for distinguishing
types of stresses and different diseases[83]. Quin et al.[84]

differentiated healthy and canker-disease damaged citrus
fruits with a spectral-based algorithm.
The most widely used approach to process hyperspectral

images is the multivariate methods, such as partial least
squares (PLS) that builds statistical models to map the
hyperspectral data with the traits of interest. The PLS-
based models often outperforms other models as both the
spectral (phenotypic) and trait (genotypic) information are
built into the models for calibration. However, for such
multivariate methods, care must be taken to use a
sufficiently large set of both phenotypic and genotypic
data to build the model; otherwise poor and unreliable
predictions may be obtained[13]. Algorithms for develop-
ing the models may include 2D correlation plots, partial
least squares regression, PCA, support vector machines,
neural networks and other machine learning approaches.
Once calibration models are successfully developed and
validated, they can be employed in routine analyses to
predict phenotypic values of external data sets, and further
used in combination with environmental and genotypic
data to make breeding decisions[85].
In thermography, absolute temperature, temperature

differences between leaf tissue and air temperature, and
maximal temperature differences of plant tissue are
effective parameters[86]. Visualization of isotherms is also
useful for accentuation of hot and cold spots due to
infections by leaf pathogens. Approaches developed in
other fields, such as medical science, might be adaptable to
plant phenotyping. For example, automated detection of
temperature anomalies that indicate zones of diseased
tissue may have a great potential for early screening of
diseases in plants.

6 Summary and future trends

This article provides an overview of various imaging
technologies applied in high-throughput plant pheno-
typing. Plant phenotyping tasks are accomplished on
three types of platforms: stationary, ground-based, and
aerial and traits measured include morphological, physio-
logical and pathological traits.
Visible light imaging is the most commonly used

imaging technology in plant phenotyping. It has been
used in shoot and root phenotyping at different scales, from
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individual leaves/roots to whole canopy and root systems.
Visible light imaging provides direct measures of plant
morphological traits, and indirect measures of physiologi-
cal and pathological traits. Both fluorescence and thermal
imaging technologies can be used to measure plant
physiological and pathological traits. However, thermal
imaging only detects the traits involving plant canopy
temperature changes, whereas fluorescence imaging
detects traits closely related to plant’s photosynthetic
function and its associated metabolism. Thus, fluorescence
and thermal imaging are useful tools to detect different
types of physiological deficiencies and pathological
damage to plants. Combined use of these technologies
can provide more complete evaluation of the plant health
status.
Multispectral and hyperspectral imaging systems simul-

taneously acquire spatial and spectral information in the
visible to near-infrared wave bands. Although plant
information directly provided by the spectral imaging
systems are morphological in nature, multiple physiologi-
cal and pathological traits may be inferred owing to the
wide wavelength range. Although stereovision and other
3D imaging technologies are costly to use and require
sophisticated image processing techniques, they are
promising tools for three-dimensional reconstructions of
plant shoot and root systems, which will greatly enhance
crop modeling and comprehensive studies for plant
improvement.
While each imaging technology has its advantages and

limitations, common image processing analytics can be
developed. As all types of imaging technologies are
increasingly adapted for plant phenotyping, “big data”
analytics has become a critical issue that requires intensive
research in the near future.
Finally, successful plant phenotyping can be achieved

only by integrating the expertise of a multidisciplinary
team of plant biologists, physicists, mathematicians, and
engineers. Platforms of different scales must be made
available to researchers. Experiences obtained from fields
and growth facilities must be integrated. Effective and
frequent exchanges of research results will help to quickly
eliminate the bottleneck of phenotyping to match the rapid
development in genomic research.
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