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Abstract At an early immature growth stage of citrus, a
hyperspectral camera of 369–1042 nm was employed to
acquire 30 hyperspectral images in order to detect
immature green fruit within citrus trees under natural
illumination conditions. First, successive projections
algorithm (SPA) were implemented to select 677, 804,
563, 962, and 405 nm wavebands and to construct
multispectral images from the original hyperspectral
images for further processing. Then, histogram threshold
segmentation using NDVI of 804 and 677 nm was
implemented to remove image backgrounds. Three slope
parameters, calculated from the pairs 405 and 563 nm, 563
and 677 nm, and 804 and 962 nm were used to construct a
classifier to identify the potential citrus fruit. Then, a
marker-controlled watershed segmentation based on wave-
let transform was applied to obtain potential fruit areas.
Finally, a green fruit detection model was constructed
according to Grey Level Co-occurrence Matrix (GLCM)
texture features of the independent areas. Three supervised
classifiers, logistic regression, random forest and support
vector machine (SVM) were developed using texture
features. The detection accuracies were 79%, 75%, and
86% for the logistic regression, random forest, and SVM
models, respectively. The developed algorithm showed a
great potential for identifying immature green citrus for an
early yield estimation.
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1 Introduction

Efficient detection and estimation of the number of fruit
within tree canopies in natural environments is one of the
main applications of computer vision in agriculture. In
recent years, several studies on the detection of mature
citrus fruit on trees were carried out by using computer
vision. Bulanon et al.[1,2] applied multispectral imaging
using six optical bands of 550, 600, 650, 700, 750, and
800 nm to enhance citrus fruit detection in the field under
natural daylight condition. They presented a potential
approach for improving fruit detection using thermal
images when there was the largest temperature difference
between fruit and non-fruit objects. Xu et al.[3] used red (R)
and blue (B) components to identify citrus fruit , while Cai
et al.[4] used 2R-G-B where G was the green component of
a color image.
Early estimation of citrus yield can provide many

advantages to citrus growers, such as irrigation adjustment,
pest control, fertilization, weed control and labor assign-
ment. There have been several studies on green citrus fruit
detection based on spectral characteristics and shape
analysis. Kane and Lee[5] found that the optimal
wavelengths for separating green citrus fruit and leaves
were 881, 781, and 1383 nm under laboratory conditions.
To accommodate varying outdoors illumination condi-
tions, researchers carried out some further studies.
Kurtulmus et al.[6] used sub-windows to scan entire images
and the green fruit were detected according to color,
circular Gabor texture and eigenfruit in each sub-window.
Sengupta and Lee[7] conducted shape analysis to detect as
many fruit as possible. Three detection methods were used
to remove false positives, a support vector machine
(SVM), Canny edge detection combined with a graph-
based connected component algorithm and Hough line
detection. However, shape and texture analysis requires
extensive computer resources. Zhao et al.[8] developed a
block-matching method, the sum of absolute transformed
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difference, to detect potential fruit pixels. Li et al.[9]

proposed a fast normalized cross correlation algorithm for
detecting and counting immature green citrus fruit using
outdoor color images. Okamoto and Lee[10] conducted
stepwise waveband selection and a linear discriminant
analysis with hyperspectral images, and correctly identified
80%–89% of the fruit. This study showed that hyperspectral
imaging technique has the potential for detecting immature
green citrus and constructing an early estimation yield
system based on selected multispectral bands.
In summary, there are difficulties in detecting immature

green citrus fruit due to the similar color between the
leaves and fruit, occlusion of fruit, and varying outdoor
illumination conditions. Though high dimensionality of
data may increase the computational burden, it has been
proved that multispectral imaging with selected bands
from hyperspectral images is an efficient way to create an
early yield estimation system. According to class separ-
ability, various methods can be used to select important
bands, such as transformed divergence, Bhattacharyya
distance, Jeffries–Matusita (JM) distance, spectral angle
mapper, and orthogonal projection divergence. It is also
likely that unsupervised band selection can be completed
by applying variance or signal to noise ratio criteria.
Further processing may also encounter many difficulties
under outdoor illumination conditions. Furthermore,
different spectral reflectance (Fig. 1) would be obtained
under different illumination conditions even though the
sample spots come from the same fruit or the same leaf.
In view of the above difficulties, this paper aimed to

propose a new detection method for green citrus fruit.
Specific objectives were:
(1) To select sensitive wavebands from hyperspectral

images based on successive projections algorithm;
(2) To develop a marker-controlled watershed algorithm

based on wavelet analysis;
(3) To identify green citrus through texture analysis and

three different classifiers (logistic regression, random
forests and support vector machines).

2 Materials and methods

2.1 Flowchart

Figure 2 is the basic flowchart for algorithm development
for this research. The algorithm is divided into four parts:
(1) the acquisition of hyperspectral image and flat field
correction, (2) identification of potential citrus, which
involves band selection, background removal, feature
extraction and preliminary identification of citrus,
(3) precision identification of citrus, including marker
discovery based on the two-dimensional wavelet trans-
form, marker-controlled watershed segmentation, texture
feature extraction and classifier construction, and
(4) accuracy analysis of citrus identification.

2.2 Hyperspectral image acquisition

The hyperspectral imaging system used in this study
contained a digital CCD camera (MV-D1312, Photonfocus
AG, Lachen SZ, Switzerland) and a line scanning
spectrometer (V10E, Specim, Oulu, Finland). The experi-
ments were carried out at an experimental citrus grove at
the University of Florida in Gainesville, Florida, USA on
September 14, October 5 and November 4, 2015. A total of
30 hyperspectral images were collected. Each acquired
image consisted of 388 wavebands with a spectral
resolution of 1.59 nm and the spectral range was 398–
1010 nm. In the process of image acquisition, three
reference Lambertian reflectance panels of 50%, 75%, and
99% reflectance were used for flat field calibration.

2.3 Flat field correction

Flat field correction is a technique used to improve quality
in digital imaging. The goal is to reduce hyperspectral data
to relative reflectance. It can normalize each image
spectrum to the flat field spectrum, which could remove
most of the atmospheric and solar irradiance effects.

Fig. 1 Comparison of the different spectra under different illumination conditions. (a) Regions of interest from the same fruit and leaf,
(I) normal brightness area of the fruit; (II) light area of the fruit; (III) dark area of the fruit; (IV) normal brightness on the left; and (V) dark
area on the left; (b) spectrum of each region of interest.
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Equation (1) below was used for the flat field correction to
achieve the relative reflectance at different wavelengths for
the original hyperspectral image[11].

R ¼ ROðlÞ –RDðlÞ
RW ðlÞ –RDðlÞ

(1)

where R is relative reflectance image at different
wavelengths, RO is the original raw image, RW is the
image of the reflectance calibration board, RD is the dark
image taken by covering the camera with a cap, and l is the
wavelength.

2.4 Successive projections algorithm

The original hyperspectral image was composed of 388
different wavebands. Since redundant information of the
whole spectrum can have significant adverse effect on
detection performance, it is necessary to eliminate
redundant and other useless information. As a forward
selection method, successive projections algorithm (SPA)
can be used to select a set of wavelengths including
maximal information content and minimal redundancy. In
the procedure, SPA begins with one wavelength specified
manually by the researcher, and then incorporates a new
wavelength at each operation of projection until a specified
number (N) of wavelengths is reached. SPA steps are
described below with a given initial wavelength k(0). The
total number of wavelengths in the spectrum is J and the
desired number of variables is N[12].
Step 0: Before the first iteration, let xj = jth column of

Xcal; j = 1, 2,..., J, where Xcal is the spectral data matrix.
Step 1: Let S be the set of wavelengths which have not

been selected yet. That is, S = {j such that 1£j£J and

j ∉ {k(0), ..., k(n – 1)}}.
Step 2: Calculate the projection of xj on the subspace

orthogonal to xk(n – 1) as Pxj ¼ xj – ðxTj xkðn – 1ÞÞxkðn – 1Þ
ðxTkðn – 1Þxkðn – 1ÞÞ – 1, for all j 2 S where P is the projection

operator.
Step 3: Let k(n) = arg(max ||Pxj|| j 2 S).
Step 4: Let xj = Pxj, j2S.
Step 5: Let n = n+1. If n<N, go back to Step 1.
End: The resulting wavelengths are {k(n); n = 0, ...,

N – 1}.
The above steps are exemplified in Fig. 3, which

illustrates the first iteration of SPA.

Fig. 2 Flowchart for the proposed algorithm

Fig. 3 Example of SPAwith J = 5, Xcal = 3 and k(0) = 3. Result
of first iteration: k(1) = 1.
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2.5 Background removal

To improve the speed and accuracy for discriminating
green fruit and green leaves, the background, consisting of
sky, shade, branches, reflectance calibration board and its
fixed board, should be removed from the original image.
To develop the background removal method, the NDVIij in
Eq. (2) was calculated.

NDVIij ¼
Ri –Rj

Ri þ Rj
(2)

In the equation, NDVIij is the normalized difference
vegetation index and Ri is the reflectance at wavelength i.
With regard to green plants, there is much more reflected
radiation in the near-infrared (NIR) range than in the
visible range. NDVI is considered as one of the most
successful indices used to identify the live green plant in
multispectral remote sensing data. Since NDVI is directly
related to the photosynthetic capacity and energy absorp-
tion of plant canopies, the histogram of NDVI image
illustrates a bimodal distribution, with a peak of back-
ground pixels and a peak of green vegetation pixels and a
trough. The Otsu’s thresholding technique, which is used
to select the most suitable gray scale as the threshold value,
can utilize a discriminant analysis to find the maximum
separability of green vegetation and background based on
the histogram of the NDVI image.

2.6 Definition of features

For the mutual occlusion of leaves or fruit in the
hyperspectral images taken in the natural environment,
there were varying complex illumination conditions
among different regions of the images. As shown in
Fig. 4, different parts of the same fruit or leaf showed
different reflectance values. Therefore, the direct use of
reflectance spectroscopy makes it very difficult to classify
green fruit and green leaves. To deal with this problem, the

slope of reflectance curve between different wavebands
can be calculated because it not only implies the change of
reflectance but also reduces the negative effect of varying
complex illumination conditions.
The slope between wavebands ðn,nþ1Þ can be calcu-

lated by the formula below:

Kðn,nþ1Þ ¼
Δref
Δl

¼ refnþ1 – refn
l#nþ1 – l#n

(3)

where the Δref is the reflectance difference value between
waveband nþ 1 and waveband n, Δl is the wavelength
difference value between waveband nþ 1 and waveband
n, l#n is a normalized and dimensionless parameter about
the waveband n. l#n can be calculated as follows:

l#n ¼
ln –minðlÞ

maxðlÞ –minðlÞ (4)

in which ln is the wavelength of waveband n, minðlÞ is the
minimum wavelength among all of the wavebands in a
multispectral image after SPA algorithm, and maxðlÞ is the
maximum wavelength.
In this study, three relative spectral slope parameters,

K(405,563), K(563,677) and K(804,962), were defined according
to the results of SPA. As shown in Fig. 4, the value of
K(405,563) is positive and the value of K(563,677) is negative
because the chlorophyll absorbs in the blue and red bands
of the electromagnetic spectrum in photosynthesis. As a
result, for the spectrum of green vegetation, there will be
two absorption valleys in the blue and red band regions and
a reflection peak in the green band. Green leaves contain
more chlorophyll, so the reflectance is lower than for green
fruit in blue and red regions. As to the K(804,962) of green
fruit, it is negative and has a relatively higher absolute
value. In contrast, the K(804,962) of green leaves is positive
or negative and its absolute value is relatively lower. In
other words, these three relative spectral slope parameters
can be used for the identification of potential green fruit.

Fig. 4 The influence of varying illumination conditions on reflectance. (a) Color image composed of three components at 405, 563 and
677 nm with regions of interest (ROIs); (b) the reflectance of each ROIs.
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2.7 Two-dimensional discrete wavelet transform

The discrete wavelet transform (DWT) is a linear
transformation that separates data into different frequency
components, and then studies each component with a
resolution matched to its scale. To use the wavelet
transform for image processing, a two-dimensional
discrete wavelet transform (2D-DWT), known as a natural
extension from the single dimension case, must be
implemented. The 2D-DWT is used to decompose the
image generally with the application of a high-pass filter
(HPF) and low-pass filter (LPF) in both the horizontal and
the vertical directions of the image.
With the generation of an approximation coefficient

(cA1), horizontal details coefficient (cH1), vertical details
coefficient (cV1) and diagonal details coefficient (cD1) in
this process, three details coefficients (cH1, cV1 and cD1)
can be stored for reconstruction of the original image later.
If it is necessary to decompose the image further, the
approximation coefficient (cA1) will be the input of HPF
and LPF, thus producing four sets of coefficients (cA2,
cH2, cV2 and cD2) as the result of the second decom-
position, and so forth[13].
As is shown in Fig. 5, an image would be decomposed

into four parts by using the 2D-DWTwith the size of each
part as big as 1/4 of the original. Figure 5(a) is the result
of using LPF in both the horizontal and the vertical
directions, which can be decomposed further. Figure 5(b)
is the result of using LPF in the horizontal direction
and HPF in the vertical direction. The result of using
HPF in both the horizontal and the vertical direction can
be seen in Fig. 5(c), while the result of using HPF in
the horizontal direction and LPF in the vertical direction

can be found in Fig. 5(d).

2.8 Marker-controlled watershed segmentation

Separation of touching objects in an image is one of the
difficult image processing operations. For this problem, the
watershed transform is usually applied to find catchments
basins and watershed ridge lines in an image. However, the
watershed segmentation algorithm may lead to severe
over-segmentation due to the great number of minima and
noise interference within an image or its gradient. Because
the noise problem can be minimized on low-pass filtered
images, a robust image segmentation method is based on
multi-resolution analysis and a marker-controlled
watershed segmentation algorithm[14,15].

2.9 Texture analysis

Grey Level Co-occurrence Matrices (GLCM), as main
image texture analysis tool, is a statistical method to
demonstrate image texture structure by statistical sampling
of the pattern of the gray levels that occur in relation to
other gray levels. GLCM can be generated by calculating
how often a pixel with gray level value, i, occurs adjacent
to a pixel with the value, j. That is to say, a co-occurrence
matrix is specified by the relative frequencies P(i, j, d, θ) in
which two pixels, separated by distance d, occur in a
direction specified by the angle θ, one with gray level i and
the other with gray level j[16]. Table 1 shows the difference
in texture features between fruit and leaves under varying
illumination conditions. To detect green fruit using texture
features, six most relevant features, including autocorrela-
tion, cluster prominence, cluster shade, sum of squares,

Fig. 5 2D-DWT pyramid decomposition
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sum average and sum variance, were chosen for further
classification.

2.10 Supervised classifier

It is necessary to use a supervised classifier to obtain the
potential fruit and the results of precision identification.
The relative spectral slopes parameters, Kð405,563Þ, Kð563,677Þ
and Kð804,962Þ, could be the input parameters for the
classifier to obtain potential fruit regions from an image.
The texture feature of each part after marker-controlled
watershed segmentation could be the input parameters for
a classifier to obtain the results of precision identification.
Three supervised classifiers were applied in this research,
which were logistic regression, random forest and support
vector machine (SVM)[17–20].

3 Results and discussion

3.1 Successive projections algorithm

The original hyperspectral image consisted of 388 different
wavebands. SPA, a forward selection method, was used to

select a set of wavelengths. A set of five wavelengths was
utilized in this experiment with the goal of developing a
multispectral imaging system. Figure 6 shows the detec-
tion result of green fruit based on SPA and Mahalanobis
distance classification. It can be clearly seen from Fig. 6
that the five relatively greatest differences are at 754, 677,
606, 489 and 549 nm in the spectral reflectance between
green fruit and the green leaves. SPA was performed five
times and the different starting vector was selected from
five wavelengths above for each time. The potential five
sets of wavelengths were {754, 397, 962, 563, 501}, {677,
804, 563, 962, 405}, {606, 955, 402, 768, 466}, {489, 955,
563, 399, 767} and {549, 955, 440, 768, 987}. Based on
five different regions in the original image in Fig. 6(a), five
subsets of different regions were selected as regions of
interest (ROIs). As shown in Fig. 6(b), Karhunen-Loeve
transformation was applied to form the principal compo-
nent analysis (PCA) bands. Subsequently, three PCA
bands were selected including the majority information for
original hyperspectral image. Figure 6(b) shows the
classification result using three PCA bands and ROIs of
Fig. 6(a). Figure 6(c–g) show the classification result
obtained using the potential five sets of wavelengths and
ROIs of Fig. 6(a). Since there is high accuracy in the result

Table 1 Difference in texture features between fruit and leaves under varying illumination conditions

Texture features

Difference 1 Difference 2 Difference 3

Fruit Leaf Fruit Leaf Fruit Leaf

Autocorrelation* 9.3906 1.1982 43.8684

Contrast 0.0322 0.0308 0.0124

Correlation 0.0827 0.0112 0.0590

Cluster prominence* 32.8699 6.6130 0.3501

Cluster shade* 4.8202 4.5319 1.2915

Dissimilarity 0.0258 0.0328 0.0124

Energy 0.2087 0.0601 0.0280

Entropy 0.4946 0.0685 0.0578

Homogeneity 0.0122 0.0166 0.0062

Maximum probability 0.2007 0.1603 0.0219

Sum of squares* 9.2435 0.9526 43.6960

Sum average* 2.4643 0.3106 7.3179

Sum variance* 39.0627 4.6818 167.5900

Sum entropy 0.5110 0.0674 0.0649

Difference variance 0.0322 0.0308 0.0124

Difference entropy 0.0863 0.0962 0.0392

Information measure of correlation1 0.1814 0.0804 0.1170

Information measure of correlation2 0.1352 0.0280 0.0796

Inverse dfference normalized 0.0028 0.0037 0.0014

Inverse difference moment normalized 0.0005 0.0005 0.0002
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of PCA and feature wavelength {677, 804, 563, 962, 405},
these wavelengths were selected for further analysis.

3.2 Background removal

To increase the speed and accuracy of discrimination
between green fruit and green leaves, it is necessary to
remove the background from the original image. For green
plants, there is much more reflected radiation in the near-
infrared range than in the visible range. The NDVI(804,677)
was calculated after SPA algorithm for background
removal.
As is shown in Fig. 7(a) the RGB image is composed

of 405, 563 and 677 nm as B, G and R components.
Figure 7(b) shows the gray image of NDVI(804,677) and
Fig. 7(c) shows its histogram. In the histogram, the peak
around gray level zero indicates it is the primary value for
three Lambertian reflectance panels used for field calibra-
tion. The second peak appears around level 0.3, which is
the primary value for the background of the image. The
third peak around level 0.8 represents the primary value for
the green vegetation of the image. The valley at level 0.55
between the second and the third peaks could be chosen as
a segmentation threshold to remove the background. It is
demonstrated from the experimental results that the
different images have different segmentation thresholds
ranging from 0.5–0.8 because of the varying illumination
conditions. Figure 7(d) shows the processing result of
Fig. 7(b) with a 0.55 segmentation threshold.

3.3 Identification of potential fruit

A total of 2825 samples were finally selected from 30
multispectral images, of which 1659 samples came from
fruit and 1166 samples came from leaves. Figure 8 shows
the distribution of all samples in the feature space

structured by three slope parameters, which indicates
there is obvious separability between leaves and fruit.
A total of 1952 samples were selected randomly as a

training data set and the remaining 873 samples were used
as a test data set. Three slope parameters were used as input
variables to construct logistic regression, random forests
and SVM classifiers. These classifiers could be employed
to identify the potential fruit. Given a classifier and an
instance, there are four possible outcomes. If the instance is
fruit and it is classified as fruit, it is counted as a true
positive; if it is classified as leaf, it is counted as a false
negative. If the instance is leaf and it is classified as leaf, it
is counted as a true negative; if it is classified as fruit, it is
counted as a false positive. Table 2 shows the performance
of the three classification models on the test data set. The
purpose of this process is to remove leaves and to retain as
many potential fruit as possible. The best classifier is one
that has the minimum false positive. Because the false
positive of SVM was just 19, the SVM model was chosen
to identify the potential fruit. In this case, 516 leaves and
19 fruit were removed from images and 143 leaves and 195
fruit were retained. The retained parts were seen as
potential fruit.

3.4 Wavelet watershed

To solve the problem of occlusion and prepare for further
texture analysis, the marker-controlled watershed segmen-
tation based on two-dimensional discrete wavelet trans-
form was executed. Figure 9 shows the execution process.
Figure 9(a) demonstrates the identification of potential fruit
using three slope parameters, which include some parts of
leaves. First, the low frequency sub-band of potential fruit
images was obtained through two-dimensional discrete
wavelet transform with Daubechies db4 function at the
level four decomposition, which is shown in Fig. 9(b).

Fig. 6 Comparison of PCA Mahalanobis distance classification and SPA Mahalanobis distance classification. (a) Five regions of
interest; (b) the result of PCA Mahalanobis distance classification with ROIs. The result of Mahalanobis distance classification (c) using
754, 397, 962, 563, 501 nm wavelengths; (d) using 677, 804, 563, 962, 405 nm wavelengths; (e) using 606, 955, 402, 768, 466 nm
wavelengths; (f) using 489, 955, 563, 399, 767 nm wavelengths; (g) using 549, 955, 440, 768, 987 nm wavelengths.
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Then the regional maxima, as shown in Fig. 9(c), were
identified in low frequency sub-band images. Finally,
Fig. 9(d) shows that using the regional maxima as a
marker, the marker-controlled watershed segmentation was
applied and Fig. 9(e) shows that the problem of occlusion
was effectively resolved.

3.5 Texture features and classification

Based on the results of the marker-controlled watershed

segmentation, 227 potential fruit areas were separated from
30 multispectral images. These images were manually
counted, and it was found that there were 154 green leaves
and 73 green fruit among 227 areas. Then the GLCM were
calculated for each area, which included autocorrelation,
cluster prominence, cluster shade, sum of squares, sum
average and sum variance. A total of 150 areas were selected
randomly as a set of training data and the remaining 77 areas
as a test set. GLCM texture features were used as input
variables to construct three classifiers of logistic regression,
random forests and SVM. In addition to true positive (TP),
false positive (FP), false negative (FN) and true negative
(TN), a variety of evaluation measures can be calculated
from confusion matrix. Accuracy is the rate of overall correct
classification of samples. Sensitivity is the probability that
the model will correctly classify fruit. Specificity is the
probability that the model will correctly classify leaves.
The aim of a classifier is to minimize the FP and FN or to

maximize the TP, TN, accuracy, sensitivity and specificity.
Table 3 illustrates the performance of the three classifica-
tion models on the test data set. It could be concluded that
the SVM classifier had the best classification ability.
Among 27 fruit samples and 50 leaves samples, eight fruit
were misclassified as leaves and three leaves were
misclassified as fruit. The accuracy, sensitivity and
specificity score were 0.86, 0.94 and 0.70, respectively.

Fig. 8 The distribution of fruit and leaves in the feature space
structured by three slope parameters

Fig. 7 Example of background removal. (a) RGB image composed of 405, 563 and 677 nm as B, G and R components; (b) the gray
image of NDVI(804,677); (c) the histogram of the gray image of NDVI(804,677); (d) the result after background removal.

Table 2 Results of the three classification models to detection potential fruit

Classifier True positive (TP) False positive (FP) False negative (FN) True negative (TN)

Logistic regression 186 28 127 512

Random forests 175 39 78 581

Support vector machines 195 19 143 516
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4 Conclusions

Hyperspectral imaging technology was employed in this
study to detect green fruit within citrus trees under natural
illumination conditions. The early yield information could
be used for site-specific crop management to increase yield
and profit. Based on the experimental results in this
research, the following conclusions could be drawn:
(1) The SPA algorithm was a feasible method to select

wavebands, and can be used to construct multispectral
images instead of the original hyperspectral images for
further processing. This study selected 677, 804, 563, 962
and 405 nm wavebands according to the different spectral
reflectances between green fruit and green leaves.
(2) The NDVI(804,677) threshold histogram segmentation

was an effective and automatic method to remove the
background from images. The experimental results
demonstrated that the different image had different
segmentation thresholds distributed in 0.5–0.8 due to the
varying illumination conditions.
(3) Three slope parameters, K(405,563), K(563,677) and

K(804,962), could be used to construct classifiers to identify
the potential citrus fruit. It was shown that the SVM
classifier had the best classification ability compared with
logistic regression classifier and random forests classifier.
(4) Two-dimensional discrete wavelet transform with

Daubechies db4 function at the level four decomposition
could be used to find markers in potential fruit images and
marker-controlled watershed segmentation could be used
to resolve the problem of occlusion.
(5) The GLCM texture features could be input variables

to construct the detection model for green fruit. The
accuracy, sensitivity and specificity of SVM model were
0.86, 0.94 and 0.70, respectively.
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Accuracy

(TP+ TN)/ALL
Sensitivity

TP/(TP+ FN)
Specificity

TN/(FP+ TN)

Logistic regression 44 6 10 17 79% 88% 63%

Random forests 45 5 14 13 75% 90% 48%

Support vector machines 47 3 8 19 86% 94% 70%
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