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HIGHLIGHTS
� AGD aims for a green environment, sustainable
agriculture and clean water.

� Presenting examples of the impact of agriculture
on water quality.

� Presenting examples of solutions for sustainable
agriculture and improved water quality.

� Integration of livestock and cropping systems is
possible on a farm or among farms.

� Providing recommendations for further develop-
ment of sustainable agriculture.
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GRAPHICAL ABSTRACT

ABSTRACT

Crop and livestock production are essential to maintain food security. In China,

crop and livestock production were integrated in the past. Today, small backyard

systems are still integrated but the larger livestock farms are landless and largely

geographically separated from crop production systems. As a result, there is less

recycling of animal manures and there are lower nutrient use efficiencies in the

Chinese food production systems. This, in turn, results in considerable losses of

nutrients, causing water pollution and harmful algal blooms in Chinese lakes,

rivers and seas. To turn the tide, there is a need for agricultural “green”

development for food production through reintegrating crop and livestock

production. An additional wish is to turn the Chinese water systems “blue” to

secure clean water for current and future generations. In this paper, current



1 INTRODUCTION

In China, the most populous country in the world, food
production is of crucial importance to maintain national food
security. National guidelines for Agriculture Green Development
(AGD) were introduced in 2017 to achieve future food
security[1,2]. AGD aims to transform the current, unsustainable
agricultural practices[3,4] toward “green,” sustainable agricultural
production[1]. The guidelines focus largely on the coupling of
crop and livestock production, green and nutritious food
provision, natural resources governance, and a healthy environ-
ment. In 2018, the National Academy of Agriculture Green
Development and the International School of Agriculture Green
Development were established[1]. They seek innovative and
smart solutions toward the sustainable transition of Chinese
agriculture for current and future generations. Sustainable
agriculture includes high crop and livestock productivity with
limited environmental impact by using limited resources.

Another important goal is to turn Chinese water systems “blue”
to provide clean water for nature and society[5,6]. “Blue” refers to
water in rivers, lakes, seas and aquifers[7]. In our study we refer
to these “blue” water systems that need to be clean for human
activities and nature. Lakes, rivers, groundwater and seas are
important sources of water for human activities[8,9]. Agriculture
is an important user of water resources[10]. Water resources have
become scarcer in the northern and western areas of China due
to high water withdrawal. Additionally, many water systems are
polluted in China[11–15]. This includes pollution associated with
nutrients[12,15], pathogens[16], plastics and pesticides[17]. Pollu-
tants cause multiple impacts on society such as impeding
drinking water production by toxic algal blooms caused by
nutrients, diarrhea caused by pathogens, and the spread of
antibiotic resistance caused by antibiotic resistance genes.

In China the geographical separation of crop and livestock
production is an important cause of water pollution[18,19] (Fig. 1,
see Section 2). Reintegration of crop and livestock production is
essential to achieve clean water in the future. There are also
challenges with providing sufficient income to farmers, labor
shortages, low educational attainment, low water use efficiency

and low productivity. Here, we identify potential interventions
for “green” agriculture and “blue” water in China, with a focus
on reintegrating crop and animal production. This will help to
achieve UN Sustainable Development Goals 2 “Food produc-
tion” and 6 “Sanitation and clean water”[20]. First, we explain
how separating crop and livestock production can cause water
pollution (Section 2). Next, we identify and describe interven-
tions for reintegrating crop and livestock production toward
clean water (Section 3). We give examples to support these
interventions. Finally, we provide recommendations to achieve
“green” agriculture and “blue” water in China.

2 SEPARATION OF CROP AND ANI-
MAL PRODUCTION CONTRIBUTES TO
WATER POLLUTION

In the past, crop and livestock production were integrated, with
animal manure used to grow crops and crop residues to feed
animals. In this way, nutrient losses to water were low because
nutrients were cycled efficiently between crop and livestock
production[18]. Today, crop and livestock production are often
located far from each other (Fig. 1). An important reason is that
the number and size of livestock farms have increased to
maintain food demand, especially in urban areas. Smallholder
crop production versus intensive livestock production is one of
the major causes of separated crop and livestock production.
Large distances between intensive livestock farms and crop
production challenge the recycling of animal manures and crop
residues[18,21]. As a result, 30%–70% of the nitrogen and
phosphorus in animal manures was directly discharged to rivers
in 2000 whereas this was only 5% in 1970 in 26 sub-basins[18].
Wang et al.[3] estimate that < 30% of the nitrogen in animal
manures was recycled to croplands in 2010. Reduced recycling of
crop residues and animal manures resulted in lower nutrient use
efficiencies[4,21–24]. Bai et al.[24] estimate a decrease in the
nitrogen use efficiency of the feed-pig-consumption chain from
46% in 1960 to 11% in 2010. Wang et al.[4] estimate a decrease in
phosphorus use efficiency in agriculture from 38% in 1990 to

knowledge is summarized to identify promising interventions for reintegrating

crop and livestock production toward clean water. Technical, social, economic,

policy and environmental interventions are addressed and examples are given.

The paper highlights recommended next steps to achieve “green” agriculture

and “blue” water in China.
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24% in 2012. Furthermore, nutrient use efficiencies in crop and
livestock production differ across regions[3,19,25]. Low nutrient
use efficiencies are driven by separated crop and livestock
production resulting in the overuse of synthetic fertilizers and
poor manure management. Geographically separated crop and
livestock production is thus an important driver of water
pollution in many areas of China[3,18].

Separated crop and livestock production contributes to pollution
of lakes[26,27], groundwater[3,8,15], rivers[28] and seas[3,11,18].
Nutrient pollution (eutrophication) leads to blooms of harmful
algae. This is mainly because excessive amounts of nutrients are
lost from crop and livestock production, often through direct
discharges of animal manures to water and overuse of synthetic
fertilizers. In urbanized areas, wastewater also contributes to
increased pollution levels in lakes[29]. Many lakes with great
economic, cultural and ecological value have become eutrophic
such as lakes Taihu[13,30,31], Chaohu[32] and Dianchi[29,33].
Chang et al.[27] estimate that 60%–90% of Chinese lakes (water
quality class V or higher) in urban landscapes experience
nutrient pollution and also physical, chemical, and bacteriolo-
gical pollution and are unsafe for human use. Another example
is groundwater pollution with nutrients on the North China
Plain[8,34] contributing to water scarcity[35]. Inputs of nitrogen
and phosphorus to Chinese rivers have increased by a factor of

2–45 between 1970 and 2000 (range for nutrients and sub-basins
in China)[18]. The most important sources are direct discharges
of animal manures to rivers in 2000 caused by a lack of manure
recycling in crop production[18]. Wang et al.[12] quantified that
12 large Chinese rivers exported in total 3287 kt of dissolved
inorganic nitrogen, 1567 kt of dissolved organic nitrogen, 295 kt
of dissolved inorganic phosphorus, and 411 kt of dissolved
organic phosphorus to seas in 2012. Between 15% and 76% of
these nutrient exports to the seas originated from direct
discharges of animal manures. The contribution of the synthetic
fertilizers was generally higher to the southern rivers (Yangtze,
Pearl) than to the northern rivers (Yellow, Huai, Hai)[12].
Wastewaters[11] and aquaculture[36,37] are also important
pollution sources but their contribution varies with scale (e.
g., national, basin, sub-basin)[11,37]. At the national scale,
livestock and crop production are dominant sources of nutrient
pollution in water systems in 2012[3,12].

Clean water is essential for irrigation and livestock. Sustainable
agriculture is needed to achieve clean water (Fig. 1). However,
clean water availability is decreasing in many regions within
China[8,34] with the most dramatic losses on the North China
Plain[38–41]. Groundwater is often used for human needs[8].
Climate change is expected to influence the availability of surface
water and groundwater. This may increase water stress (less

Fig. 1 Overview of crop and livestock production in relation to water pollution in China today (a) and an optimistic future with interventions to

develop green agriculture and thus contribute to “blue” (clean) water in the future (b). Interventions are shown in Fig. 2 and discussed in

Section 3.
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water, more pollution) in regions such as the North China Plain.
Reintegration of crop-livestock production is a crucial step in
both “green” agriculture and “blue” water to achieve sustainable
food production. Reintegration refers to actions restoring the
connection between crop and livestock production toward
sustainable agriculture and clean water. This can be done
through five main interventions (Section 3) and requires a
transdisciplinary effort.

3 INTERVENTIONS FOR GREEN AGRI-
CULTURE AND CLEAN WATER

Interventions are actions facilitating successful transitions such
as a change toward sustainable agriculture and clean water. We
have identified five categories of interventions for reintegrated
crop and animal production toward clean water. Combining the
five interventions will lead to an optimistic future with green
agriculture and clean water (Fig. 2). We give examples for China
below (Fig. 1 and Fig. 2).

3.1 Technological interventions

Technological interventions are actions to support the reinte-
gration of crop-livestock production with lower environmental
impact and with the use of advanced technologies. Closing the
distance between crop and livestock locations is important to
facilitate the recycling of manures to agricultural land and the
use of crop residues for animal feeds. In addition to emission
mitigation measures, manure management is key to facilitating
closing nutrient loops between crop and livestock production
sectors. Return of animal manures to arable fields instead of
directly discharging them to water is essential in manure
management. This will facilitate nutrient recycling between crop
and livestock production and avoid nutrient losses to water.

Closing the physical distance between large-scale livestock farms
and crop production may, however, be impractical in many
Chinese regions for geographical reasons, the high cost of
transport, and the social desire to locate livestock farms in the
vicinity of high food demanding cities. Advanced technologies

Fig. 2 Five categories of intervention for reintegrated crop and animal production toward clean water. The five interventions are technical,

social, economic, policy and environmental. Examples are given for each intervention (see the main text for more information and the definitions
of the interventions).
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can help to bring crop and livestock production closer together
without reducing their physical distance (Fig. 2). Technologies
such as composting can make manure suitable for transportation
over longer distances. Manure treatment can facilitate the reuse
of (liquid) manure in agriculture. For instance, manure
composting with bioreactors can remove odors and bacteria,
does not compete for land, and makes manures suitable for
transportation over longer distances to agricultural areas[2,42–44].
Technologies for anaerobic digestion exist to make manures
suitable for application to land[45–48]. Advanced treatment
technologies can recover over 80% of nutrients (e.g., reverse
osmosis, anammox and phosphate precipitation) in liquid
manures[49–52]).

Small-scale livestock farms have the potential to bring manure
back to crop fields that are located nearby. Methods such as soil
injection (liquid manures) and broadcasting (solid manures) can
help arable farmers to apply manures efficiently to avoid nutrient
losses. Technologies improving animal feeds and reducing
emissions from manure storage[52,53] are also effective and
have the potential to reduce nutrient losses by up to 30%[54,55]. In
crop production, farmers should avoid overfertilization and
replace synthetic fertilizers with animal manures. Agricultural
infrastructure such as manure injection equipment can facilitate
manure application[56]. This will maintain high crop yields and
high nutrient use efficiencies. Implementing these technologies
will require social, economic and policy interventions.

3.2 Social interventions
Social interventions include actions to deliver social benefits to
farmers such as better welfare and education. Extending the
knowledge co-operatively developed by experts and field
practitioners can potentially increase sustainability in agriculture
(Fig. 2). An example of this is the development of the so-called
Science and Technology Backyard (STB) model in China in
which experts (e.g., scientists from different related disciplines)
work together with different stakeholders (particularly small-
holders) in rural areas[57]. Knowledge and farming techniques
co-developed with experts and different stakeholders in
sustainable crop production are communicated with the farmers
via training, field consultation and demonstration. Farmers, in
turn, share their experiences of farming practices with the
experts, and this promotes technological innovation. Since 2009
the productivity and nutrient use efficiencies in crop production
have increased considerably in rural areas where the STBs have
been located[58–61]. Cui et al.[58] show that yields of maize, rice
and wheat in 452 Chinese counties increased by almost 12%,
while application of nitrogen decreased by up to 18% between
2005 and 2015 by adopting the STB model. Nutrient use
efficiency in STBs increased. STBs thus contribute both to the

application of scientific knowledge and the social acceptance of
new technologies. Taking the STB as an example, we could apply
a similar model to both smallholder and industrialized farmers
to allow knowledge exchange on manure recycling and crop
production. This would contribute to the reintegration of crop-
livestock production.

3.3 Economic interventions
Economic interventions are actions to reduce inequities in the
market environment through regulation, taxation and subsidies
in relation to sustainable agriculture and clean water. Reinte-
grating crop and livestock production requires economic
incentives on different administrative scales (county, province
and national)[62]. Subsidies for recycling animal manures can
facilitate arable farmers to replace synthetic fertilizers with
animal manures[63]. Costs and benefits associated with different
interventions need to be economically balanced at different
scales to develop successful solutions (see Interventions 1, 2 and
5). Furthermore, economic interventions preferably account for
equality in implementing solutions such as considering regional
disparities in socio-economic development (Fig. 2). This requires
integrating economic incentives, equality and natural resource
utilization for sustainable food production[62]. However, pro-
gress in this regard is still limited in China[62,64]. Strokal et al.[65]

have developed an approach to identify cost-effective manage-
ment options for reducing coastal eutrophication in China in the
future using the Yangtze basin as an example. They show that
recycling animal manures could be a cost-effective solution to
avoid future water pollution. This finding supports the current
policies promoting manure recycling (see also Policy interven-
tions).

3.4 Policy interventions
Policy interventions are actions to develop information
measures to facilitate the reintegration of crop and livestock
production. In recent years China has introduced several
important policies on livestock production and manure manage-
ment[2,66–68]. Most of these focus on improved manure
treatment and recycling and the reallocation of livestock
production. These policies are effective initiatives for reintegrat-
ing crop and livestock production to reduce water pollution.
However, some policy interventions contribute to reducing
water pollution in a vulnerable region but transfer the pollution
to other regions. An example is a policy on the reallocation of pig
production from watercourse-intense southern regions to the
south-west and north-east provinces. Bai et al.[25] show that this
reallocation may reduce nutrient losses to waters in south-east
China by 27%–48%. However, it also transfers nutrient pollution
to south-west and north-east China and threatens forests and
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grasslands. Future policies should focus on spatial planning,
taking into account the synergies and trade-offs between
agricultural practices and the environment (e.g., waters, soils
and air) under rapid urbanization (Fig. 2). Future policies could
consider increasing the size of arable farms through land transfer
or agricultural services for reintegrating crop and livestock
production. Such policies could facilitate the implementation of
innovative technologies (Technological interventions) taking
into account the social aspects (Social interventions) and the
economy (Economic interventions).

3.5 Environmental interventions
Environmental interventions are actions to improve the
environmental health of natural surroundings to support
sustainable agriculture (Fig. 2). For instance, nutrient recovery
by harvesting aquatic plants or fish from polluted water systems
could help to reduce eutrophication in surface waters[69].
Examples of nutrient recovery by aquatic plants are for instance
found in Chinese aquaculture[69,70] and also show some promise
in crop and livestock reintegration. Aquatic plants that
assimilate large amounts of nutrients can be harvested for the
production of fertilizers and animal feeds[68–70]. In this way,
semi-natural systems such as artificial lakes and wetlands can be
used to trap nutrients and avoid nutrient transport downstream.
Harvesting aquatic biomass can link the ecological restoration of
eutrophic waters by nutrient removal with sustainable animal
and crop production[68]. Environmental interventions can be a
part of synergetic solutions that combine the other interventions
described above.

4 CONCLUDING REMARKS AND
FUTURE OUTLOOK

We present five categories of interventions for reintegrated crop
and animal production. They focus on (1) technological (e.g.,
bringing crop and livestock production closer together through

technology), (2) social (e.g., combining scientific knowledge
from experts and practical knowledge of farmers through
education), (3) economic (e.g., accounting for cost-effective
solutions), (4) policy (e.g., considering synergies and trade-offs
between agricultural practices and the environment in spatial
planning), and (5) environmental (e.g., building on nutrient
recycling and ecological resilience) interventions (Fig. 2). The
interventions can be practiced at different scales (e.g., admin-
istrative such as counties and provinces). For example, at the
farm scale the Science and Technology Backyards can be
instrumental in the transition toward sustainable agriculture. At
the national and local scales, economic incentives (e.g.,
subsidies) can stimulate farmers to transport and apply manures
to arable fields. Furthermore, increasing the size of arable farms
through land transfer may help to reintegrate crop and livestock
production. Such policies could facilitate the implementation of
innovative technologies taking into account the social and
economic interventions. However, reintegration of crop and
livestock production may involve trade-offs. Transportation of
manures over longer distances may increase emissions of
greenhouse gasses and air pollutants. Re-allocation of livestock
farms closer to arable farms may move the pollution from one
place to another.

To avoid trade-offs we call for a better synthesis of existing
knowledge of the five types of interventions in China to develop
an optimistic vision of the future with green agriculture and
clean water. Scientists and stakeholders can collaborate in the
reintegration process through co-operative creation of new
ideas, designs or values by integrating their expertise and tools.
This will help in the co-development of actionable solutions with
the involvement of stakeholders (e.g., local farmers). A successful
transition thus requires the active participation of both scientists
and local farmers. Inter- and transdisciplinary research is
essential to support the societal changes toward “green”
agriculture with reintegrated crop-livestock production and
clean water. China is unlikely to be the only country for which
this is a promising strategy.
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