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Only when all contribute their firewood can they build up a big
fire (众人拾柴火焰高).

Horticultural crops are a major source of high value nutritious
food, and new improved cultivars developed through breeding
are required for sustainable production in the face of abiotic and
biotic stresses, and to deliver novel, premium products to
consumers. However, grower confidence in the performance of
new germplasm, particularly across environmental variability, is
important for commercial adoption and germplasm-environ-
ment matching to optimize production.

Knowledge on the stability of germplasm across environments
for cultivar selection and breeding in horticultural crops is
limited. Normally, evaluation of replicated (usually clonally)
germplasm over several locations is done to generate informa-
tion on germplasm-environment matching, however, these
experiments are expensive in horticultural tree crops due to
the large size and longevity of the experimental unit, the need for
replication within and across sites, and high costs of phenotyp-
ing. In the absence of information for genotype-environment
matching, breeding tends to focus on developing domestic
cultivars for local environments using small experiments with
limited or no overlap of germplasm between programs. In
addition, confidence in the performance of imported germplasm
in exotic regions is generally developed by assuming germplasm

will be stable across environments, or from ad hoc knowledge
accumulated by local risk-taking early adopters.

Genomic prediction might provide an efficient approach for
combining historical data across breeding programs and
selection trials to increase confidence in the performance of
domestic germplasm in local environments, and imported
germplasm in exotic environments. Genomic prediction exploits
linkage between markers and QTLs in a training population
(genotyped using genome-wide marker and phenotyped for
traits of interest) to develop a prediction model that can then be
applied to genotypic data for a selection population to predict
genetic performance in the absence of direct phenotypic data[1].
Usually, with the number of markers being greater than the
number of germplasm entries (i.e., number of markers >>
number of observations), a distribution of marker effects is
assumed to reduce the number of parameters requiring
estimation. A common distributional assumption is Gaussian
(i.e., all loci have small effect). This model is equivalent to the
standard definition of a quantitative trait, and the genomic
realized relationship matrix (GRRM) estimated from the marker
similarities is equivalent to direct modeling of individual marker
effects on phenotype using this distribution[2]. One advantage of
the GRRM is that it can be directly incorporated into established
linear mixed model approaches that are more flexible than the
Bayesian approaches required to model other marker effect
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distributions. Given that the GRRM models track replication of
individual alleles across germplasm, rather than replication of
the whole genomes which occurs when individuals are vegetative
propagated, the models can be used to connect unreplicated
germplasm within and across locations to improve prediction
accuracy in local and exotic environments. Therefore, here we
define the term global genomic prediction to describe the
hypothesis that “historical phenotypic data from multiple
breeding programs are a sample of the experienced environment
and their data sets can be connected through genome-wide
multivariate prediction models”[3].

Several studies have evaluated global genomic prediction in
horticultural tree crops. The first study was undertaken using
data on crispness of apples evaluated across 662 (unreplicated)
entries across three sites in the USA (Wenatchee, WA; St Paul,
MN; and Geneva, NY) that had been genotyped using an 8K
SNP array[4]. A GRRM was estimated from the SNP data, with
each site-by-trait-by-age considered as a unique attribute (sensu
Falconer[5]), and a factor analytic model was used to estimate the
entry-by-attribute covariance matrix. This multivariate
approach allowed the combining of data collected by different
methods. The analysis suggested genomic effects for texture were
highly correlated across the Geneva and Wenatchee sites, but
were less well correlated with effects at St Paul. A subsequent
study in sweet cherry [6] with 597 entries phenotyped for timing
of fruit maturity across four sites (Prosser, WA, USA; Balandran
and Bourran, France; and Forli, Italy) (and two years at each site)
using a similar statistical model estimated high additive genomic
correlation ( > 0.9) among environments and high prediction
accuracy (0.9 to 1.0). In recent unpublished research on peach
with 506 entries phenotyped for sweetness across ten environ-
ments (four sites and multiple years within sites), we observed an
increase of about 20% in prediction accuracy by combining data
into a single analysis compared to only using data from a single
location to train the prediction model.

Several challenges to implementing global genomic prediction
have been encountered. Considerable effort is required to collate,
standardize, and curate datasets contributed from different
sources. Names of genetically identical entries need to be
standardized, particularly if language differences exist. The
identity of SNP loci and alleles across multiple datasets needs to
be well defined, particularly if SNP genotypes are to be imputed
across different genotyping platforms to increase marker
density. Correct description of complex sampling designs in
different environments is required (e.g., Hardner et al.[7]) to
reduce non-genetic phenotypic noise. Often collinearity is

observed in the GRRM, and therefore bending (i.e., replacing
negative Eigen values with slightly positive values) is required
to obtain model solutions. Confounding of population structure
with testing location might also be an issue for some
datasets, with further research is required to develop models
that account for heterogeneity in allele frequencies across
subpopulations.

Several challenges also exist for translation of global genomic
prediction to genetic improvement in practice. While genome-
assisted parental selection (GAPS) using additive effects is a
credible alternative to phenotypic selections[8], performance of
GAPS across different sites/environments remains to be
investigated. For prediction of clonal values (i.e., predicted
phenotype based on total genetic variation captured by
vegetative propagation of superior individuals – which is the
important for identifying elite cultivars), relationship matrices of
non-additive genetic effects are generally more sparse. Thus, the
genetic architecture of non-additive effects is likely to be
estimated with less precision and might be confounded with
additive genetic effects, meaning the accuracy of predicted clonal
values is expected to be lower than for breeding values. While
accuracy of breeding values was not greatly improved by
inclusion of non-additive effects, bias was reduced[9]. Global
genomic prediction supports prediction of performance of
entries into environments in which they have not been tested
through the use of correlated genetic effects, however,
interpretation of these predictions needs qualification for traits
that require expression of other traits (e.g., expression of fruit
texture requires trees to flower and set fruit). Lastly, the
intellectual property of contributors of data and germplasm to
combined datasets needs to be respected and protected.

Global genomic prediction fundamentally relies on collaboration
to leverage, and add to, the latent value of existing data of
individual breeding and selection programs. A preliminary
online portal has been developed with the Genome Database for
Rosaceae to predict peach sweetness at four sites in the USA
(Fresno, CA; College Station, TX; Clarksville, AR; and Seneca,
SC) using genome-wide genotypic data uploaded by any user
into the unpublished model used for the analysis of peach
described above. Although crops from the family Rosaceae have
been the focus of initial development, this approach can be
readily applied to other crops. The approach is being extended
into other traits and larger datasets, improving understanding of
the drivers of genotype-by-environment interaction and
enabling practical tools in genetic improvement for responding
to climate change.
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