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HIGHLIGHTS
� Historic trends in nutrient loading and flux in the
Yangtze River were analyzed.

� Decreasing trends in the concentrations and
fluxes of DSi were found.

� Significant increasing trends in DIN and DIP
concentrations were observed.

� The frequency and area covered by red tide
outbreaks substantially increased.

� Atmospheric deposition become a vital factor
influencing DIN loadings and fluxes.
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GRAPHICAL ABSTRACT

ABSTRACT
Intensifying human activity in the Yangtze River Basin (YRB) has substantially

increased nutrient concentrations in the Yangtze River Estuary, leading to

degradation of the coastal environment. Analysis of nutrient determinations

published over the past 50 years reveals a gradual decreasing trend in the

concentrations and fluxes of dissolved silicate (DSi). However, both dissolved

inorganic nitrogen (DIN) and dissolved inorganic phosphate (DIP) concentrations

have increased significantly since the 1970s. The frequency and area covered by

red tide outbreaks have increased greatly during this period, mainly due to

changes in nutrient supply ratios [i.e., N/P (DIN/DIP), N/Si (DIN/DSi), P/Si (DIP/

DSi)]. A strong correlation was found between the riverine DIN fluxes and the

estimated DIN inputs from the major N sources, particularly fertilizers and

atmospheric deposition. The data provide a comprehensive assessment of

nutrients in the YRB and their ecological impacts and indicate a potentially

significant influence of atmospheric deposition on DIN loadings and fluxes.
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1 INTRODUCTION

Rivers form important connections between the terrestrial and
oceanic ecosystems and about 52% of the nitrogen input to the
oceans (126 Tg$yr–1 N) originates from rivers[1]. In recent
decades the rate at which biologically available N and P enter
the terrestrial ecosystems has doubled worldwide, and the
amounts of riverine N and P inputs to coastal waters have
increased by a factor of more than four[2,3]. The primary
impacts of these changes on estuarine and coastal areas are
severe eutrophication, frequent red tide outbreaks and widening
of hypoxic zones[4,5]. These changes are detrimental to sea
habitats undermining the vital marine ecosystem[6]. Numerous
studies demonstrate that eutrophication is the main explanation
for red tides[7,8] and that red tides require an abundance of
nutrients, particularly N, P and Si. At present, nearly half of the
global population lives near the coast and this population is
continually increasing. Production of N, P and other nutrients
proximal to marine environments has therefore increased
continually, facilitating eutrophication of rivers and offshore
ecosystems[9,10]. This has resulted in low sea oxygen contents,
red tides formed by microalgae, and important losses to the
aquaculture industry[9]. It is therefore essential to study the
impact of nutrients (N, P and Si) in rivers and coastal
ecosystems. The Yangtze is the largest river in Eurasia and is
ranked globally as the third in length (6300 km), fourth in
sediment discharge (0.5 � 109 t$yr–1), and fifth in freshwater
discharge (9.3 � 1011 m3$yr–1)[11]. The drainage area is about 1.8
� 106 km2, about one fifth of the land area of China[12]. The
Yangtze River flows between 24° and 35° N and 90°–122° E.
Along its 6300 km course it passes the glaciers on the Qinghai-
Tibetan plateau in Qinghai, crosses eastward across south-west,
central and eastern China and flows into the East China Sea near
Shanghai.

The Yangtze River Basin (YRB) is economically important and
contributes almost half of Chinese gross domestic product[13].
Intensive anthropogenic disturbances in the region have led to
large changes in riverine nutrient levels and fluxes to the
adjacent East China Sea in recent decades[14,15]. The sources
contributing to riverine DIN loads include biosolids and animal
manures, atmospheric deposition, groundwater influx and
agricultural fertilizers[16–18]. Atmospheric deposition is an
input of particular interest because of its magnitude and the
changing composition of atmospheric nutrients[19]. For example,
the bulk deposition flux of atmospheric N nationally has
increased by nearly 8 kg$ha–1$yr–1 N between the 1980s and the
2010s[20]. In addition, the wet deposition flux of dissolved
phosphates in precipitate has been on average 0.2 kg$ha–1$yr–1 P
across 41 Chinese field stations[21]. These deposited nutrients

have provided the necessary conditions for the rapid growth of
red tides in the Yangtze River Estuary[1,22].

Numerous studies have focused on the YRB and adjacent coastal
seas and assessed riverine nutrient sources[17,23], spatiotemporal
variation in nutrient concentrations and fluxes, and subsequent
nutrient impacts on the coastal ecosystem[2,14,24]. However, most
of these studies have investigated a single nutrient (often N) and
have been limited to data gathered before 2000. Moreover, a lack
of field monitoring data on nutrients in the YRB has necessitated
the use of models in published studies, including the Global
NEWS-2 model[23,25]. Most studies on atmospheric deposition
have investigated nitrogen[26]. In contrast, P has been little
studied using different sampling methods and a lack of
standardization of sampling techniques[27,28]. There are few
monitoring data on P sedimentation.

The current study synthesizes and analyzes data from a range of
published scientific articles to assess the decennial trends in
riverine nutrient concentrations and fluxes in the Yangtze River
since the 1960s. The nutrients included are dissolved silicate
(DSi), dissolved inorganic nitrogen (DIN) and dissolved
inorganic phosphate (DIP). The aim was to analyze the impacts
of trends in nutrient fluxes and concentrations on the estuarine
ecosystem and the response of the riverine DIN flux to major N
sources.

2 RESULTS AND DISCUSSION

2.1 Trends in nutrient concentrations, fluxes and
composition in river water

Annual mean concentrations and fluxes of DIN and DIP in
Yangtze River water were stable during the 1960s and 1970s
(Fig. 1(a–d)) but have increased sharply since then. From the
1970s to the 2000s the concentrations of DIN and DIP increased
6 and 11 times, and their fluxes increased 6.5 and 6.2 times,
respectively. These trends are mainly attributable to increased
agricultural activities (application of fertilizers) and urbanization
(sewage discharges) in the region[31]. There has also been an
increase in P originating from livestock manures due to an
increase in animal production during the early 21st century[25].
In addition, the current application rate of fertilizers in the
region is almost three times that during the 1980s[17].
Conversely, the yearly mean concentration of DSi has decreased
greatly from 105�18 mmol$L–1 in the 1960s to 35�15 mmol$L–1

in the 2000s. This is related to a similar magnitude of decrease in
mean yearly DSi flux which declined by 69% over the same time
period (Fig. 1(e,f)). The increased DIN and DIP in river water
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(Fig. 1(a,c)) is a likely explanation for the observed trends in DSi,
as plankton takes up Si to form cell walls with a proposed C:Si:N:
P molar ratio of 106:16:16:1[32]. Furthermore, confinement of the
river into reservoirs to control flooding and to generate power
has also made a significant contribution to the decline in DSi in
the river[33]. The 1990s are an outlier in the trend of decreasing

DSi over recent decades, with both concentration and flux
showing slight increases relative to the 1980s (Fig. 1(e,f)). This
was driven by high levels of flooding in 1998 which led to
unexpected weathering of bedrock. This released high concen-
trations of DSi, thus increasing its flux. The absence of sufficient
annual data for the 1990s and the inclusion of the outlier value

Fig. 1 Interannual variation in the concentrations and fluxes of DIN, DIP and DSi; (a) DIN concentration; (b) flux of N; (c) DIP concentration;

(d) flux of P; (e) DSi concentration; (f) flux of Si. Numbers above the bars are the number of yearly data points, and the error bars indicate standard

deviation. The yearly mean values of DSi, DIN, and DIP concentrations and fluxes in the river for the period between 1958 and 2010 were

collected from published literature[2,14,17,24,29,30]. All data were gathered from Datong station located at the lower reaches of the river (30°60′ N,
117°11′ E). The DIN concentrations and fluxes were obtained by summing the amounts of ammonium (NH4

+), nitrite (NO2
–) and nitrate (NO3

–)

ions; DSi is mainly silicate (SiO3
2–); and DIP is phosphate (PO4

3–).
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for 1998 explain the deviation from the long-term trend for this
decade[34].

This analysis shows large changes in the observed N:P:Si nutrient
ratios in the river over time (Fig. 2). A high interannual
variability in N and P nutrients was observed, with the N:P
ratio showing an increasing trend from 70 in 1964 to 193 in 1998
followed by a sharp decrease to 80–100 during 2001–2003
(Fig. 2(a)). The dominant factor affecting the DIN load in the
region is most likely the use of chemical fertilizers[35]. A
significant decline in the application of fertilizer-N after 2000[17]

is likely to be responsible for the observed decrease in N/P ratio
after 2000. This also suggests that high N/P ratios originate from
large inputs of N compounds.

These data may indicate future trends. More attention has
focused on the control of P in sewage treatment plants
compared to N and the N/P ratios in water from the cities
have increased[36]. The recent trend toward the use of chemical
fertilizers-N in the region, driven by the rapidly increasing
population and increasing demand for foodstuffs[37] will likely
increase the N/P ratio. The N/P ratio in terrestrial ecosystems
will also likely increase due to high fluxes of atmospheric N
deposition which recent studies have shown to be an order of
magnitude higher than P deposition fluxes[21]. Similar trends
were observed in the N/Si and P/Si ratios, both of which
increased exponentially between 1964 and 2002 (p < 0.001 and
p < 0.01, respectively) (Fig. 2(b)), with annual rates of increase at
0.09 and 0.08, respectively. A rapid increase in dam construc-
tion (162 dams with water storage capacity > 0.1 km3) and
expanded fertilizer usage in the region[15,17,37] suggest that
further increases in the N/Si and P/Si ratios are likely in the
future.

2.2 Relationships between N inputs from major N
sources and riverine DIN loads and fluxes
This study focuses primarily on major N sources (i.e., sewage
sludges, manures and atmospheric deposition over water bodies
and fertilizers). We used the percentage contribution of each
source to total DIN loads in the region following the study of Xu
et al.[17]. A constant contribution from each source is assumed
within each decade between the 1970s and 2000s. The DIN load
(expressed in mmol$L–1) from each of the major sources was
calculated successively by multiplying the yearly mean DIN
concentration for the period from 1972 to 2000 by the source
contribution fraction (Fig. 3(a)). Two years were not included in
this calculation (1998, an extreme flood year, and 2006, a
drought year) to avoid potentially large outliers in DIN loads.
The contribution of each N-source to the overall DIN load
increased between 1970 and 2009 with average values of
13.4 mmol$L–1 for fertilizer N, 19.8 mmol$L–1 for sewage N,
20.8 mmol$L–1 for manure N and 20.3 mmol$L–1 for atmospheric
N. Based on these results we suggest that DIN concentrations in
the estuarine and coastal waters would also show positive
responses to riverine DIN inputs from the same N sources. The
stable long-term interannual variation in runoff at Datong
Station (from 1950 to 2000)[14] and the large spatial variation in
nutrient concentrations in the Yangtze River estuarine and
coastal regions[24] made it a good location for the study of DIN.
Here, we analyzed the relationships between different N sources
and the annual riverine N fluxes determined at Datong Station.

The relationships between N sources and annual riverine N
fluxes reflect the impact of corresponding N sources on DIN
loads in estuarine and coastal waters. Statistically significant
linear relationships were found between the riverine N
fluxes and several variables, namely fertilizer N (R2 = 0.93),

Fig. 2 Trends in ratios of (a) N/P (DIN/DIP) and (b) N/Si (DIN/DSi) and P/Si (DIP/DSi) in Yangtze River water from 1964 to 2002.
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atmospheric N (R2 = 0.95), sewage N (R2 = 0.94) and manure N
(R2 = 0.95) (Fig. 3(b)). These relationships indicate that the
inputs from these N sources may be used as predictors of
riverine DIN flux. It should be noted that the impact of N2

fixation (the sum of symbiotic fixation by legume crops and non-
symbiotic fixation by microorganisms) was not considered in
this study because only a weak relationship (R2 = 0.54) has been
found between N2 fixation and riverine N load[16]. Based on
multiple linear regression analysis, the relationship between the
four main sources of nitrogen (fertilizer N, X1; sewage N, X2;
manure N, X3; and atmospheric N, X4) and the riverine N fluxes
was shown as Y ¼ 0:092þ 0:029X1 – 0:014X2 þ 0:02X3þ
0:016X4. These results suggest that fertilizer N and atmospheric
N deposition are two most important contributors of the riverine
N fluxes.

The YRB has experienced rapid economic development and

population growth since the 1990s, leading to high emissions
and tropospheric concentrations of reactive N compounds (e.g.,
NH3 and NO2)

[38,39]. Significant N discharges into the estuary
and the adjacent East China Sea have had negative ecological
impacts over the past 30 years[40]. Wang et al. used a mass
balance model to estimate that the contribution of DIN
deposition to total N inputs in the region increased from 3%
in 1980 to 5% in 2000[41]. Several recent studies have provided
further evidence of increasing N pollution from anthropogenic
sources. Chen et al. have also reported that atmospheric DIN
deposition accounted for approximately 13% of human-
controlled N inputs during the period from 1980 to 2012[35].
Xu et al. used principal component analysis to estimate that
atmospheric deposition accounted for 25% to 28% of the total
riverine DIN load between 1972 and 2010[17]. About 82% of the
total N deposition in the region exceeded the critical N load in
the seminatural ecosystem of the basin[26]. Atmospheric N

Fig. 3 (a) Temporal trends in different DIN inputs (expressed as mmol$L–1) to the Yangtze River for the period 1970–2009 and (b) relationships

between variables (expressed as mmol$L–1) and fluxes of N (106 t$yr–1). Atmospheric N refers to the deposition over water bodies.
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deposition may become an even more important factor in N
cycling in the basin and the adjacent coastal ecosystem following
the implementation of a regional plan (see Section 2.3).

2.3 Impact on the estuarine ecosystem and adja-
cent seas
The expansion of red tides in the Yangtze River estuaries and
nearby seas has been well documented since the 1980s (Fig. 4).
The observed annual frequency of red tide outbreaks increased
from 19 to 116 events between the 1970s and 2000s and
increased in geographical extent from 0.4 to 42.1 km2. The main
driver for this is a change in N:P:Si nutrient ratio and flux
(Fig. 1(a–f) and Fig. 2(a,b)). The increased presence of phyto-
plankton biomass in the water is indicated by the chlorophyll a
(Chl a) concentration which increased by 3.9 times from 1984
(2.2 µg$L–1) to 2002 (8.6 µg$L–1)[2]. This indicates a strong
correlation between the nutrient composition and outbreak
frequency of red tides. In addition, exponential increases in the
N/Si and P/Si ratios (Fig. 2(b)) have changed the species
composition of the red tides. A higher N/Si ratio impairs the
development of noxious red tide flagellates while an increased P/
Si ratio is closely related to non-siliceous algal blooms and the
eutrophication of coastal waters[42]. The analysis of algal species
in the Yangtze River estuaries shows that the percentage of
Skeletonema costatum (siliceous alga), the dominant species in
the 1980s, decreased from 33% to 24% by 2000–2002, while the
non-siliceous alga Prorocentrum dentatum simultaneously
became a dominant species, increasing from 12.5% to 36% of
the algal population[14]. Exceptionally high N/P ratios (Fig. 2(a))
may lead to the growth of phytoplankton deficient in P and,
together with the reduced silica discharge (Fig. 1(f)), may
significantly alter the structure of the planktonic food-web in the

East China Sea. The estuarine ecosystem is also greatly affected
by the increased nutrient loadings which lead to oxygen
depletion (hypoxia) in the deeper waters[43]. This effect has
become noticeable in the mouth of the river where the minimum
O2 concentration has further declined and the affected zone has
increased in area[44].

The Yangtze River Delta has comprehensively developed and
urbanized in recent decades. According to the regional plan for
the Yangtze River Delta (2009–2020), this area is projected to
become a central gateway to the Asia-Pacific region and a major
finance, information, service and manufacturing center. This
necessitates further industrialization and urbanization which
will likely support further economic and population growth.
Recent construction of numerous dams has reduced nutrient
loads (particularly DSi) in the estuary[14]. However, increased
economic activity and population will inevitably increase DIN
and DIP loads in the river via further increases to industrial and
municipal wastewater discharges alongside additional fertilizer
usage and based on these factors it may be predicted that
eutrophication of the river will likely continue.

3 CONCLUSIONS

The main findings of this study are as follows.

(1) Distinct interannual variations in nutrient concentrations
and fluxes were found in the Yangtze River. These include
sharply increasing trends in DIN and DIP and a gradually
decreasing trend in DSi, mainly due to increased industrial and
municipal wastewater drainage, fertilizer use and dam construc-
tion. Changes in DIN concentrations may also be related to an

Fig. 4 Trends in number and area of red tide incidents in the Yangtze River Estuary and its adjacent seas over the last five decades. Red tide data
for the period from 1933 to 2009 were obtained from published reports[2,3,14] and from the East China Sea environmental monitoring center.

564 Front. Agr. Sci. Eng. 2021, 8(4): 559–567



increase in animal manures and atmospheric N deposition
during the last decade.

(2) Red tide outbreaks in the estuary and its nearby seas
increased dramatically between the 1970s and 2000s, both in
number (19 events in the 1970s to 116 in the 2000s) and in
geographical extent (0.4–42.1 km2). Given the continuing
increases in anthropogenic N and P inputs into the river and
continuing dam construction the occurrence of red tides is

expected to further increase.

(3) Highly significant positive correlations were found between
the major sources of DIN inputs and riverine N fluxes. These
results indicate that integrated N inputs, especially the applica-
tion of fertilizer N and atmospheric N deposition, are good
predictors of riverine DIN fluxes, and that these will likely have
an increasingly important role in N cycling in the coastal
ecosystem in the future.
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