

Contents lists available at ScienceDirect

Engineering

journal homepage: www.elsevier.com/locate/eng

Research Applied Geophysics—Article

广域电磁法和拟流场法精细探测技术——以井工一矿水害探测为例

何继善^{a,b,c}

^a Key Laboratory of Metallogenic Prediction of Nonferrous Metals and Geological Environment Monitoring of Ministry of Education, Central South University, Changsha 410083, China

^b Key Laboratory of Non-Ferrous Resources and Geological Hazard Detection, Central South University, Changsha 410083, China ^c School of Geosciences and Info-Physics, Central South University, Changsha 410083, China

ARTICLE INFO

Article history: Received 31 July 2017 Revised 28 January 2018 Accepted 7 September 2018 Available online 18 September 2018

关键词

广域电磁法 拟流场法 采空区 富水性 精细探测

摘要

井工一矿存在严重的老空区和水害。以往的单一勘探方法,如地震法、直流电法、音频大地电磁法、可控源音频大地电磁法、瞬变电磁法等,均未能探明老采空区范围和水害赋存情况。为了解决这个难题,联合采用广域电磁法和井-地拟流场法的三位一体立体式探测技术,并利用三维反演电阻率资料精准获取富水区域和采空区的位置,确定了不同层位水的连通性,为井工一矿的安全生产提供了可靠的技术保障。结果合理、成效显著,释放了近4km²的可采面积。

© 2018 THE AUTHORS. Published by Elsevier LTD on behalf of Chinese Academy of Engineering and Higher Education Press Limited Company This is an open access article under the CC BY-NC-ND licenses (http://creativecommons.org/licenses/by-nc-nd/4.0/).

1.引言

矿井水害一直以来都是严重影响煤矿安全开采的重要因素,煤矿矿井突水、透水事故已经造成严重的人员 伤亡和巨大的财产损失。我国煤矿矿井水害的种类繁 多,矿井水文地质工作是保证煤矿安全生产建设的一项 极其重要的基础技术工作。因此做好矿井水文地质工 作,掌握矿井水文地质情况,研究和解决煤矿安全开采 中遇到的水文地质问题,防治水害,保护及利用地下水 资源,是当前研究的一项重要课题。

中煤平朔煤业有限责任公司的井工一矿存在上部煤 系地层水、小煤窑积水、奥灰水等,在矿井开采和资源 整合工作中,可收集到的原周边小窑采空区赋存范围及 积水资料不全,存在着严重的安全隐患[1,2]。

为查明井工一矿内老空区范围及积水情况;查明断 层、岩溶陷落柱富水性及主采煤层顶板充水含水层的富 水性,曾经先后在矿区采用了综合物探测井、地面电阻 率法、瞬变电磁法(transient electromagnetics, TEM)、 可控源音频大地电磁法(controlled-source audio-frequency magnetotellurics, CSAMT)、地震勘探、高密度电法等 物探方法,这些方法取得的资料成果对井工一矿矿区可 能存在的采空区范围有了基本反映,但限于分辨率,具 体边界范围以及采煤巷道、陷落柱、断层等可能成为导 水通道的各种构造尚未查清;可采煤层还存在奥灰水带

E-mail address: 382238911@qq.com

^{2095-8099/© 2018} THE AUTHORS. Published by Elsevier LTD on behalf of Chinese Academy of Engineering and Higher Education Press Limited Company This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/). 英文原文: Engineering 2018, 4(5): 667–675

引用本文: Jishan He. Combined Application of Wide-Field Electromagnetic Method and Flow Field Fitting Method for High-Resolution Exploration: A Case Study of the Anjialing No. 1 Coal Mine. Engineering, https://doi.org/10.1016/j.eng.2018.09.006

压开采的问题,奥灰岩溶水的突水隐患也威胁着采矿生 产的安全运行。

本次工作通过广域电磁系统采集高精度电磁法数 据,对三维海量数据进行精细反演,得到测区电阻率的 空间分布,在充分了解矿区的区域构造地质的基础上, 根据电阻率分布特征精准分析了富水区域和采空区的位 置。首次将拟合流场差值法应用于煤矿水害探测,采用 井中供电的方法提高采空区和富水区的响应,进行高精 度的电场测量。井-地拟流场差值法测出水体产生的电 场分布异常,推断出水体的范围和联通关系。

通过本次工作,准确地获得地下采空区和水害的分 布,释放了近4 km²的可采面积,解释结果得到了生产 实践验证,研究成果满足煤矿生产需要,为井工一矿的 安全生产提供了可靠的技术保障。

2. 勘探方法原理

2.1. 广域电磁法

广域电磁法是笔者[3,4]提出的一种全新的人工源频 率域电磁测深法,该方法从场的统一性出发,将"近 区""过渡区"和"远区"有机地统一起来,定义了广 域视电阻率,改善了非远区的畸变效应,使得测深能在 广大的、不局限远区的区域进行,在同等收发距上勘探 深度增大。

广域电磁技术可以利用接地偶极子作为人工电流 源,产生变化电场或磁场(图1),这种接地偶极子源能 够发射不同频率的电磁波,在接收端,视电阻率可通过 观测电场或磁场来计算,更具体地说,广域电磁技术只 需要电场或磁场一个分量即可实现对地测深探测。

图1是接地偶极子半空间模型。图中dL表示电偶极 子的长度, ρ, μ, ε分别是电阻率、磁导率、介电常数, φ 为柱坐标系统中的方位角,相对介电常数ε和相对磁导 率μ均为1,柱坐标系统中电磁场所有分量如下[5]:

图1. 柱坐标系中接地偶极子半空间模型示意图。

$$E_r = \frac{\rho I dL \cos\varphi}{2\pi r^3} \left[1 + e^{-ikr} (1+ikr) \right] \tag{1}$$

$$E_{\varphi} = \frac{\rho I dL \sin\varphi}{2\pi r^3} \left[2 - e^{-ikr} (1 + ikr) \right]$$
(2)

 $E_z = 0 \tag{3}$

$$H_r = -\frac{IdL}{4\pi r^2} \sin\varphi [6I_1K_1 + ikr(I_1K_0 - I_0K_1)]$$
(4)

$$H_{\varphi} = \frac{IdL\cos\varphi}{4\pi r^2} I_1 K_1 \tag{5}$$

$$H_{z} = -\frac{3IdL}{2\pi k^{2}r^{4}}\sin\varphi \left[1 - e^{-ikr}\left(1 + ikr - \frac{1}{3}k^{2}r^{2}\right)\right]$$
(6)

式中, *I*为发射电流; i和e分别表示虚数符号和自然底数; *E_r*, *E_q*和*E_z*分别表示*r*, φ 和*z*方向的电场分量; *H_r*, *H_q*和*H_z*分别表示*r*, φ 和*z*方向的磁场分量; *k*是波数, $k^2 = -i\omega\mu/\rho$, ω 是角频率; *I_x*和*K_x*分别是以i*kr*/2为虚宗量的一阶和二阶贝塞尔函数。

E_r, *E_φ*, *H_r*, *H_φ*和*H_z*都含有地下电阻率ρ的信息, 因此可以通过测量它们中的任何一个并求解式(1)至 式(6)中的相应公式来获得视电阻率。

广域电磁测深是采用地面上的电流偶极子源,通过测量水平电场的x分量 E_x ,被称为 $E - E_x$ 广域电磁法,在野外工作中得到了广泛应用[3,4]。

用式(1)和式(2)经过坐标变换 $E_x = E_r \cos \varphi - E_{\varphi} \sin \varphi$,得到

$$E_x = \frac{\rho I dL}{2\pi r^3} f_{E-E_k}(ikr) \tag{7}$$

式中

$$f_{E-E_{\nu}}(ikr) = 1 - 3\sin^2 \varphi + e^{-ikr}(1 + ikr)$$
 (8)

 $f_{E-E_k}(ikr)$ 由频率、电阻率和收发距组成,反映了地下电磁波的传播特性,被称为广域电磁法的 $E - E_k$ 电磁响应函数。公式中 $-ikr = (-1-i)r/\delta$, δ 为趋肤深度, E_x 可通过M、N两点之间的电位差获得,因此两点间的电位差为

$$\Delta V_{\overline{MN}} = E_x \overline{MN} \tag{9}$$

式中, MN为M、N电极之间的距离, 因此

$$\Delta V_{\overline{MN}} = \frac{\rho I dL}{2\pi r^3} f_{E-E_x}(ikr)\overline{MN}$$
(10)

引入装置系数 $K_{E-E_{x}}$:

$$K_{E-E_k} = 2\pi r^3 / \left(dL \overline{MN} \right) \tag{11}$$

可获得E-Ex广域电磁视电阻率公式如下:

$$\rho_{a}(\rho) = K_{E-E_{k}} \frac{\Delta V_{\overline{MN}}}{I} \frac{1}{f_{E-E_{k}}(ikr)}$$
(12)

式(12)的右边也包含地下介质的电阻率,可通过迭代 算法获取视电阻率,求解方法见王顺国和熊彬[6]的文 章。在迭代法中,求解非线性电阻率方程需要一个初始 值,将电磁场的一个分量与其他参数相结合,会得到新 的电阻率值,如果这两个值的相对误差小于1%,则后 一个值可以作为最终视电阻率。

2.2. 拟流场法

拟流场法利用水流场和电流场的相似性,适当地布 置场源建立人工电流场,使得渗流场与电流场具有相比 拟的边界条件。关键在于如何建立人工电流场[7-10]。

水的运动可以用流速**u**来表述。在直角坐标系中, 它沿坐标轴的三个分量是**u**_x、**u**_y、**u**_z。水是不可压缩流 体,其流动满足连续性方程:

$$\nabla \cdot \boldsymbol{u} = \boldsymbol{0} \tag{13}$$

式中, ∇为哈密尔顿算符。

考虑u无涡流场,必有流速势函数H存在,使得

$$\boldsymbol{u} = -\nabla H \tag{14}$$

式中,"--"号表示速度指向势降落的方向。式(14)说 明流速与势降落的梯度相等。

式(14)代入式(13)有

$$\nabla \cdot (\nabla H) = \nabla^2 H = \mathbf{0} \tag{15}$$

式中, ∇²为拉普拉斯算符。式(15)说明,无涡流场的 流速势满足拉普拉斯方程。如果场中的某些地方水流不 够畅通,比如通过孔隙介质的流动,此时式(14)中应 增补系数*k*。

$$u = -K\nabla H \tag{16}$$

式中,*K*称为渗透系数,式(16)就是水力学中著名的达西定律。

在流体与其他物体的边界上,如果该边界不透水,则水不能流过此边界,即

$$\frac{\partial \boldsymbol{u}}{\partial n} = \boldsymbol{0} \tag{17}$$

式中, n表示边界的法线方向。如果边界能够透水, 根据连续性方程(13), 边界上流速u的法向分量应当连续, 即 $u_{n1} = u_{n2}$, 其中, 下标1、2分别指代边界的两侧。

描写电流分布状况的是空间某点的电流密度J。考 虑恒定电流场,在场源外的空间,J满足连续性方程∇·J =0。

恒定电流场是无旋的,存在电场势函数v,它与电流密度通过如下微分形式的欧姆定律相联系: $J = \sigma E = -\sigma \nabla V$,式中, σ 为介质的电导率。天然水电导率变化在 0.01~10 s·m⁻¹,主要视其含离子的浓度而定,一般可取 1 s·m⁻¹; *E*为电场强度,即电势的负梯度。电流密度与 电势降落的梯度成正比。可以认为天然水体的电导率为 常数,将上两式相代,有 $\nabla^2 V = 0$,即电势V也满足拉普 拉斯方程。

在两种介质的分界面上,电流密度的法向分量连续,因此

$$J_{n1} = J_{n2} \text{ or } \frac{\partial V_1}{\partial n} = \frac{\partial V_2}{\partial n}$$
 (18)

如果有一侧的介质是绝缘体,完全不导电,则有

$$J_n = 0 \text{ or } \frac{\partial V}{\partial n} = 0 \tag{19}$$

由此可见,无涡水流场和恒定电流场之间,水流场 的流速和电流场的电流密度之间,在数学物理上存在相 似之处(表1)。这些相似性构成了流场拟合原理的基础。

3. 试验区地质和地球物理概况

3.1. 地质概况

试验区位于平朔矿区中部,马关河以西,地表大部 分被新生界地层覆盖,属典型的黄土丘陵地貌。井田内 地层产状比较平缓,一般在10°以下。井田内煤系地层 为石炭、二叠系地层,以砂岩粉砂岩为主,黏土岩次之, 煤层的垂向分布赋存在煤层地层中部,集中出现在上石 炭系太原组和下二叠系山西组。

本次勘探涉及4号、9号和11号煤层: ① 4号煤层位 于石炭系上统太原组,以亮煤为主,暗煤次之,具弱玻 璃光泽,具均一结构,碎块状,夹矸为泥岩。顶板为标 志层K₃砂岩,煤厚约10.47 m。② 9号煤层位于石炭系上 统太原组,以亮煤为主,暗煤次之,具弱玻璃光泽,内 生裂隙发育,碎块状,夹矸为泥岩,含黄铁矿结核,煤 厚约13.75 m。③ 11号煤层位于石炭系上统太原组,以半 亮煤为主,条带状结构,内生裂隙较发育,煤厚约3.73 m。

3.2. 主要含水层和隔水层

井田的主要煤层位于太原组,而石炭-二叠系含水 层主要发育有K₆、K₄、K₃、S₂、S₁五层砂岩(表2),K₆ 和K₄砂岩分别位于二叠系上石盒子组底部和下石盒子组 底部,为4号煤层的间接充水含水层;K₃砂岩位于二叠 系下统山西组底部,是4号煤层的直接充水含水层; S₂ 砂岩位于4~7号煤之间,S₁砂岩位于7~9号煤之间,五层 砂岩构成了影响煤层开采的主要含水层段,对煤矿开采 带来了隐患。

主要隔水层为石炭、二叠系泥岩,主要分布于碎屑 岩含水层之间,岩性以页岩、泥岩为主。

3.3. 物性特征

电法勘探的物理基础是探测目标与周围物体的电性 差异。根据物性调查资料(表3),本区含煤地层为石炭、 二叠系地层,煤层、围岩、富水区的电阻率差异明显。 因此,如果采空区含水,其电阻率将非常低。

表1 水流场和电流场的相似性

Flow field	Current field
Velocity u	Current density J
Flow continuity $\nabla \cdot \boldsymbol{u} = 0$	Current density continuity $\nabla \cdot J = 0$
Hydraulic potential satisfies the Laplace equation $\nabla^2 \phi = 0$	Electric potential satisfies the Laplace equation $\nabla^2 V = 0$
Velocity (<i>u</i>) is proportional to the hydraulic gradient $\boldsymbol{u} = -\nabla H$	Current density (J) is proportional to the potential gradient $J = -\sigma \nabla V$
Permeability coefficient k	Conductivity σ
Boundary condition: normal component of velocity continuation	Boundary condition: normal current density continuation
$\boldsymbol{u}_{n1} = \boldsymbol{u}_{n2}$ (permeable boundary)	$J_{n1} = J_{n2}$ (conductive boundary)
Or $u_n = 0$ (impermeable boundary)	Or $J_n = 0$ (insulation boundary)
The streamlines and the equipotential surfaces are orthogonal everywhere	The current line and equipotential surface are orthogonal everywhere

表2 区内地层水文地质特征

Unit	iit Markar bada	Formation thickness (m)		Hydrogoological characteristics	W-41
formation		Range	Average	e Hydrogeological characteristics	
_		3–20	13	Qpal, porous diving	Medium
Q_{2l-3x}		6-80	20	Clay, calcareous concretion, water-resisting layer	Low
N_{2b}		10–25	15	Clay, calcareous concretion, water, resisting layer	Low
P_{2s}	K_6	_	42	The lithology is mainly of sandy mudstone, mudstone, siltstone, and fine-coarse-	Low
P_{1x}	K ₄	65–95	76	grained sandstone. K_6 and K_4 are coarse-grained sandstones. These rocks appear in the valleys. The aquifer is of sandstone, with fracture development and good permeability. Most sections of the district do not contain water, except for the synclinal axis	
P _{1s}	K ₃	41–98	62	The lithology of this area is of sandy mudstone and mudstone-intercalated sand- stone. The aquifer is of sandstone. There is water overflow in the 803 hole in the shaft of the sync line ($q = 0.34 \text{ L} \cdot (\text{s} \cdot \text{m})^{-1}$). Most of the other areas are weak in water abundance. The q of hole 406 is $0.041-0.0051 \text{ L} \cdot (\text{s} \cdot \text{m})^{-1}$	Low to medium
C _{3t}	K ₂	68–109	80	The lithology is mainly of sandy mudstone, mudstone, and coal seam and interca- lated sandstone. The aquifer is of sandstone, and is rich in water, with $q = 0.0034 - 0.0056 \text{ L} \cdot (\text{s} \cdot \text{m})^{-1}$	Low
C _{2b}	K ₁	31–54.69	39	The lithology is mainly of sandy mudstone, mudstone, siltstone, intercalated lime- stone, etc., with $q = 0.000042 \text{ L} \cdot (\text{s} \cdot \text{m})^{-1}$	—
O ₂		_	360	The lithology is of limestone and the area is rich in water, with $q = 0.023-0.028$ L·(s·m) ⁻¹	Low to medium

q is the water content.

7	2	c
1	э	с

表3 地层电阻率特征

Strata	Main lithology	Resistivity $(\Omega \cdot m)$
С	Sandy loam, sandy soil, loess and gravel	30-180
Р	Medium coarse quartz sandstone, sandy mudstone, siltstone, coarse sand rock	50-150
С	Mudstone, sandy mudstone, siltstone, middle grained sandstone	70–165
0	Limestone, dolomitic limestone, clastic limestone	75–180

4. 勘探施工布置

4.1. 广域电磁法施工参数

广域电磁法施工示意图如图2所示,发射源位于测区北部,发射电缆长度约1000 m,发射电压为700~800 V,发射电流为120 A,最小收发距为4500 m,最大收发距为5900 m,测量频率范围从8192 Hz到0.75 Hz,频 点数40个,适合探测从地表到地下2 km范围的目标体。

4.2. 井 - 地拟流场法施工参数

井-地拟流场差值法的工作布置如图3所示,系统分

图2.广域电磁法施工示意图。

为两部分:发射装置和测量装置,测量端以井口为中 心,沿8个方向布置测量仪器。测量分两次进行,第一 次是将发射极的一端A1放置于井口,另一端B放置无穷 远处(离井口3000 m以上),发射信号,测量各处的电 位差;第二次测量时发射极的一端A2改变位置,放置 到井下水里,另一端B仍放置于无穷远处,发射信号, 测量系统测量第二次的电位差。将第一次测得的电位差 作为正常场,根据两者的差值,可以得到水体产生的电 场分布异常,从而推断出水体的范围和联通关系。

测网布置平面如图3(b)所示。以井为圆心,布置 5个同心圆测网,同心圆之间距离100m,每个同心圆上 布置8个测点,测量*MN*=20m。

4.3. 地 - 井联合精细探测

测网如图4所示,广域电磁法测网东西长约2320 m, 南北长约400 m,网格为40 m×40 m,共1911个测点。 布置了10个井-地流场差值法。

5. 资料处理

5.1. 广域电磁法数据处理

以收集到的电法资料为基础,结合区域地质信息和

图3. 井地拟流场法施工示意图(a)和测网(b)。

地层岩性的电性资料,建立测区的地电模型。对所采集 的广域电磁法实测数据进行预处理,进行二维连续介质 反演成像。然后以二维反演成像的结果为基础,再进行 三维层状介质反演成像。基于三维反演成果,在三维电 阻率数据中进行地质分层。成果推断解释是主要依据广 域电磁测深法测得的视电阻率剖面图,结合现有的地 质、物性资料对比分析,揭示地下地质、地球物理特征。

通常情况下,地下电阻率特性与含水情况呈负相 关,电阻率相对高的区域一般贫水或者无水,富水区域 电阻率呈一般相对低阻。基于三维反演电阻率数据形成 了4号、9号和11号煤所在深度的电阻率平面图,限于篇

图4. 地-井联合精细探测工作布置图。

幅,这里仅展示4号煤的电阻率平面图(图5)。

图5为广域电磁法4号煤层电阻率平面图,图中深蓝 色表示超低电阻率,浅蓝表示低电阻率,黄色表示中等 电阻率,红色表示高电阻率。结合物性资料和已知地质 资料,超低电阻率区域为富水区,低电阻率为一般富水 区,高电阻率一般为不含水采空区。

图6为广域电磁法4号煤层富水异常图,图中深蓝色 区域表示强富水区,浅蓝表示中等富水区域,黄色表示 弱富水区域,从全区看,4号煤层的主要富水区有两块, 一块位于测区的西南,为I号富水区,根据矿方提供的 资料,该处生产矿井甚多,并且存在多处废弃小窑破坏 区,所以推测该处的富水异常是由于采空区充填水后引 起的异常。另一富水异常区为II号富水区,位于测区的 东部偏北,但是总体上该处异常弱,为弱富水区。

同理,我们可以得到9号煤层和11号煤层富水异常 图(图7和图8)。

图7为广域电磁法9号煤层富水异常图。9号煤层的 主要富水区位置与4号煤层富水区相似,也分两块,一 块位于测区的西南,为I号富水区,但是与4号煤层的 富水区域相比,面积变小了,富水强度也比4号煤层小; 另一富水异常区为II号富水区,位于测区的东部偏北,

图5.4号煤层广域电阻率平面分布图。

图6. 广域电磁法4号煤层富水异常图。

总体上该处异常弱,为弱富水区。

图8为广域电磁法11号煤层富水异常图,11号煤层 的富水性更不明显,也分两块,一块位于测区的西南, 为 I 号富水区,相比9号煤层富水区面积更小,强度更 小;另一富水异常区为II 号富水区,位于测区的东部偏 北,总体上该处异常非常微弱,为极弱富水区。

5.2. 井 - 地拟流场法数据处理

首先根据测量的电位差计算出相应的视电阻率,并 按照A极(图3)的位置成不同深度的平面图,可以对 地电特性进行分析与解释。然后将A极位于各深度的视 电阻率数据除以A极位于地表的视电阻率数据,得到 的归一化电阻率图,可以消除地表电阻率变化而引起 的异常。

6. 勘探成果分析

PJY验4井中布置了4个深度的A极,分别是0m(井口)、100m、160m和220m,4号煤层位于220m深度, 通过不同深度的视电阻率(图9)分布可以分析含水异 常情况。A极在100m深度和160m深度的视电阻率平面 图形态变化很小,但是A极在220m深度的视电阻率平 面图形态上有了比较大的变化,为了更进一步研究,将 A极位于各深度的视电阻率除以A极位于地表的视电阻 率,得到各深度归一化电阻率图,可以消除地表电阻率 变化而引起的异常。视电阻率归一化平面图如图10所 示。100m深度和160m深度与地表电阻率比值图相比几 乎没有变化,但是220m深度的比值图上发现了明显的 低阻条带,该条带呈北西—南东走向,推测该条带的异 常与含水有关。

图11显示了安家岭1号煤矿基于广域电磁和地-井拟 流场法的采空区及水分布情况。危险区:位于广域电磁

图7. 广域电磁法9号煤层富水异常图。

图8. 广域电磁法11号煤层富水异常图。

0 m 200 m 400 m 600 m

图9. PJY验4井-地流场法A极在0m、100m、160m和220m时的视电阻率。

0 m 200 m 400 m 600 m

图10. PJY验4井-地流场法A极位于不同深度的视电阻率归一化平面。(a) 100 m; (b) 160 m; (c) 220 m。

图11. 采空区和水分布探测成果图。

法测区西南部,从广域电磁法的结果看,局部位置富水 可能性很大,应引起注意。可疑区:通过流场法发现测 区东北部4106主运巷以北有较大范围低电阻率分布带, 该分布带先南北走向,再转向北东走向。这个分布带的 低电阻率与含水性的相关性值得进一步研究。在此基础 上,对调查区水文地质特征进行了详细的了解,释放了 近4 km²的矿区进行开发,这些成果也在实际煤炭生产 中得到了验证。

7.结论

(1) 采用地面-井中多方法组合、三位一体的立体 式探测技术,准确地获得地下采空区和水害的分布,释 放了近4 km²的可采面积,为井工一矿的安全生产提供 了可靠的技术保障,解释结果得到了生产实践证明,研 究成果满足煤矿生产需要。

(2)基本查明了测区主要煤层4号煤层、9号煤层和 11号煤层顶板砂岩的富水异常范围,富水异常区主要分 布在广域电磁法测区西南部。 (3)后续生产过程中,建议避开广域电磁法解释的 富水区域,不要越过警戒线。

References

- Nan YH, Xu NX, Wu X, Bai ZK. Back-analysis of rock mechanical parameters on numerical simulation of mining subsidence in Anjialing No. 1 Coal Mine. Coal Technol 2015;34(1):109–12.
- [2] Fan JF, Yang Q, Ge PF. Hazard identification and safety measures in Anjialing Open-pit Mine goaf. Opencast Mining Technol 2015;4:59–61.
- [3] He JS. Wide field electromagnetic sounding methods. J Cent South Univ 2010;41(3):1065–72.
- [4] He JS. Wide field electromagnetic method and pseudo-random signal method. Beijing: Higher Education Press; 2010. Chinese.
- [5] Ward SH. Electrical, electromagnetic, and magnetotelluric methods. Geophysics 1980;45(11):1659–66.
- [6] Wang SG, Xiong B. Numerical calculation methods of wide field apparent resistivity. Comput Tech for Geophys Geochem Explor 2012;34(4):380–3.
- [7] He JS. "Flowing field" technology to detect surge leakage in dams. Copp Eng 2000;1:5–8.
- [8] He JS. The research on the flow field method to detect surge leakage in embankment. In: Zhou GS, Ma Y, Zhou J, Li HZ, Zhao JF, Wang YN, et al, editors. Proceedings of China Association for Science and Technology; 2000 Sep 17–20; Xi'an, China. Beijing: China Science and Technology Press; 2000. p. 758–9. Chinese.
- [9] He JS, Zou SJ, Tang JT. The distribution experiment of flowing field method to detect surge leakage in embankment. China Flood Drought Manage 2008; S1:132–5. Chinese.
- [10] Zou SJ, HeJS. The research on theory and application of the flow-fittingmethod for detection of piping and leakage in dykes and dams [dissertation]. Changsha: Central South University; 2009. Chinese.