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Wind-induced vibrations commonly represent the leading criterion in the design of long-span bridges.
The aerodynamic forces in bridge aerodynamics are mainly based on the quasi-steady and linear
unsteady theory. This paper aims to investigate different formulations of self-excited and buffeting forces
in the time domain by comparing the dynamic response of a multi-span cable-stayed bridge during the
critical erection condition. The bridge is selected to represent a typical reference object with a bluff con-
crete box girder for large river crossings. The models are viewed from a perspective of model complexity,
comparing the influence of the aerodynamic properties implied in the aerodynamic models, such as aero-
dynamic damping and stiffness, fluid memory in the buffeting and self-excited forces, aerodynamic non-
linearity, and aerodynamic coupling on the bridge response. The selected models are studied for a wind-
speed range that is typical for the construction stage for two levels of turbulence intensity. Furthermore, a
simplified method for the computation of buffeting forces including the aerodynamic admittance is pre-
sented, in which rational approximation is avoided. The critical flutter velocities are also compared for
the selected models under laminar flow.

� 2017 THE AUTHORS. Published by Elsevier LTD on behalf of Chinese Academy of Engineering and
Higher Education Press Limited Company. This is an open access article under the CC BY-NC-ND license

(http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

The life cycle of a life-line structure such as a long-span bridge
is an integrative process in which each stage of the bridge’s exis-
tence should be thoroughly checked, from its construction to the
designed life-period. In the construction stage, the structural sys-
tem of a bridge differs from in the in-service design, leading to
additional design checks that are performed under critical erection
conditions [1]. In the case of long-span flexible bridges, these
checks are commonly conducted against critical wind conditions.
This ensures safety and serviceability throughout the construction
and in-service periods by limiting the response by which residual
forces are stored in the structure. Fluid-structure interaction (FSI)
due to gusty wind is a complex phenomenon, and is described by
several approaches and models. In the case of bridge decks, the
FSI is commonly simulated by wind-tunnel experiments or semi-
analytical models based on the theory of aeroelasticity, supple-
mented by wind-tunnel deliverables [2–6]. Within the last two
decades, numerical approaches based on computational fluid
dynamics (CFD) [7–9] have also received considerable attention.
With different sets of assumptions, semi-analytical models are
based on the analytical solutions from flat-plate aerodynamics.
With the introduction of modification coefficients based on exper-
iments, they model the complex unsteady behavior of bluff bodies.
The two main assumptions under which semi-analytical aerody-
namic models are developed are the quasi-steady assumption
and the linear unsteady assumption. Within the quasi-steady
assumption for bridge aerodynamics, fluid memory is neglected
and aerodynamic nonlinearity is taken into account. Utilizing the
linear unsteady assumption, the aerodynamic forces can be sepa-
rated into static, buffeting, and self-excited force components in
order to unveil the complex behavior of bluff body aerodynamics
in a linear fashion. In the latter assumption, the buffeting and the
self-excited forces are considered to be dependent on the fre-
quency of the wind fluctuations and on structural motion (i.e., fluid
memory), respectively. Fluid memory is taken into account
through frequency-dependent coefficients such as aerodynamic
admittance functions and flutter derivatives.

Eight semi-analytical models in the time domain are considered
within this study, including the quasi-steady (QS), linear quasi-
steady (LQS), linear unsteady (LU), corrected quasi-steady (CQS),
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modified quasi-steady (MQS), mode-by-mode (MBM), complex
mode-by-mode (CMBM), and hybrid nonlinear (HNL) models. The
QS model considers the aerodynamic nonlinearity while neglecting
the fluid memory in the self-excited and buffeting forces. The sim-
plest model may be the LQS model, which is linear and which does
not consider the unsteadiness of the aerodynamic forces [10,11].
The LU model takes the linear fluid memory into account; that is,
it is based on the linear unsteady assumption [2–4]. Since the aero-
dynamic forces are of a mixed nature in the LU model, including
time- and frequency-dependent terms, a rational approximation
using transfer functions is required for the transformation in
frequency-independent expressions. In bridge aerodynamics, it is
common for the indicial [12,13] or impulse function formulation
[14,15] to be employed as the approximation form of the transfer
functions. The motivation of the CQS model [5] is to retain the
advantage of the aerodynamic nonlinearity of the QS model and
to include the fluid memory in an averaged manner by introducing
frequency-independent correction coefficients. The ambiguity in
the torsional damping of the LQS model is accounted for in the
MQS model by formulating the self-excited forces using
frequency-independent coefficients based on the flutter deriva-
tives [16]. In this way, the fluid memory is somewhat averaged.
The time domain MBM model approximates the self-excited forces
at the natural frequencies of oscillations, and ignores the aerody-
namic coupling between modes. Aerodynamic coupling between
modes is imperative in bridge aerodynamics since it is the main
cause of coupled flutter instability. Using the complex modal
decomposition method, the CMBM model [17] interpolates the
flutter derivatives at the complex modal frequencies. The assump-
tion in this model is that there are no significant peaks in the aero-
dynamic transfer function, except at the complex modal
frequencies; however, aerodynamic coupling is preserved. Given
the asymptotic property of the LU model to converge to the QS
model for high reduced velocities, the HNL model [18,19] splits
the wind spectrum into low- and high-frequency components by
a cut-off frequency. For the low-frequency component, in which
the quasi-steady assumption is valid, the QS model is used to
model the aerodynamic forces; thus, the aerodynamic nonlinearity
is considered. The effect of fluid memory in the aerodynamic forces
for the high-frequency component is considerable; therefore, the
LU model is employed. In this way, the advantages of the LU and
QS models are exploited. Recently, several models have been
developed that include nonlinear fluid memory, based on an
approximation of the aerodynamic hysteretic behavior [20,21]
and Volterra’s series [22]. However, these models will not be con-
sidered within this study, as the aerodynamic coefficients required
for these models are not available for this case.

It is relevant here to review some of the comparative analyses
that have been done in the field of semi-analytical aerodynamic
modeling. Extensive analyses between the time and frequency
domain for the QS and LU models are conducted in Refs. [23–25].
Various formulations, the computational efficiency, and algorithms
for the indicial and impulse functions are compared in Refs.
[15,26–28]. Wu and Kareem [29] performed a detailed analysis of
the underlying assumptions for a flexible bridge deck section. They
concluded that the fluid memory is one of the key factors in the
aerodynamic response. However, they did not specify whether it
was the fluid memory of the buffeting or that of the self-excited
forces that influenced the total response. Nevertheless, an analysis
without self-excited forces was performed from which the influ-
ence of the fluid memory of the buffeting forces on the response
could be estimated without considering the effect of self-excited
forces.

The main goal of this study is to evaluate and quantify the effect
of the assumptions of the studied semi-analytical models for the
response of a cable-stayed bridge in the erection stage. The bridge
was chosen to represent a typical bridge spanning a large river
crossing. The deck is a concrete box girder, supported by post-
tensioned cables with a single cable plain. The typical construction
methodology for these types of bridges is the balanced cantilever-
ing method, in which the deck is erected in a segmental manner,
symmetrical to the pylon. The maximum cantilever construction
stage represents critical design conditions and should be
accounted for accordingly. Compared with other studies dealing
with closely related problematics, the reference object is chosen
to be rather stiff with a bluff cross-section. The research question
is: Which model is sufficient to analyze this type of structure for
design wind speeds?

Furthermore, a simplified method for the consideration of aero-
dynamic admittance is presented in Section 2.4.1. based on the
convolution theorem. Since the wind fluctuations are generally
available prior to the time integration, rational approximation
can be avoided by employing the method presented here. This
method is tested and compared with the standard formulation
using rational approximation in the LU model.

2. Semi-analytical aerodynamic models

The wind-structure interaction is a complex three-dimensional
(3D) phenomenon. However, most of the aerodynamic models are
developed for two-dimensional (2D) sectional models, which are
then applied to a 3D structure in order to simulate the full behav-
ior. The governing equations of motion of a 3D linear structure dis-
cretized on finite elements using the mode generalized approach
are given by the following:

M€qþ C _qþ Kq ¼ f ð1Þ
where M, C, and K are the modal mass, damping, and stiffness
matrices, respectively; q ¼ qðtÞ ¼ Wqo are the generalized displace-
ments as a function of time t along with their time derivatives,
denoted with ‘‘ _ ”; and W is the structural mode shape matrix.
The generalized force vector f ¼ f ðtÞ ¼ WTf o is obtained from the
nodal force fo (the subscript o is used for the full order system),
where f o ¼ f oðtÞ ¼ f ðf os; f ob; f oseÞ is generally a nonlinear function
of the aerodynamic loading, which includes static, buffeting (related
to incoming wind fluctuations), and self-excited (related to bridge
motion) components that are denoted as fos, fob, and fose, respec-
tively. Fig. 1 depicts a simplified three-degrees-of-freedom (3DOF)
bridge deck, for which the nodal force vector f ¼ f o 2 fD; L;Mg
includes the drag, lift, and moment components, respectively, and
the displacement vector q ¼ qoðtÞ ¼ qo 2 fp; h;ag comprises the
horizontal and vertical displacement and the rotation, respectively.
The width of the bridge deck is denoted as B, and the wind acts
with mean wind speed U with fluctuating components u = u(t)
and w = w(t) in the horizontal and vertical directions, respectively.

2.1. Quasi-steady and linear quasi-steady models

The QS model is based on the assumption that in each time-
step, the forces due to the FSI are the same as in an equivalent
steady state at infinite time. Thus, the rise time of the aerodynamic
forces is assumed to be instantaneous and the fluid memory effect
is not considered. The main advantage of this model is its consid-
eration of the aerodynamic nonlinearity: The wind coefficients
depend on the instantaneous angle of attack, considering wind
fluctuations and structural motion. The net forces acting on a
bridge deck are defined in the subsequent form [6,10,11]:

D ¼ FL sin bD þ FD cosbD

L ¼ FL cosbL � FD sinbL

M ¼ FM

ð2Þ



Fig. 1. Coordinate system of wind fluctuations and aerodynamic forces acting on a bridge deck cross-section.
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where

FD ¼ 1
2
qU2

rDBCDðaeDÞ

FL ¼ �1
2
qU2

rLBCLðaeLÞ

FM ¼ 1
2
qU2

rMB
2CMðaeMÞ

ð3Þ

In Eq. (3), q is the fluid density and Cj(aej) are the static wind
coefficients, which are nonlinear functions of the effective angle
of attack, aej. The latter is obtained as follows:

aej ¼ as þ aþ bj ¼ as þ aþ arctan
wþ _hþmjB _a
U þ u� _p

 !
ð4Þ

where as is the static angle of attack, bj is the dynamic angle of
attack, and the resultant wind velocity, Urj, is given by the
following:

Urj ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðU þ u� _pÞ2 þ ðwþ _hþmjB _aÞ

2
q

ð5Þ

for j 2 fD; L;Mg. The coefficient mj defines the position of the aero-
dynamic center on the bridge deck, which will be discussed further
in the following sections. The static wind coefficients from wind-
tunnel experiments are usually given up to a certain angle of attack
(±10�). Therefore, a linearized model with respect to the static angle
of attack can be developed by employing Taylor’s approximation on
Eq. (2) and using the hypothesis of small angles of attack—that is, by
neglecting the quadratic velocity terms. Thus, the LQS model can be
obtained as follows:

D¼1
2
qU2B CDþ2CD

u
U
þðC0

D�CLÞwUþðC0
D�CLÞ

_hþmDB _a
U

þC0
Da�2CD

_p
U

" #

L¼�1
2
qU2B CLþ2CL

u
U
þðC0

LþCDÞwUþðC0
LþCDÞ

_hþmLB _a
U

þC0
La�2CL

_p
U

" #

M¼1
2
qU2B2 CM þ2CM

u
U
þC0

M
w
U
þC0

M

_hþmMB _a
U

þC0
Ma�2CM

_p
U

 !

ð6Þ

where Cj ¼ CjðasÞ are the static wind coefficients and their deriva-
tives C0

j ¼ CjðaejÞjas at as for j 2 fD; L;Mg. For the LQS model, the
nodal force vector fo can be obtained as a superposition of the
buffeting and self-excited forces and a static force obtained from
linear or nonlinear aerostatic analysis. Implementation of the LQS
and QS models for discrete integration in the time domain is
straightforward. It is further notable that neglecting the motion-
related terms in Eqs. (2) and (6) results in what will be referred
to as the steady (ST) and linear steady (LST) models, respectively.
2.2. Linear unsteady model

The models based on the quasi-steady theory do not take into
account the unsteady behavior of the bluff body under laminar
or turbulent flow. In bridge aerodynamics, Davenport [4] and Scan-
lan [2,3] introduced an efficient way to treat unsteadies by includ-
ing linear frequency-dependent coefficients. The self-excited forces
are then described as a linear function of the motion and its fre-
quency content, including the aerodynamic coupling between
modes. The buffeting component of the force vector is modified
by introducing linear frequency-dependent coefficients between
the wind fluctuations and the forces, which are commonly referred
to as the aerodynamic admittance functions. The self-excited
forces in the extended Scanlan’s format are represented as follows
[30,31]:

Dse ¼1
2
qU2B KP�

1

_p
U
þKP�

2
B _a
U

þK2P�
3aþK2P�

4
p
B
þKP�

5

_h
U
þK2P�

6
h
B

 !

Lse ¼1
2
qU2B KH�

1

_h
U
þKH�

2
B _a
U

þK2H�
3aþK2H�

4
h
B
þKH�

5

_p
U
þK2H�

6
p
B

 !

Mse ¼1
2
qU2B2 KA�

1

_h
U
þKA�

2
B _a
U

þK2A�
3aþK2A�

4
h
B
þKA�

5

_p
U
þK2A�

6
p
B

 !

ð7Þ

where P�
j ðKÞ, H�

j ðKÞ, and A�
j ðKÞ for j 2 f1; . . . ;6g are the flutter deriva-

tives dependent on the reduced frequency K ¼ Bx=U, with x being
the circular frequency. The buffeting forces are given in the follow-
ing subsequent form:

Db ¼ 1
2
qU2B 2CDvDu

u
U
þ ðC 0

D � CLÞvDw
w
U

h i
Lb ¼ �1

2
qU2B 2CLvLu

u
U
þ ðC 0

L þ CDÞvLw
w
U

h i
Mb ¼ 1

2
qU2B2 2CMvMu

u
U
þ C 0

MvMw
w
U

� �
ð8Þ

where vjuðKÞ and vjwðKÞ for j 2 fD; L;Mg are the aerodynamic admit-
tance functions that are introduced to cover the unsteady effects of
the incoming wind fluctuations. The general form of the aerody-
namic admittance is complex; that is, v ¼ F þ iG, where F and G
are the real and imaginary parts of the corresponding aerodynamic
admittance function v, respectively. This model neglects the aero-
dynamic nonlinearity; however, it takes the linear fluid memory
into account. These relations are of a mixed nature since they con-
tain frequency- and time-dependent terms; that is, f b ¼ f bðt;KÞ
and f se ¼ f seðt;KÞ. In order to be able to solve the equation of motion
in the time, these forces must be expressed in a pure time domain
approximate formulation. In bridge aerodynamics, the impulse or
indicial (unit-step) formulation is typically employed. Herein, the
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approach based on impulse functions is adopted and the relations
are given in Section S1.1 in Supplementary Information (SI).

2.3. Corrected quasi-steady and modified quasi-steady models

Diana et al. [5] presented the CQS model in order to partially
introduce unsteady effects into the QS model, while retaining the
advantage of aerodynamic nonlinearity. Eq. (3) is modified as
CjðaejÞ ¼ CjðasÞ þ C�

j ðaejÞ for j 2 fD; L;Mg, where C�
j represents a cor-

rected nonlinear static wind coefficient computed as follows:

C�
DðaeDÞ ¼

Z aeD

as
K�

DðaÞC 0
DðaÞda

C�
LðaeLÞ ¼

Z aeL

as
K�

LðaÞC 0
LðaÞda

C�
MðaeMÞ ¼

Z aeM

as
K�

MðaÞC 0
MðaÞda

ð9Þ

where K�
j represents the frequency-dependent correction coeffi-

cients that are obtained from dynamic tests. Alternatively, they
can be computed from the aerodynamic derivatives for wind at a
different angle of incidence as follows:

K�
D ¼ K2P�

3

C 0
D

; K�
L ¼

K2H�
3

C 0
L

; K�
M ¼ K2A�

3

C0
M

ð10Þ

The flutter derivatives here are functions of the angle of attack
and reduced frequency Pj = Pj(K, a), Hj = Hj(K, a), and Aj = Aj(K, a) for
j 2 f1; . . . ;6g. Since no rational approximation is employed, the K⁄

coefficients are interpolated at the central reduced frequency Kc =
2pfc/U, where fc is the central frequency of the frequency content
contributing to the response. In this case, fc is computed as fc =
(fh + fa)/2, with fh and fa being the frequencies of the first vertical
and torsional modes, respectively. Since the contribution to the
effective angle of attack of wind fluctuations and motion cannot
be separated, the correction coefficients account for the averaged
fluid memory in the buffeting and self-excited forces. The implied
assumption here is that the transfer functions of the self-excited
and buffeting forces are essentially the same. There are studies
for bridge aerodynamics that have correlated the flutter derivatives
and the admittance functions in an analytical and an experimental
way (e.g., Refs. [32,33]). However, these correlations depend on the
definition of the aerodynamic admittance based on the experimen-
tal method for its identification (complex [34] or spectral [35]
method) and the analytical correlations do not hold for the flat-
plate analytical solution. Another ambiguous point in the QS mod-
els is the aerodynamic center, which is defined as m in Eq. (4). It is
proposed in Ref. [5] and later restated in Ref. [19] that the aerody-
namic center can be computed from the flutter derivatives. Com-
paring terms related to the angular velocity _a in Eqs. (6) and (7)
and substituting the derivatives of the static wind coefficients C0

D,
C0
L, and C0

M with their corresponding terms from the LU model
(Eq. (7)) yield the aerodynamic center as follows:

mD ¼ KP2

K2P�
3 � CL

; mL ¼ � KH2

K2H�
3 þ CD

; mM ¼ KA2

K2A�
3

ð11Þ

For the aerodynamic center, it is noted in Ref. [19] that the flut-
ter derivatives should be interpolated for reduced velocity: Vr = 2p/
K � 15. However, this will be revisited in Section 3.4 for the flutter
analysis.

The MQS model was developed in Ref. [16] in order to account
for the ambiguity in the torsional damping in the LQS model that
was introduced by the aerodynamic center. In the MQS model,
the magnitude of the aerodynamic damping and stiffness are
defined using the flutter derivatives, without considering the addi-
tional unsteady terms. The frequency-dependent self-excited
forces in Eq. (7) can then be reduced in frequency-independent
relations as follows:

Dse ¼ 1
2
qU2 p�

1
B _p
U

þ p�
2
B _a
U

þ p�
3aþ p�

4pþ p�
5
B _h
U

þ p�
6h

 !

Lse ¼ 1
2
qU2 h�

1
B _h
U

þ h�
2
B _a
U

þ h�
3aþ h�

4hþ h�
5
B _p
U

þ h�
6p

 !

Mse ¼ 1
2
qU2 a�1

B _h
U

þ a�2
B _a
U

þ a�3aþ a�4hþ a�5
B _p
U

þ a�6p

 !
ð12Þ

where p�
j , h

�
j , and a�

j are frequency-independent coefficients; for
j 2 f1;2;5g, they correspond to the aerodynamic damping, and for
j 2 f3;4;6g, they correspond to the aerodynamic stiffness. The
frequency-independent coefficients can be obtained either by using
the linear least-square fit to the experimental data for the aerody-
namic derivatives, or by using the secant approximation at the ori-
gin and an interpolated value for a chosen frequency of oscillation
for an individual DOF. The relation of the frequency-independent
coefficients with the rational coefficients of the approximate form
of the impulse function formulation is given in Section S1.2 in SI.
It is noted that the formulation of the MQS model given in Ref.
[16] is in a slightly different form, as the frequency-independent
coefficients p�

j , h
�
j , and a�j are multiplied or divided by a constant

of B or U. However, this is an arbitrary choice that would only
change the numerical values of p�

j , h
�
j , and a�

j . The accuracy of the
MQS model for predicting the response depends on the aerody-
namic behavior of the cross-section, that is, on the goodness-of-fit
of the flutter derivatives for the selected approximate form. If the
flutter derivatives related to the aerodynamic damping have a
somewhat linear trend and the flutter derivatives related to the
aerodynamic stiffness have a quadratic trend, this model performs
well for coefficients that are obtained using linear least-square fit.
Otherwise, the secant approximation should be used for the
reduced velocity range of interest.

For the buffeting forces, the LQS form is used in Ref. [16] with-
out considering the aerodynamic admittance. Here, the fluid mem-
ory in the buffeting forces is considered using an alternative
method described in the following section.

2.4. Mode-by-mode and complex mode-by-mode models

The MBM model ignores the aerodynamic coupling between
modes. It is conventionally used for buffeting analysis in the fre-
quency domain due to its simplicity, while the coupled flutter limit
is determined using complex eigenvalue analysis. Transferring the
system into modal coordinates for a bridge deck with length Ls, and
moving the self-excited force vector on the left side of Eq. (1),
yields the modal system stiffness matrix Ks = Ks(K) as Ks = K �
Kae, where Kae = Kae(K) represents the modal aerodynamic stiffness
matrix. Similarly, the modal system damping matrix Cs = Cs(K) is
obtained as Cs = C � Cae, where Cae = Cae(K) represents the modal
aerodynamic damping matrix. Eq. (1) can then be expressed as
follows:

M€qþ Cs _qþ Ksq ¼ f s þ f b ð13Þ
The aerodynamic stiffness and damping matrices are given in

Section S1.3 in SI. It is clear that the aerodynamic matrices are cou-
pled and frequency-dependent. In the conventional frequency-
domain formulation of the MBM model, the aerodynamic matrices
are decoupled by neglecting the off-diagonal terms, that is,

Kd
ae ¼ IKae and Cd

ae ¼ ICae, where I is the identity matrix and the
superscript ‘‘d” denotes the decoupled matrix. In order to solve
the system in the time domain, the matrices need to be
frequency-independent. Therefore, it is further assumed that there
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are no appreciable peaks in the transfer function of the system,
except around the natural frequencies of the structure, and the

matrices Kd
ae and Cd

ae are assembled by interpolating the flutter
derivatives at the reduced frequency corresponding to the natural
frequencies of each mode. Alternatively, rational approximation
with impulse functions can be used to cover the entire frequency
range, without considering the coupling terms.

To account for the aerodynamic coupling and still solve a
frequency-independent system for the self-excited forces, the
CMBM model is introduced in Ref. [17] and revisited later on in
Ref. [28]. The model is based on the complex decomposition tech-
nique of the state-space formulation of Eq. (13) as follows:

_y ¼ Ky þ C�1Rðf s þ f bÞ ð14Þ
where vector y = y(t) contains the complex modal coordinates, K is
a matrix containing the complex eigenvalues, C is a matrix contain-
ing the complex eigenvectors, and R is the input matrix. Since the
preceding equation is decoupled and frequency-independent, it
can be solved in the time domain if fb is frequency-independent.
In the CMBM model, the frequency-dependent aerodynamic coeffi-
cients are interpolated at the complex eigenfrequencies. Compared
with the LU model, this model can overestimate or underestimate
the self-excited forces for frequencies of oscillation that are greater
or smaller than the complex eigenfrequencies. The derivation of the
CMBM model is given in Section S1.4 in SI.

2.4.1. Method for the computation of unsteady buffeting forces
The force vector fb in the CMBM model is still dependent on the

reduced velocity, Vr, based on the wind frequency content. In Ref.
[17], it is pointed out that the buffeting forces are computed in
the same way as in the LU model (presented in Section 2.2), that
is, with rational approximation, while in Ref. [28], the fluid mem-
ory is not included in the buffeting forces. Herein, a method will
be presented in order to avoid the rational approximation, which
is the motivation for the CMBM model.

The additional method utilizes the principles of the response of
a stable linear system due to periodic inputs [36]. In this case, the
buffeting force is the response, which is in fact stable, while the
wind fluctuations are the input. Assuming that the vertical fluctu-
ation w is a periodic signal, the lift-buffeting force Lbw = Lbw(t) can
be obtained as follows:

Lbw ¼ 1
2
qU2BðC 0

L þ CDÞF�1½vLw � FðwÞ
U

� ð15Þ

where ‘‘ � ” denotes point-wise multiplication and F denotes the
Fourier transform. The convolution theorem
f � g ¼ F�1½Fðf Þ � FðgÞ� is employed in the preceding equation, for
f = vLw; in addition, g = w and ‘‘⁄” denotes the convolution opera-
tion. In fact, the same theorem holds for the Laplace transform in
the case of the solution of the convolution integral in the impulse
function formulation (Eq. (S5) in SI). The difference in using the
Fourier transform instead of the Laplace transform for periodic
input and stable output signals is that there is an additional
assumption that the transient part (fluid memory) of the initial con-
dition is zero. As shown later in Section 3.3, this influence is only a
small initial part of the force time history. The wind fluctuations are
commonly generated before solving Eqs. (1) or (14); therefore, the
discrete Fourier transform (DFT) is employed for the discrete solu-
tion of the circular convolution implied in Eq. (15). The discrete lift
force due to vertical gust Lbw[n] can be computed as follows:

Lbw½n� ¼ 1
2
qU2BðC0

L þ CDÞDFT�1 vLw½j� �
DFTðw½k�Þ

U

� �
ð16Þ

where fj; kg 2 f0; . . . ;Ns � 1g and Ns is the number of steps corre-
sponding to the total time t = DtNs, with Dt being the integration
time-step. The force and wind fluctuations are real signals and the
force-wind relationship is a causal system. In order to ensure these
two requirements, the admittance possesses Hermitian symmetry,
and its imaginary part G is non-zero:

vLwðKÞ ¼ v�
Lwð�KÞ ð17Þ

GðKÞ–0 ð18Þ
It is clear that instead of a rational approximation of vLw,

interpolation or fitting in the frequency domain can be used.
This is more convenient in bridge aerodynamics, especially for
noisy experimentally obtained admittance functions (e.g., Ref.
[35]). This method could also be applied for admittance func-
tions that are obtained from the spectral method with zero
lag—that is, G = 0. However, it is noteworthy to mention that this
situation implies that the admittance is a non-causal filter—that
is, the lift force depends on future inputs. Since the discrete
wind fluctuation signals are a superposition of the integer har-
monic signals, the Gibbs effect and spectral leakage are avoided.
Although this method for computing the buffeting forces can
also be applied in the LU or HNL models, it is used here for
the MQS and CMBM models. The computational time is signifi-
cantly reduced for the solution of the second-order differential
equation (Eq. (1)). Instead of solving the linear convolution inte-
gral, the efficient fast Fourier transform (FFT) is used once before
the analysis. Using the state-space formulation (Eq. (14)), the
solution of the convolution integrals can be avoided; neverthe-
less, the system equation can rapidly grow with the additional
states. Alternatively, the buffeting forces can be directly gener-
ated by modifying the cross-spectral density function of the
wind fluctuations with the aerodynamic admittance [37]. How-
ever, in this case, the aerodynamic nonlinearities in the HNL
model, such as the dependency of the aerodynamic parameters
on the effective angle of attack, cannot be accounted for, as is
noted in Ref. [38]. For arbitrary wind fluctuations (e.g., unit-
step), Eq. (16) still holds; however, for the discrete solution
using the DFT, zero padding is required. Furthermore, in the case
of experimentally obtained admittance functions with a finite
data set, the extrapolation of the admittance for the high
reduced velocity is performed by assuming quasi-steady values.
In the case of rational function approximation, this issue is
resolved simply by utilizing the analytic continuation of the
transfer function.

2.5. Hybrid nonlinear model

The motivation of the HNL model, which is introduced in Ref.
[18], is to utilize the advantages offered by the LU and QS models
for a different range of reduced velocities. The response and the
wind spectrum are separated by demarcation on the frequency
content on the low- and high-frequency components, for example
for the vertical fluctuation w = wl + wh. The lower-frequency com-
ponent of the force is modeled using the QS model, resulting in a
low-frequency effective angle of incidence al

ej at which the high-
frequency component is linearized using the LU model. The total
force acting on the bridge deck is then computed as follows:

Fj ¼ FQS
j ðal

ejÞ þ FLU
j ðah

ejÞjal
ej

ð19Þ

where FQS
j is the force due to the low-frequency component (Eq. (2))

and FLU
j is the force due to the high-frequency component fluctua-

tions and response (Eq. (7) and (8)). In Ref. [18], the low-
frequency effective angle of incidence is computed from Eq. (4),
considering only the wind fluctuations. Here, the formulation
recently presented by Diana et al. [19] is employed in the following
form:



Fig. 4. Static wind coefficients.
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al
ej ¼ as þ al þ arctan

wl þ _hl þmjB _al þ nj _wl

U þ ul � _pl

 !
ð20Þ

where nj is introduced to account for the phase lag between the
wind fluctuations and the quasi-steady aerodynamic force. The nj
coefficient is obtained as follows:

nj ¼ Gjw

Fjw

V r

2p
B
U

ð21Þ

where Gjw and Fjw are the real and imaginary term, respectively, of
the aerodynamic admittance functions of the vertical fluctuations at
high reduced velocity for j 2 fD; L;Mg in the preceding equations. It
should be noted that this model, using reological transfer functions,
is sometimes referred to as the corrected band superposition model
[19]. The HNL model retains the advantage of the aerodynamic non-
linearity of the QS model for the high reduced velocity range, and
since the unsteady characteristics are distinctive for the low
reduced velocity range, the LU model is used to capture the fluid
memory effect.

3. Application

In the design procedure of long-span bridges, the erection stage
is of particular interest, as the structural system substantially dif-
fers from the final form of the structure. The reference object for
this study is a segment of a multi-span cable-stayed bridge
(Fig. 2), erected by the traditional balanced cantilevering method.
The aerodynamic models described in Section 2 are applied in
order to obtain the structural response due to wind action.

3.1. Structural system

The two cantilevers on each side of the tower are 205 m long
(Fig. 2) with a concrete box section that is B = 33.15 m wide and
H = 4.85 m deep (Fig. 1). The mass and rotational mass are 28.71
t and 2992 t�m2 per meter, respectively. Fifty-seven stay cables
are considered in the maximum cantilever stage, with an 8 m dis-
tance between the concrete segments. The vertical distance
between the tip of the tower and the deck surface amounts to
96 m. Thus, the smallest angle between the deck and the cables
is 25.4�, while the largest angle is 68�. A total of 15 modes of vibra-
tion are used in the analysis, including tower modes. The first lat-
eral, vertical, and torsional modes are given in Fig. 3. In addition,
the natural frequencies are listed in Table S1 in SI. The modal
damping ratio is taken as 1% of the critical damping. The inherent
Fig. 2. Reference object: The west tower of a

Fig. 3. (a) First lateral (f = 0.401 Hz), (b) vertical (f = 0.444 Hz), and (c) to
property of this type of girder is its high sectional modulus, which
results in a rather high structural stiffness compared with light
streamlined sections. Taking this into account, the modal proper-
ties of the first three deck natural frequencies are somewhat higher
than those of flexible cable-supported bridges.
3.2. Aerodynamic coefficients

The static wind coefficients and the flutter derivatives are
obtained by utilizing the computationally efficient CFD code
VXflow, which is based on the vortex particle method that was
developed and validated by Morgenthal [39]. Bluff box girders
are usually prone to torsional flutter, and their flutter derivatives
are rather irregular and sensitive on the angle of incidence, while
the moment static wind coefficient may experience a negative
slope, which indicates stall. Looking at the static wind coefficients
in Fig. 4, a nearly zero slope is obtained near the positive 6� angle of
inclination, which is the first indication of torsional flutter. The
flutter derivatives based on the rotational motion are depicted in
Fig. 5. A particular point of interest is the derivative A�

2, which is
related to the torsional damping and which changes sign for a pos-
itive 3� and 6� angle of incidence, indicating torsional flutter. The
flutter derivatives P�

j for j 2 f1; . . . ;6g, A�
j , and H�

j for j 2 f5;6g are
considered to be their quasi-steady values [6]. The approximation
of Sears’ admittance given in Ref. [40] is used for the lift and
moment forces aerodynamic admittance functions. For the drag
buffeting component, the admittance is assumed to be unitary.
cable-stayed bridge in the erection stage.

rsional (f = 0.913 Hz) modes of the west tower in the erection stage.



Fig. 5. Flutter derivatives due to torsional motion for various angles of incidence and their rational approximation (denoted by the line in corresponding color). (a) H�
2; (b) H

�
3;

(c) A�
2; (d) A

�
3.

Fig. 6. (a) Real and imaginary parts of the Sears’ aerodynamic admittance (v = F + iG) and their rational approximation; (b) phase angle between the wind fluctuation and
buffeting force.
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In Fig. 6(a), the real and imaginary parts of the Sears’ admit-
tance are given. Two additional aerodynamic states were sufficient
for the rational approximation of the admittance. In addition, Fig. 6
(b) gives the phase angle of the admittance transfer function. It can
be observed that for V r/10 there is a significant change, while for
V r’10, the phase slowly attenuates. This is important for the n
coefficient in the HNL model. Although it is difficult to say at which
reduced velocity the phase becomes negligible, n is obtained here
based on the interpolation of the admittance at Vr = 15. In the case
of experimental complex admittance functions, the phase usually
converges faster. The correction coefficient K�

j , which is based on
the flutter derivatives in the CQS model for j 2 fL;Mg, is shown
in Fig. 7 for Vr = 4. The fluid memory influences the moment forces
more than the lift forces in this case, and generally reduces the
response. For an angle of incidence that is greater than zero, the
effect seems to be noisier than for the negative angles. The joint
acceptance considering the higher correlation of the buffeting
forces compared with the wind fluctuations is neglected within
this work.

3.3. Buffeting analysis

Turbulent wind fluctuations are applied only to the deck,
without the loss of generality. Fluctuating wind time histories



Fig. 7. Correction coefficients for the lift and moment force of the CQS model.
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are generated for t = 600 s with Dt = 0.01 s for six different wind
speeds ranging from 25 m�s�1 to 75 m�s�1, using the spectral
method described in Ref. [41]. The spectral properties of the fluctu-
ations are based on the von Kárman power spectral density (PSD),
as described in Ref. [42]. Two cases are considered: a case with
lower turbulence, in which the turbulence intensity is set as Iu =
12% and Iw = 6% for the longitudinal and vertical fluctuations,
respectively, and a case with higher turbulence, with Iu = 24% and
Iw = 12%. The vertical and longitudinal length scales are set as Lu
= 140 m and Lw = 56 m, respectively. The lateral coherence coeffi-
cient is set as 8, using Davenport’s coherence function [42]. At
Fig. 8. The RMS of the (a, c) vertical displacements and (b, d) rotation for the case with
turbulence (with Iu = 24% and Iw = 12%) for U = 75 m�s�1. Models considering the aerody
every wind speed in both turbulent cases, the same time history
is used for all of the models; that is, the input wind fluctuations
are identical.

Fig. 8 depicts the root-mean-square (RMS) from the vertical dis-
placement and rotation for a wind speed of 75 m�s�1. The RMS is
chosen as a quantity of interest, as the variation in the kinetic
energy due to the random generation of wind fluctuations is lower
than the peak of the response, since only one realization of the
wind time history is utilized. Three main branches can be distin-
guished in the magnitude of the response. The first of these has
the highest amplitudes for models—that is, the ST and LST mod-
els—when the self-excited forces are neglected. The second con-
tains all of the previously described models, without considering
the aerodynamic admittance. In the last one, the admittance is
introduced for the MQS, CMBM, LU, and HNL models and is
denoted by the subscript ‘‘A.”

The branches tend to diverge with the increment of the turbu-
lence intensity, due to the higher influence of the aerodynamic
admittance and self-excited forces. This is particularly true for
the rotation. In a realistic situation, the aerodynamic admittance
differs from the Sears’ function, which would probably reduce its
significance for the response.

The influences of the mean wind speed on the
tip-displacements of the second and third branch are shown in
Fig. 9. As the mean wind speed increases, the effect of the fluid
memory of the buffeting forces is more influential for the vertical
displacements. The trend is similar to that for the rotation;
however, it is less pronounced. When comparing the two levels
(a, b) low turbulence (with Iu = 12% and Iw = 6%) and for the case with (c, d) high
namic admittance are denoted by the subscript ‘‘A.”
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of turbulence intensity, the effect of the aerodynamic admittance is
seen to be intensified for the high-turbulence case. In order to
study the effects of the assumptions that are implied in each model
on the magnitude, phase, and spectral content of the response, a
representative part of the time histories is depicted in Fig. 10 for
U = 75 m�s�1 for the case with high turbulence. The PSDs are shown
in Fig. 11. First, the effect of nonlinearity is analyzed without con-
sidering the self-excited forces. The nonlinearity included in the ST
model increases the response in the vertical DOF, while the rota-
tion is reduced. Since no additional phase lag is introduced in these
models, the nonlinearity only affects the amplitudes. By comparing
the LST and LU models, the influence of the self-excited forces on
the response can be studied. Introducing unsteady aerodynamic
damping and stiffness reduces the response and introduces a small
lag. The effect is more severe for the vertical DOF (Fig. 9). The dif-
ference in the PSD of these two models occurs mainly at the peaks
for the first vertical and torsional natural frequency.

The second branch is constituted of the models that consider
the self-excited forces and neglect the aerodynamic admittance—
that is, the QS, LQS, MQS, MBM, CMBM, LU, and HNLmodels. Before
examining the second branch, it should be noted that the differ-
ence in the RMS between the lowest and the highest response
for the case with low turbulence is 11.6% and 8.28% for the vertical
displacements and rotation, respectively. In the case with high tur-
bulence, the difference is 10.1% and 15.2% for the vertical and rota-
tional DOF, respectively. The larger discrepancy in the rotation for
the high-turbulence case is attributed to the LQS model. The obser-
vations for this branch are mainly based on Figs. 8 and 9, since for
Fig. 9. The RMS of the cantilever tip (a, c) vertical displacements and (b, d) rotation for t
with high turbulence (with Iu = 24% and Iw = 12%). Models considering the aerodynamic
such small differences, it is difficult to select a representative time
history and draw a conclusion based on it and on the correspond-
ing PSDs. Nevertheless, the time histories and PSDs are depicted for
the sake of consistency.

The discrepancies between the QS and LQS models are due to
the aerodynamic nonlinearity in the QS model, considering the
quasi-steady self-excited forces. The influence of the aerodynamic
nonlinearity or the vertical DOF is small compared with the case
without self-excited forces, although it is still significant for the
rotation in the high-turbulence case. To study the effect of the fluid
memory of the self-excited forces on the response, the responses
obtained from the LQS and LU models are analyzed. Looking at
Figs. 8 and 9, it can be observed that for the vertical DOF, the
response is slightly higher for the LU model, while the torsional
response is increased for the LQS model. In general, the fluid mem-
ory should reduce the response of the deck; however, here the dif-
ferences are small and may originate from the ambiguity of the
aerodynamic center in the LQS model. Looking at the influence of
the averaged fluid memory of the self-excited forces as considered
in the MQS model, in contrast to the full fluid memory included in
the LU model, it can be observed that there are no significant dif-
ferences in the response for the vertical DOF. However, for the
MQS model, the torsional response is underestimated to a small
extent; this can be also observed in the PSD. By comparing the
MBM and CMBM models, the effect of the aerodynamic coupling
can be studied. Excluding the aerodynamic coupling, the MBM
model underestimates the vertical response by 6.5% and 8% and
the rotation by 1.7% and 0.7% for the cases of low and high
he case (a, b) with low turbulence (with Iu = 12% and Iw = 6%) and for the case (c, d)
admittance are denoted by the subscript ‘‘A.”



Fig. 10. Representative sample time histories of the cantilever tip (a) vertical displacements and (b) rotation for the case with high turbulence (with Iu = 24% and Iw = 12%) at
U = 75 m�s�1. Models considering the aerodynamic admittance are denoted by the subscript ‘‘A.”
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Fig. 10 (continued)
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turbulence, respectively. The resemblance between the LU and
CMBMmodels leads to the conclusion that interpolating the flutter
derivatives at the complex frequencies instead of considering the
broad band frequency content has no significant influence on the
response for both DOFs.

The impact of the aerodynamic nonlinearity on the low-
frequency response and the influence of the fluid memory of the
self-excited force in the low reduced-frequency range of the oscil-
lation are investigated by comparing the responses from the LU
and HNL models. A minor difference is observed in the vertical
component for the low-turbulence case.

The significance of the aerodynamic admittance on the
response is substantial in this case. An examination of the response
from the LU model with and without admittance reveals a change
in the amplitude and phase in the time histories. In the PSDs, the
overestimation of the LU model is higher for the high-frequency
components.

This result is in line with the underlying physics of bluff body
aerodynamics, as gusts with small wavelengths compared with
the deck width have less-significant influence on the buffeting
forces. The incorporated averaged fluid memory in the CQS model
does not entirely unveil the effect of the rise time of the buffeting
and self-excited forces. Compared with the LU model that consid-
ers the aerodynamic admittance, there is a discrepancy in the
phase and an amplitude amplification in the response, especially
in the low-frequency component. It can be argued that this is
due to the aerodynamic nonlinearity. However, the significance
of the aerodynamic nonlinearity is expected to be lower, judging
from the performance of the QS and LQS models. For the MQS
model that includes the aerodynamic admittance, and for which
the fluid memory in the buffeting forces is included by means of
Eq. (16), no appreciable differences in the vertical response are
noted with respect to the LU model for the high-turbulence case.
The vertical response in the low-turbulence case and the rotation
in both cases, however, are underestimated for the MQS model.
This result is attributed to the averaged fluid memory in the self-
excited forces for the case in which the buffeting and self-excited
forces act simultaneously. Similar results for the response are
obtained for the CMBM and LU models when both consider the
aerodynamic admittance, thereby proving the validity of the
method for the computation of buffeting forces that was presented
in Section 2.4.1. An interesting point arises when the responses for
the HNL and LU models are compared when both models consider
the aerodynamic admittance. The RMS of the vertical displace-
ments is generally higher for the HNL model. Although this is usu-
ally the case for flexible bridge decks due to the static nonlinearity,



Fig. 11. The PSD of the cantilever tip (a) vertical displacements and (b) rotation for the case with high turbulence (with Iu = 24% and Iw = 12%) at U = 75 m�s�1. Models
considering the aerodynamic admittance are denoted by the subscript ‘‘A.”
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Fig. 11 (continued)

Fig. 12. Representative sample time histories of the cantilever tip vertical buffeting force for the case with high turbulence (with Iu = 24% and Iw = 12%) at U = 75 m�s�1. The
unsteady forces are computed using the rational approximation of the admittance by impulse functions (Eq. (S10) in SI) and the presented method using the FFT (Eq. (16)).
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in this case, it is associated with the chosen cut-off frequency of
0.3 Hz between the low- and high-frequency components of the
wind fluctuations. Looking at the PSD of the response, it is
observed that the main distinction is in the low-frequency compo-
nent as a result of neglecting the aerodynamic admittance in this
range, rather than the aerodynamic nonlinearity. There have been
several studies on the choice of the cut-off frequency. In Ref. [18],
the threshold is taken as the first oscillation frequency, whereas in
Ref. [19], it is chosen based on the reduced velocity—that is, at Vr �
15. Wu and Kareem [29] conducted a parametric study and con-
cluded that the increase of the response may arise from the fre-
quency content of the effective angle of attack, rather than the
amplitude. It can be argued that in this case, the cut-off frequency
is chosen to be rather higher than the reduced velocity range in
which the quasi-state assumption holds true, which explains the
higher amplitudes in the low-frequency content. However, further
examination is required on this account, and is beyond the scope of
this study.

In Section 2.4.1, an alternative approach is presented for the
computation of the buffeting forces including the aerodynamic
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admittance. In order to test its applicability, the lift force acting on
the cantilever tip for the high-turbulence case is compared with
the standard linear unsteady formulation. In Fig. 12, the time his-
tory of the normalized lift force is presented, computed without
and with admittance. In the latter case, two methods were used:
the standard method, based on rational approximation, and the
introduced method, based on the inverse FFT. The time histories
of the normalized lift force for the two methods including the aero-
dynamic admittance correspond well, except for the initial part
(for t � 0–3 s), in which the transient part of the lift force is consid-
ered by means of the standard method using rational approxima-
tion. Although the rise time depends on the properties of the
aerodynamic admittance, this part is usually short compared with
the full length of the force time history. The relative difference in
RMS for t = 600 s is less than 0.2%.

3.4. Flutter analysis

A stability check during the cantilever erection stage for cable-
stayed bridges presents a particular issue, as the torsional stiffness
of the deck is usually lower than that in the in-service condition. As
discussed briefly in Section 3.2, this cross-section is prone to tor-
sional flutter if there is a change in the angle of the incident wind,
which can be easily identified by the changing sign of the A�

2

derivative (Fig. 13) that is related to the torsional damping of the
system. The flutter analysis is performed for uniform flow at a 6�
angle of incidence, since the section is stable at 0� for velocities
up to 175 m�s�1. Checking the flutter limit for higher wind speeds
would have required extrapolation of the flutter derivatives. In
Fig. 14, an example of the time history is shown for the LU model
below and at the critical wind speed. Some of the nonlinear mod-
els, such as the QS and CQS models, can exhibit limit cycle oscilla-
tions; however, their time histories are not presented here for the
sake of brevity. Further information on the flutter and post-flutter
Fig. 13. A�
2 derivative: linear and cubic interpolation for the MBM and CMBM

models; rational approximation for the LU and HNL models; least-squares and
secant approximation for the MQS model.

Fig. 14. Time histories of the (a) vertical displacement and (b) rotation under laminar
velocity (U = 126 m�s�1) at a 6� angle of incidence.
regime can be found in Ref. [29]; in this paper, only the critical flut-
ter limit is addressed. Table 1 provides the critical flutter velocities
for the selected models. The reference case for the flutter analysis
is the CMBM model, since it represents a multi-mode frequency-
domain analysis that has been experimentally validated on several
occasions (see e.g., Ref. [43]). The critical limit for the QS, CQS, and
LQS models is calculated for different values of the aerodynamic
center. In the case of these models, torsional instability in bridge
aerodynamics occurs if the aerodynamic center is positioned
between the trailing edge and the stiffness center; that is, ma > 0.

For streamlined bridge decks, this coefficient is commonly set
as �0.25, which ensures no occurrence of torsional flutter; or, it
is obtained from the flutter derivatives (Eq. (11)) for high reduced
velocity. Flutter cannot occur in this case by choosing Vr � 12 at a
6� static angle of incidence. Although the value of A�

2 is negative, A
�
3

is negative as well (Fig. 5), resulting in a positive value for the aero-
dynamic center. Negative values for A�

3 rarely occur, and at high
reduced velocities, the quasi-steady values indicate stall; that is,
C0
M < 0. However, some studies have reported a negative value

for A�
3, such as for the Tacoma Narrows Bridge section reported in

Ref. [44], or for the Deer Isle-Sedgewick Bridge section cited in
Ref. [13]. Therefore, the assumption of selecting the aerodynamic
center at high reduced velocities may be challenged for bluff bridge
decks that are prone to torsional flutter. At present, it is not clear
whether this is the same phenomenon that was identified as the
velocity-restricted torsional flutter in the experimental study for
rectangular cylinders in Ref. [45]. Flutter analysis is conducted
for two cases with respect to the aerodynamic center. In the first
case, the aerodynamic center is based on the reduced velocity for
the central frequency of oscillation m = f((fh + fa)/2), while in the
second case, the torsional frequency is used for the determination
of the aerodynamic centerm = f(fa). For these values, the coefficient
H�

3 is still in the positive range. The critical velocity for the LQS
model with the aerodynamic center obtained using the torsional
flow of the LU model at critical flutter velocity (U = 128 m�s�1) and below flutter

Table 1
Critical flutter velocities for wind at a 6� angle of incidence.

Model Ucr (m�s�1)

QS (m = f((fh + fa)/2)) 106
QS (m = f(fa)) 140
LQS (m = f((fh + fa)/2)) 99
LQS (m = f(fa)) 131
CQS (m = f((fh + fa)/2)) 102
CQS (m = f(fa)) 134
MQS (least-squares approximation) 22
MQS (secant approximation) 157
MBM (linear interpolation) 138
MBM (cubic interpolation) 154
CMBM (linear interpolation) 125
CMBM (cubic interpolation) 137
LU (rational approximation) 128
HNL (rational approximation) 128
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frequency is comparable to the critical velocity obtained using the
CMBMmodel. This makes sense because the oscillation is driven by
the pitching motion and the coupling effects have minor influence.
The underestimation of 4.4% of Ucr for the LQS model as compared
with the CMBMmodel can be attributed either to the fluid memory
of the self-excited forces or to the ambiguity of the aerodynamic
center; the latter explanation is more plausible. The influence of
the aerodynamic nonlinearity included in the QS model increased
the flutter velocity by 6.4%. By including the averaged fluid mem-
ory for the CQS model, the flutter limit is reduced by 4.3% com-
pared with the flutter limit obtained using the QS model. It is
worth mentioning that the models in which the aerodynamic
damping is based on the aerodynamic center may overestimate
or underestimate the flutter velocity by a relatively large margin;
therefore, such models are generally not used for the flutter
analysis.

As a result of the nearly quadratic shape of the A�
2 derivative, the

critical flutter velocity obtained using the linear least-squares
approximation for the MQS model is underestimated significantly.
The accuracy of the MQS model is generally good for linear trends
for the velocity-related and quadratic trends for the displacement-
related flutter derivatives. For different trends than this, the secant
approximation is used for the reduced velocity of interest, as
pointed out in Ref. [16]. Utilizing the secant approximation for A�

2

with respect to the torsional frequency, the analysis with the
MQS model yielded an overestimation of the flutter limit by
14.6% compared with the limit obtained using the CMBM model
with cubic interpolation. In the case of pure torsional flutter, the
MBM and CMBM models would result in the same critical velocity.
However, the instability threshold for the MBM model was under-
estimated by 12.4% and 10.4% in the case of cubic and linear inter-
polation of the flutter derivatives, respectively, due to the effect of
the aerodynamic coupling. Theoretically, the CMBM and LU models
should result in an identical flutter limit, since the CMBM model
has the same complex modal properties as the full frequency-
independent system (as noted in Ref. [17]). Nonetheless, the criti-
cal flutter velocities are slightly different. This is a consequence of
the goodness-of-fit of the A�

2 derivative, which is observable in
Fig. 13. In fact, the critical velocity for the LU model using rational
approximation is somewhere in between the Ucr values that are
obtained using linear and cubic interpolation, respectively, for
the CMBM model. The effect of the uncertainty in the interpolation
or approximation of the flutter derivatives is expected to be
reduced by increasing the number of data points. The flutter is gov-
erned by the linear unsteady part in the HNL model. Since the flut-
ter derivatives at 6� are used for both the LU and HNL models, the
instability threshold is identical. In general, the results may differ,
as the HNL model is linearized at the angle obtained using nonlin-
ear aerostatic analysis, or if the response is governed by the quasi-
steady part.
4. Summary and conclusions

Various models for buffeting analysis have been studied here,
and the effects of their implied assumptions have been quantified
with respect to the dynamic response of a particular bridge in the
erection stage. The influence of the self-excited forces and the
aerodynamic admittance on the response appeared to be most
significant in the design velocity ranges, especially for the high-
turbulence case. By increasing the complexity, the aerodynamic
models can account for more phenomena occurring in the FSI.
However, the influence of the fluid memory in the self-exited
forces, aerodynamic nonlinearity, and even aerodynamic coupling
appeared to be less significant for the aerodynamic response for
the selected case.
An initial assessment in the erection condition for less-severe
wind conditions could be performed with less-complex models
such as the MQS model including the aerodynamic admittance,
given sufficient care for the goodness-of-fit of the derivatives. Nev-
ertheless, more complex models, such as the LU, CMBM, or HNL
models, should be utilized for the final checks in the design
process.

Furthermore, a method for the inclusion of the aerodynamic
admittance in the CMBM model was presented here based on the
principles of the response of a stable linear system, utilizing the
Fourier transform. The results of the buffeting force using this
method agreed well with the standard method utilizing the
impulse function formulation. The rational approximation using
the presented method is avoided. It should be noted that the
method can also be used in the LU model without the loss of gen-
erality. Within the present study, the RMS of the response is taken
as a quantity of interest, since it can be correlated to the kinetic
energy. Further statistical studies are warranted on the extreme
values of the response, as there is no direct relationship between
the RMS and the peak for the nonlinear models.

Flutter analysis was conducted for mean wind velocity at a 6�
angle of incidence. The aerodynamic center in the QS-based models
came under special consideration. The analysis showed that in the
case of torsional-driven flutter, the aerodynamic center chosen
with respect to the torsional frequency of oscillation provides bet-
ter estimates corresponding to the standard frequency-domain
flutter analysis. Accounting for the aerodynamic coupling resulted
in a reduction of the flutter velocity of approximately 10% for the
particular case study. The interpolation or approximation method
of the flutter derivatives was demonstrated to have an effect on
the on-set flutter velocity. Further studies considering the influ-
ence of the data quality of the aerodynamic derivatives on the buf-
feting response are of interest. In conclusion, the model choice is
highly dependent on the case study, and it is in the designers’
interest to evaluate various models based on their assumptions
and on the available aerodynamic properties in order to obtain a
reliable estimate.
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