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Rockburst is an important phenomenon that has affected many deep underground mines around the world. 
An understanding of this phenomenon is relevant to the management of such events, which can lead to sav-
ing both costs and lives. Laboratory experiments are one way to obtain a deeper and better understanding of 
the mechanisms of rockburst. In a previous study by these authors, a database of rockburst laboratory tests 
was created; in addition, with the use of data mining (DM) techniques, models to predict rockburst maxi-
mum stress and rockburst risk indexes were developed. In this paper, we focus on the analysis of a database 
of in situ cases of rockburst in order to build influence diagrams, list the factors that interact in the occur-
rence of rockburst, and understand the relationships between these factors. The in situ rockburst database 
was further analyzed using different DM techniques ranging from artificial neural networks (ANNs) to naive 
Bayesian classifiers. The aim was to predict the type of rockburst—that is, the rockburst level—based on geo-
logic and construction characteristics of the mine or tunnel. Conclusions are drawn at the end of the paper.

© 2017 THE AUTHORS. Published by Elsevier LTD on behalf of the Chinese Academy of Engineering and  
Higher Education Press Limited Company. This is an open access article under the CC BY-NC-ND  

license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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1. Introduction

Accidents and related problems can occur frequently in deep 
underground mines and other underground structures. Thus, it is 
essential to develop and implement risk analysis procedures to min-
imize their occurrence. Risk has a complex nature and results from 
the combination of two sets of factors: first, the events and their 
impacts; and second, the vulnerability factors that determine the 
probability of an event having a certain impact or consequence [1–3].

Many researchers have collected, analyzed, and published reports 
on accident cases that have occurred in tunnels during construction 
and exploration [2,4]. Rockburst is one example of an accident that 
can occur during tunneling. It is a result of overstress of the rock 
mass or of the intact brittle rock, and happens when stresses exceed 
the compressive strength of the material. The impacts of rockburst 
range from spalling to sudden and violent failure of the rock mass. 
Depth is an important factor in the occurrence of this phenomena, 
since the stress exerted on the rock increases with depth.

In mining activities, other types of events have also been iden-

tified and classified, such as heat hazards and other events related 
to blasting cavities. Blasts, gas explosions, and fire are the most 
common hazardous events in China. In deep mining activities, major 
problems are also associated with large deformations and over-
stressing of the rock mass, which are caused by excavations at great 
depth, and which may result in rockburst. Comprehensive investiga-
tions of deep mining mechanics are thus of great interest [5].

Risk assessment can be managed with the aim of avoiding prob-
lems in underground construction. Risk management procedures 
can be significantly improved by using systematic techniques 
throughout the project’s life. By using such techniques, potential 
problems can be clearly identified such that appropriate risk mitiga-
tion measures can be implemented in a timely manner. As a result, 
risk management became an integral part of most underground 
construction projects during the late 1990s [1,2,6].

During the construction of some of the underground structures 
of the Jinping II hydropower scheme in China, engineers were faced 
with the occurrence of several rockbursts [7–9]. As a result, a large 
study was conducted by the authorities to evaluate the accidents 

   * Corresponding author. 
      E-mail address: sousa-scu@hotmail.com 
 
http://dx.doi.org/10.1016/J.ENG.2017.04.002 
2095-8099/© 2017 THE AUTHORS. Published by Elsevier LTD on behalf of the Chinese Academy of Engineering and Higher Education Press Limited Company. 
This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Contents lists available at ScienceDirect

journal  homepage:  www.elsevier.com/ locate /eng

Engineering



553L.R. Sousa et al. / Engineering 3 (2017) 552–558

and to come up with mitigation measures and guidelines for con-
struction under circumstances that are prone to rockburst. This 
study included the establishment of a database containing infor-
mation regarding rockburst and a description of the events that had 
occurred, and led to the use of data mining (DM) techniques to de-
termine the probability of occurrence of rockburst and its character-
istics (i.e., type, location, depth and width, and time delay) [10–14].

We analyzed these events and concluded that the main mech-
anisms in rockburst are usually associated with local underground 
geometry, such as pillars and openings, and with the ground condi-
tions [15,16]. Rockbursts are classified as strain bursts, pillar bursts, 
or fault slip bursts [17,18]. They usually occur during mining oper-
ations; however, they can also happen during the construction of 
civil underground structures, such as deep tunnels. In these cases, 
the most common phenomenon is strainbursting, although buckling 
and face crushing may also take place. In addition, impact-induced 
rockburst created by blasting, caving, and adjacent tunneling should 
be considered for less stressed and deformed rock formations.

The focus of this paper is on rockburst risk assessment, on the 
different types of rockburst events, and on their consequences to 
underground mining and construction. Two rockburst databases 
that were assembled by these authors are discussed. The first con-
sists of a collection of rockburst laboratory experiments that were 
performed at the State Key Laboratory for GeoMechanics and Deep 
Underground Engineering (SKL-GDUE) in Beijing and that were the 
object of a publication in the journal of Engineering Geology for geo-
logical and geotechnical hazards [6]. The second consists of world-
wide in situ cases of rockburst that occurred during mining and deep 
underground construction. The latter database was analyzed, and a 
list of factors that interact and influence the occurrence of rockburst 
was determined, along with the relationships between these factors. 
Finally, different DM techniques were applied to the rockburst da-
tabases with the aim of developing predictive models of rockburst 
index and type. The results are presented in detail in Sections 3 and 4, 
and the different techniques are compared.

2. Data mining modeling in geoengineering

The prediction of geotechnical formation behavior in geoen-
gineering is complex, particularly during excavations in mining 
engineering. This complexity is related to uncertainties in the rock 
mass characterization. In important projects, a large amount of geo-
technical data can assist in reducing uncertainties concerning the 
establishment of design values for the parameters [19]. In the case 
of rockburst occurrence, the problems are even more difficult to 
evaluate.

Such data can hold information on trends and patterns that can 
be used in decision-making and to optimize processes. Therefore, it 
is necessary to define standard ways of collecting, organizing, and 
representing data. DM techniques are automatic tools from artificial 
intelligence and pattern-recognition fields that enable the discovery 
of potential knowledge [20–23]. DM is an area of computer science 
that lies at the intersection of statistics, data management and data-
bases, machine learning, artificial intelligence, pattern recognition, 
and other areas.

The formal and complete analysis process is called knowledge 
discovery from databases (KDD). KDD establishes the main proce-
dures for transforming data into knowledge. The KDD process fol-
lows the steps indicated in Fig. 1 [20]: collection of a target dataset, 
data warehousing, transformation of the data into adequate forms 
for the DM process, selection of a DM tool, relationship identifica-
tion of DM (classes, clusters, associations), interpretation of results, 
and consolidation of discovered knowledge.

Several DM techniques exist, each with its own purposes and 
capabilities. These include decision trees (DTs) and rule induction,  

neural networks, fuzzy modeling, support vector machines (SVMs),  
k-nearest neighbors (k-NN), Bayesian networks (BNs), instance- 
based algorithms, and learning classifier systems, among others 
[24–27].

Studies using a formal KDD framework are still uncommon in 
rock mechanics-related activities; however, when applied, they 
can provide important insight into the most influential parameters 
in the behavior of rock masses. An important example of such ap-
plications is a study done for the Deep Underground Science and 
Engineering Laboratory, which is located at the former Homestake 
gold mine in the United States [28]. Here, innovative regression 
models using different DM techniques were developed to analyze 
the strength and deformability of the host rock mass and to deter-
mine geomechanical indexes for the project [29]. One of the most 
important tasks in the KDD process is the DM step, which consists 
of choosing a learning algorithm for training and ultimately building 
a model that represents the data. Once the training phase is com-
pleted, the obtained model is evaluated using a test dataset that was 
not used during the learning process. The results consist of several 
different models; there is no universal model that can be used to 
efficiently solve all the problems.

A brief overview of the most relevant algorithms applied in pre-
vious studies is presented here. A DT is a tree-like graph that repre-
sents a set of rules for classifying data. These rules can be learned by 
using a class-labeled training dataset [27]. Artificial neural networks 
(ANNs) are a deep-learning technique that is modeled after the way 
in which neurons operate within the human brain [29]. ANNs are 
formed by groups of artificial neurons connected in layers; signals 
travel from the first (input) layer to the last (output) layer, forming 
a structure that is similar to that of brain neurons. These networks, 
which can be learned from data, are particularly useful in complex 
applications to recognize patterns and predict future events. SVMs 
are supervised learning models that are normally used for data 
classification and regression analysis. Given categorized training 
data, SVMs determine an optimal plane that defines the decision 
boundaries, that is, the distance between classes [19]. Finally, BNs 
are graphical representations of the joint probability of a certain do-
main under certain simplifying assumptions [2,29].

Rockburst is affected by different factors. The influence diagram 
in Fig. 2 [2] lists the factors that affect the probability of a rockburst 
and its potential consequences. Influence diagrams such as this are 
very important in the design of DM models for the analysis of acci-
dental events such as rockburst.

Successful applications of DM to different types of problems al-
ready exist in the field of geoengineering [19]. Concerning rockburst 
phenomena, DM techniques were successfully applied to a rockburst 
laboratory test database obtained from tests at SKL-GDUE, China 
[6]. The developed triaxial rock test machine used to model the 
rockburst is presented in Fig. 3 [6,30]. This equipment forms a true 
triaxial testing scheme; during the test, one surface of the specimen 
can be immediately unloaded from the true triaxial compression 

Fig. 1. DM and the knowledge-discovery process [20].
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struction/mining were collected via extensive research into publica-
tions and reports, and were organized into a database. The rockburst 
cases were classified according to their geometric characteristics, 
causes, and consequences. DM techniques were then applied to the 
database, with the aim of developing rockburst predictive models 
[31]. In order to understand the circumstances in which rockbursts 
occur, their magnitude, and the different consequences of rockburst, 
we gathered as much information as possible on different aspects 
of the cases that could provide relevant information about the oc-
currence of the rockburst. For this purpose, a form was created that 
included eight fields, each with one or more variables. The eight fields 
included: ① rockburst occurrence, ② construction procedure, ③ tun-
nel shape or geometry, ④ rock strength, ⑤ in situ existing stresses,  
⑥ location and dimensions of the rockburst, ⑦ severity and time 
delay, and ⑧ damage in the tunnel and associated equipment. The 
database contains 60 cases—a relatively small number. However, 
we believe that it constitutes an important first step in the devel-
opment of more complex models in future. One important feature 
of the database is that most of the collected rockburst cases (91%) 
occurred during the construction of hydroelectric underground 
power schemes. It is important to emphasize that a large number 
of the cases in which rockburst took place were located in deep un-
derground mines. The collected data is confined to drill-and-blast 
and tunnel-boring machine excavation methods, and the shapes of 
the tunnels where the rockburst cases occurred were either circular 
(67%) or horseshoe (33%).

Different levels of rockburst were classified, as shown in Table 1,  
following the experience gained at the Jinping II hydropower 
scheme in China [9]. Fig. 4 gives the distribution of cases in the da-
tabase by rockburst type. In this figure, the Overbreak situation cor-
responds to levels C and D.

Several DM techniques were applied to the database, including 
DT, k-NN, ANN, and SVM, with the aim of developing rockburst pre-
dictive models. The R environment [32] and the rminer package de-
veloped by Cortez [33] were used for the implementation of all DM 

condition. In this way, it is possible to simulate the stress condition 
of the rock mass at the free excavation boundary in an underground 
excavation [30].

The database included a total of 139 cases with samples from 
different rock types located in China, Italy, Canada, and Iran. Two in-
dexes were developed and used: σRB, the rockburst maximum stress, 
and IRB, the rockburst risk index. The meaning of these indexes is 
described in detail in the publication of He et al. [6]. DM techniques 
were applied to the rockburst database to infer prediction models of 
the indexes σRB and IRB. σRB is the rupture stresses that are obtained 
in rockburst tests, while IRB is related to the rockburst critical depth 
[6]. New models were established using multiple regression (MR), 
ANNs, and SVM algorithms.

3. In situ rockburst database and data mining

In situ cases of rockburst that have occurred during tunnel con-

Fig. 2. Influence diagram of rockburst [2].

Table 1
Classification of different levels of rockbursts.

Level A Level B Level C Level D

Description Slight Moderate Strong Very strong

Duration Sporadic explosion Long duration Fast Sudden

Block depth (m) < 0.5 0.5–1.0 1.0–2.0 > 2.0

Impact in excavation Small Certain impact Reasonable impact Large impact

Fig. 3. Rockburst laboratory testing system. Fig. 4. Distribution of cases by rockburst type.
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techniques.
For the prediction of in situ rockburst type, a set of nine variables 

was considered: 
• L: Length of occurrence (m)
• TESC: Type of excavation
• TSUP: Type of support
• UCS: Unconfined compressive strength (MPa)
• E: Young’s modulus (GPa)
• K: horizontal vs. vertical stresses ratio K0

• FORM: Shape of the tunnel
• Deq: Equivalent diameter (m)
• Req: Equivalent radius (m)
The aim of this analysis was to develop models that would allow 

the prediction of the type of rockburst, given certain conditions 
and characteristics related to the underground work. For validation 
purposes, a leave-one-out method [34] was applied under 20 runs. 
The leave-one-out method consists of sequentially using one case 
to test the model, while the remaining cases are used to determine 
the model’s structure. As a result, all data is used for training and 
testing. By using this method, N models are fitted, where N is the 
number of available data points. The final generalization estimate is 
evaluated by computing evaluation metrics for all N test samples.

For the evaluation and comparison of the models, we used three 
classification metrics based on a confusion matrix (Fig. 5): recall, 
precision, and F1 score. The recall measures the ratio of how many 
cases of a certain class were properly captured by the model. In oth-
er words, the recall of a certain class is given by 

 

True positivesRecall =
True positives + False negatives   (1)

On the other hand, the precision measures the correctness of the 
model when it predicts a certain class. More specifically, the precision  

of a certain class is given by 

 
True positivesPrecision =

True positives + False positives  (2)

The F1 score represents a tradeoff between the recall and preci-
sion for a given class. It corresponds to the harmonic mean of preci-
sion and recall, according to the following expression: 

 
2Precision RecallF1 score =
Precision+Recall

×
 (3)

For all three metrics, a higher value indicates better predictions.
Fig. 6 shows and compares the DM models’ performance for in 

situ rockburst prediction based on recall, precision, and F1 score. 
Except for the Moderate rockburst level, all models presented a very 
good response, with F1 scores very close to 100%. The low perfor-
mance in predicting the Moderate class was expected, since only a 

Fig. 5. Establishment of a confusion matrix.

Fig. 6. Comparison of DM models’ performance for in situ rockburst prediction based on recall, precision, and F1 score metrics.
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few records were available for this class in the database for model 
training (around 7%, as shown in Fig. 4). However, we are confident 
that it will be possible to improve the model’s response once more 
data for this class becomes available.

Another outcome of the application of the abovementioned DM 
techniques is the possibility of obtaining the importance of each of 
the model variables through sensitivity analysis [35]. Hence, and 
according to the ANN model, the relevant variables are K, TSUP, and L, 
which have a total influence of around 57% (Fig. 7).

4. Application of the Bayesian network classifiers

BNs, which are graphical representations of joint probability 
distributions under certain simplifying assumptions [2,36], were 
also applied to the database. The techniques used included: naive 
Bayesian classifiers, which are simple probabilistic classifiers based 
on Bayes’ theorem, and which are a particular class of BN with as-
sumed independence between predictors; tree-augmented naive 
Bayesian (TAN) classifiers, which are an extension of naive Bayesian 
classifiers in which each attribute variable has one parent variable 
between the other attributes; and augmented naive Bayesian (ANB) 
classifiers, which are semi-naive structures.

Several sensitivity studies were performed to determine the most 
influential variables in the prediction of rockburst type. These were 
found to be: ① TSUP, ② K, ③ UCS, ④ Deq, and ⑤ ORIENT (only for 
the naive Bayesian and the TAN models; note that ORIENT refers to 
the orientation of the burst in the periphery of the excavation). The 
“best” BN classifiers are indicated in Fig. 8.

The networks were validated using a five-fold cross-validation 
method. The results of the different models are shown in Fig. 9. 
One can observe that the application of a TAN classifier results in a 
slightly improved classification compared with the application of 
the other two models. This is expected, as a TAN classifier normally 
has a better classification performance than a standard naive Bayes-
ian classifier. Naive BNs are very simple representations of a prob-
lem; although this can be an advantage, the independence assump-
tion that is made in these models is often incorrect and unrealistic. 
TANs are improved versions of naive BNs that consider dependence 
between attributes in the models; they are therefore normally more 
realistic than naive BNs. The downside is that the process of adding 
dependencies between variables in order to capture correlations be-
tween the attributes increases the computational complexity.

Finally, the confusion matrix for the naive Bayesian model and 
for the TAN model (i.e., the lowest and highest accuracy of the “best” 
models) are presented in Table 2 and Table 3, respectively. One can 
observe that the naive Bayesian model classifies all cases of Over-
break correctly. It also classifies 83% of Strong rockbursts correctly, 
and classifies 25% and 87.5%, respectively, of Moderate and Slight 
rockbursts correctly. The TAN model performs slightly better, clas-
sifying Overbreak and Strong rockbursts correctly in all cases. How-
ever, like the naive Bayesian model, this model cannot accurately 
classify all Moderate and Slight rockbursts; it correctly classifies 
only 80% and 87.5% of these cases, respectively. This result may be 
explained by the small number of cases in these two categories; we 
believe that extending the database in future may help to improve 
the overall accuracy of the models.

5. Conclusions

Several effective design methods are available to deal with 
ground fall in mining. However, this is not the case for rockbursts 
or for seismicity-related mine design problems. Modeling analyses 
have become a fundamental tool for assessing potential undesirable 
events, and their cost is only a small fraction of the potential ben-
efits to excavation operations. A large variety of numerical analysis 
methods can and have been applied to underground engineering 
in order to assess the potential for the occurrence of rockburst. 
Monitoring of seismic events and visualization techniques in deep 
tunnels and mining activities are very useful tools for predicting 
potentially hazardous situations in order to assist the construction 
team in time.

Rockbursts are a type of event that can range from minor spalling 
to significant volumes of rock falling or being ejected with high 
energy, with devastating consequences. These phenomena are 
commonly reported in deep underground mining structures, but 
can also occur in deep tunnels such as the Jinping II hydropower 
scheme. This paper emphasized the importance of a rockburst triax-
ial experimental system for the prediction of these types of events, Fig. 7. Importance of variables according to the ANN model.

Fig. 8. Bayesian network classifiers. Accident type: type of rockburst; TSUP: type of support; K: horizontal vs. vertical stresses ratio K0; Deq: equivalent diameter of the tunnel; UCS: 
unconfined compressive strength; ORIENT: orientation of the burst in the periphery of the excavation.
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both in mining and in other deep underground projects. In addition, 
a previous analysis of rockburst test results allowed these authors 
to develop predictive models to estimate rockburst maximum stress 
and risk indexes.

A database of rockburst accidents that have occurred in mines 
and other underground works around the world, such as under-
ground hydropower systems, was created for this study. Data analy-
sis showed that a considerable percentage of accidents occur as a re-
sult of excessive loads, generally at depths greater than 1000 m. The 
application of various DM techniques yielded different predictive 
models that focused on the determination of rockburst level, given 
geologic and construction-related parameters. All the developed 
models showed a high accuracy rate, allowing the importance of the 
several parameters involved in the prediction of rockburst level to 
be identified. In the case of BN classifiers, the models also allowed 
the relationship between these variables to be identified.
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