

Contents lists available at ScienceDirect

Engineering

journal homepage: www.elsevier.com/locate/eng

Research Material Science and Engineering—Article

原子界面催化合成 SnP/CoP 异质纳米晶嵌入碳杂化物用于高功率型锂离子电池

胡晨^a,胡彦杰^a,陈爱平^a,段学志^b,江浩^{a,*},李春忠^{a,b,*}

^a Key Laboratory for Ultrafine Materials of Ministry of Education, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China

^b Shanghai Engineering Research Center of Hierarchical Nanomaterials, School of Chemical Engineering, East China University of Science and Technology, Shanghai 200237, China

ARTICLE INFO

Article history: Received 1 December 2020 Revised 14 November 2021 Accepted 19 November 2021 Available online 31 May 2022

关键词

催化磷化 磷化锡 异质纳米晶 快速充电 锂离子电池

摘要

磷化锡(SnP)具有极佳的锂离子扩散能力和高理论比容量,是高功率锂离子电池的理想负极材料。然而, SnP的合成难度高,大尺寸晶粒导致的电化学不可逆也阻碍了其应用。根据密度泛函理论(DFT)计算, 使用原位催化磷化方法可以显著降低SnP的相对生成能。因此,我们在还原氧化石墨烯(rGO)包裹的碳骨 架内合成了SnP/CoP异质纳米晶。所得复合材料具有超快充放电能力(50 A•g⁻¹时容量为260 mA•h•g⁻¹), 且循环1500次不会出现容量衰减(2 A•g⁻¹时容量为645 mA•h•g⁻¹)。充放电机理分析表明尺寸为4.0 mm的 SnP/CoP纳米晶具有高反应可逆性,且CoP在较高电位生成的金属Co加速了低电位SnP反应的动力学, 从而赋予材料超快充放电能力。相对电流密度的有限元模拟进一步验证了这一现象。

© 2022 THE AUTHORS. Published by Elsevier LTD on behalf of Chinese Academy of Engineering and Higher Education Press Limited Company. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. 引言

拥有超快充放电能力的锂离子电池(LIBs)将大幅提 升公交车、出租车等纯电动载具的全天候工作能力[1–3]。 然而,由于大电流的充放电容易造成负极严重的结构崩坏 和大量的"死"锂产生,因而开发具备快速脱嵌Li⁺和高 可逆性的实用负极材料成为了核心问题[4–5]。研究发现, 材料的快速充放电性能主要与其本征Li⁺扩散系数(D_{Li}) 有关[6–7]。Sn的 D_{Li} 值约为10⁻⁶ cm²·s⁻¹ [8–10],几乎是Si 和石墨的1000倍[11–12]。此外,Sn-Li合金的形成能(E_{f}) 为–0.573 eV(1 eV = 1.602176×10⁻¹⁹ J),远低于Si和Ge (+0.401 eV, –0.285 eV)[13],因而受到广泛关注。其中, SnP材料具备垂直于 c轴的Li⁺快速扩散通道和 815 mA·h· g⁻¹的实际容量[14],其嵌锂生成的Li₃P 也是快Li⁺导体 $(D_{Li^+} \approx 3 \times 10^{-3} \text{ cm}^2 \cdot \text{s}^{-1})$ [15],这些本征优势使其成为高功 率 LIBs 负极材料的有力候选。

Sn基负极材料的储锂机理一般包括在较高电位进行 的转化反应(SnA_x + Li⁺ + e⁻ →→ Li_yA + Sn)和随后的合 金化反应(Sn + Li⁺ + e⁻ →→ Li_zSn)[16–17]。在脱锂过程 中,Li_xA 与 Sn 的原子级接触可以极大提高转化反应的可 逆性,这就需要材料的晶粒尺寸小于 10 nm [18–19]。然 而,如此小尺寸的纳米晶体表面能高,在循环过程中会自 发地团聚和粗化,导致容量快速衰减[20–21]。因此,在 反复的充放电过程中稳定纳米晶是重中之重。此外,热力

^{*} Corresponding authors. E-mail addresses: jianghao@ecust.edu.cn (H. Jiang), czli@ecust.edu.cn (C. Li).

^{2095-8099/© 2022} THE AUTHORS. Published by Elsevier LTD on behalf of Chinese Academy of Engineering and Higher Education Press Limited Company. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/). 英文原文: Engineering 2022, 18(11): 154–160

引用本文: Chen Hu, Yanjie Hu, Aiping Chen, Xuezhi Duan, Hao Jiang, Chunzhong Li. Atomic Interface Catalytically Synthesizing SnP/CoP Hetero-Nanocrystals within Dual-Carbon Hybrids for Ultrafast Lithium-Ion Batteries. *Engineering*, https://doi.org/10.1016/j.eng.2021.11.026

学亚稳态的SnP通常具有较高的生成能[22-23],使得其控制合成非常困难。目前主要采用真空淬火法和高温熔盐法合成粒径为数百纳米的SnP[24-25],其循环稳定性极差。例如,尺寸约500 nm大小的SnP颗粒在0.12 A·g⁻¹的电流密度下[122]仅仅经历40次循环容量就衰减了10%[14]。最近,非化学计量的SnP_x基杂化物被报道具有较优异的电化学性能[26-29]。例如,几十纳米的碳包覆Sn₄P₃材料可以稳定循环100次,这些研究再次激起了人们对SnP的研究兴趣[30-31]。然而,开发一种简单、低温的合成策略来控制SnP的尺寸并提升材料电化学反应动力学仍然极具挑战性。

在此,我们开发了一种原子界面催化磷化策略,将 SnP/CoP异质纳米晶体限域在rGO包覆的碳基纳米立方体 中(TCP@C/rGO)。密度泛函理论(DFT)计算表明,当 SnO₂在CoP表面磷化时,SnP的形成能由+0.12 eV显著降 低到-2.05 eV。此外,CoP除了承担催化磷化作用,其本 身也是一种转化反应型负极材料。CoP的嵌锂反应电位低, 转化形成的金属Co可以加速电子传输并提升后续SnP的嵌 锂反应动力学,赋予其超快充放电能力。TCP@C/rGO在 50 A·g⁻¹的电流密度下(充电仅约19 s)可逆比容量达到了 260 mA·h·g⁻¹。同时,异质纳米晶被限域在碳骨架内,从 而有效地抑制了晶粒粗化,TCP@C/rGO在2.0 A·g⁻¹条件 下循环1500次几乎没有容量衰减(645 mA·h·g⁻¹)。

2. 材料和方法

2.1. CoSn(OH)₆-citrate (Cit)纳米立方体的合成

所有试剂和溶剂纯度均为分析级,使用时无需进一步 纯化。将 $0.35 g SnCl_4 \cdot 5H_2O \setminus 0.238 g CoCl_2 \cdot 6H_2O \oplus 1.56 g$ 柠檬酸钠溶于 15 mL 去离子水中。然后加入 5 mL NaOH 水溶液(2 mol·L⁻¹)并磁力搅拌。1 h后,加入 20 mL NaOH水溶液(8 mol·L⁻¹)并继续搅拌 15 min。收集沉淀,用去离子水冲洗得到 CoSn(OH)₆-Cit 纳米立方体。

2.2. TCP@C/rGO复合材料的合成

将制备好的80 mg CoSn(OH)₆-Cit 纳米立方体和 6.2 mg氧化石墨烯(GO)超声分散于5 mL水中搅拌2 h。 将所得棕色悬浊液在液氮中迅速冷冻,冷冻干燥后得到 CoSn(OH)₆-Cit/GO前驱体。将5 g NaH₂PO₂·H₂O(国药集 团化学试剂北京有限公司)和50 mg CoSn(OH)₆-Cit/GO前 驱体分别置于管式炉的两个温区,NaH₂PO₂·H₂O在上温 区,CoSn(OH)₆-Cit/GO在下温区。在100 sccm(sccm指标 准状态下每分钟1 cm³的流量)的Ar气流下,以5°C·min⁻¹ 的速率升温到350 ℃并保温30 min得到TCP@C/rGO复合材料。

3. 结果和讨论

TCP@C/rGO复合材料的设计概念和合成路线如图1 所示。首先在柠檬酸盐阴离子 (Cit) 的存在下, 通过 Co²⁺、Sn⁴⁺和OH⁻共沉淀合成了CoSn(OH)₆-Cit纳米立方 体。在添加强碱溶液刻蚀后,立方体芯层生成[Co(OH),]²⁻ 和[Sn(OH)₆]²⁻并逐渐溶解而表面形成的耐碱腐蚀稳定氧化 层得以保留。同时,新暴露的带正电荷表面能够吸附溶液 中带负电荷的柠檬酸根离子。为了验证这一点,我们采用 类似的方法合成纯CoSn(OH)。立方体而不添加柠檬酸盐 (附录A中的图S1),其Zeta电位为+35.5 mV。相比之下, CoSn(OH)_c-Cit 立方体的 Zeta 电位降至+13.2 mV (附录A 中的图 S2)。所得带正电荷的 CoSn(OH)₆-Cit 空心立方体 能够在静电力的作用下均匀分散在带负电荷(-14.0 mV) 的GO表面上。根据以往文献的结果[32-33],传统的直接 磷化方法容易将锡基化合物转化为金属 Sn,而不是 SnP。 通过在350~500 ℃温度下磷化SnO,空心纳米球得到了高 纯度的金属Sn纳米粒子(附录A中的图S3),验证了这一 事实[34]。而在本文中, 仅在350℃下PH₄/Ar气氛中, 就 成功地将CoSn(OH)₆-Cit/GO复合材料磷化为相应的SnP/ CoP@C/rGO复合材料。附录A中的图S4提供了磷化过程 中的X射线衍射(XRD)和Raman 谱图变化,详细地揭 示了物质转化过程。研究人员发现,当温度升高到350℃ 时CoP首先形成。在350℃保温5~30 min的过程中,随着 SnO,的消失逐渐生成 SnP。这些结果表明, CoP能够催化 SnO,形成 SnP。而此种晶型的 SnP 具有独特的 Li⁺扩散通 道和层状晶体结构,比其他晶相更容易传输和存储 $Li^{+}[14]_{\circ}$

进一步,我们采用DFT计算了在有CoP和无CoP催化的情况下,SnO₂与PH₃反应生成不同产物的自由能,深入分析CoP的催化磷化机理。当直接磷化SnO₂时[图2(a)],生成金属Sn的相对自由能-2.57 eV比SnP(+0.12 eV)低得多。当引入CoP时,在CoP/SnO₂异质界面中观察到完全不同的结果。如图2(b)所示,与生成金属Sn(-0.22 eV)相比,CoP可以显著降低反应势垒并加速SnP的形成,其反应自由能为-2.05 eV。更为详尽的物质转化模型展示在附录A中的图S5、图S6中。值得注意的是,即使在CoP存在的情况下,金属Sn也很难磷化为SnP:我们在类似条件下将CoP和Sn纳米颗粒混合后进行磷化,物质组成与混合前相比没有变化(附录A中的

图1. 利用催化磷化策略设计和合成TCP@C/rGO的示意图。

图S7)。这些结果与上文的实验结论高度吻合。

TCP@C/rGO复合材料的形貌如图2(c)所示。 TCP@C为边长约200 nm的空心立方体,被rGO纳米片包 裹,插图为对应的电子选区衍射(SAED)图案,显示出 SnP和CoP的衍射环。扫描电子显微镜(SEM, S-4800, Hitachi Ltd., Japan) 图像显示材料具有较高的形貌一致性 (附录A中的图S8)。进一步放大TCP@C立方体的外壁可 以看到,由于CoP的催化磷化策略的成功,图2(d)中 观察到嵌入柠檬酸根衍生碳的 SnP/CoP 异质纳米晶广泛存 在。分别用白色(SnP)和黄色(CoP)虚线圆圈标记的 纳米晶呈现明显的交错排布。图2(e)中,0.30 nm和 0.32 nm的晶面间距分别对应 SnP的(002)和(101)晶 面。同样地,图2(f)中0.38 nm和0.28 nm的晶面间距对 应的是CoP的(101)和(002)面。SnP/CoP的异质结构 特征也能够通过X射线光电子能谱的价带谱(VB-XPS, AXIS Ultra DLD, Kratos Empire Ltd., China) 得到进一步 验证,如图2(g)所示。TCP@C/rGO由于异质界面的价 带弯曲,其价带最大值(VBM)为1.48 eV,介于纯CoP 的-0.22 eV和纯 SnP的2.25 eV之间。而 SnP-CoP@C/rGO 对比样由于未形成异质纳米界面,价带最大值 (VBM) 为-0.22 eV。对应的紫外可见谱(UV-vis, UV-2600, Shimadzu Co., Japan)中也可以观察到类似的现象(附录A 中的图S9),表明TCP@C/rGO的异质晶粒间存在广泛的 相互作用。我们利用 XPS(AXIS Ultra DLD, Kratos Empire Ltd., China) 对材料的电子结构进行了深入分析。如 图 2 (h) 中的 Co 2p 谱所示,与 SnP-CoP@C/rGO 相比, TCP@C/rGO 的 Co-P 峰出现了 0.8 eV 的蓝移,表明异质界 面处形成了 Co-P-Sn 键[35]。同样的,对应的 P 2p 谱中进 一步验证了这一点(附录 A 中的图 S10)。更为详尽的论 述见附录 A。

根据电感耦合等离子体质谱法(ICP-MS ELAN DRC-e, PerkinElmer, Inc., USA)结果,TCP@C/rGO杂化物中Sn、 Co和P的原子比为1:1:2,此三种元素在TCP@C/rGO杂化 物中的质量占比合计79.7%。随后,我们通过酸刻蚀完全 去除了SnP/CoP异质纳米晶,并对残余的碳骨架材料进行 比表面积分析和形貌观察。如附录A中的图S11所示,碳 骨架中留下了大量介孔,孔径分布测试曲线在4.0 nm处出 现强峰,印证了前述分析中TCP@C/rGO杂化物形成了嵌 入式纳米结构,表明在充放电循环过程中纳米晶的粗化可 以被有效抑制。基于以上讨论,附录A中的图S12给出了 SnP直接磷化和CoP催化磷化SnO₂的形成示意图。由于在 原子尺度上的紧密接触,界面催化磷化使SnO₂完全向SnP 转化。如果在颗粒尺度上发生磷化,则生成物主要成分为 金属Sn,仅在部分颗粒接触面上生成少量SnP,这一现象 在实验中得到了证实(附录A中的图S13)。

将TCP@C/rGO重新在Ar惰性气氛中退火4h和12h, 就可以得到晶粒尺寸约20nm和50nm大小的类似复合材 料作为对比样,分别记为TCP-1@C/rGO和TCP-2@C/rGO

8.

~{

CoP-catalyzed phosphorization

图2. SnO,直接磷化(a)和在CoP表面催化磷化(b)的反应自由能和反应状态;TCP@C/rGO复合材料的高分辨率(c)和高倍率(d~f)TEM图像 (插图为SAED图);样品的VB-XPS谱(g)、XPS Co 2p谱(h)。

(附录A中的图S14),并对上述三个样品进行了充放电测 试。TCP@C/rGO的首次库仑效率为74.1%。图3(a)给 出了在0.5 A·g⁻¹电流密度下的平均可逆质量比容量。结果 表明,随着材料中异质纳米晶粒尺寸的增大,其可逆比容 量呈现降低趋势。目标样TCP@C/rGO在0.5A·g⁻¹下的最 高容量为907 mA·h·g⁻¹。更令我们感到惊讶的是它具有超 快的充放电能力和超稳定的循环性能。即使在50A·g⁻¹下 进行高功率测试 (充电仅需19s), TCP@C/rGO的可逆比 容量也能够达到260 mA·h·g⁻¹。如图3 (b) 所示,在 2.0 A·g⁻¹的条件下进行1500次循环后,容量始终保持在 645 mA·h·g⁻¹,即使在10.0 A·g⁻¹条件下进行500次循环后, 也能实现82%的容量保持率(附录A中的图S15)。相比之 下, TCP-1@C/rGO 仅在300次循环后容量就从522 mA·h· g⁻¹下降至247 mA·h·g⁻¹。TCP-2@C/rGO在200次循环后仅 有21.1%的容量保持率。倍率和循环性能表明,材料粒径 对其高功率性能和循环稳定性均有显著影响。我们量化了 多个关键指标,包括可逆比容量、高功率充放电用时、不 同电流密度下的循环寿命等,将本工作中的TCP@C/rGO 与一些典型的Sn基负极材料进行了比较[36-41],如图3 (c) 所示。TCP@C/rGO表现出明显增强的LIBs性能。

图3(d)给出TCP@C/rGO在3.0mV·s⁻¹扫速下循环 100个周期的CV曲线。曲线重叠良好,氧化还原峰逐渐 轻微地向低电位移动,表明电化学极化逐渐降低,充放电 可逆性较高。相反,TCP-1@C/rGO的氧化还原峰没有发

生偏移,而是强度不断降低(附录A中的图S16),表明 当 SnP/CoP 纳米颗粒增加到 20 nm 时,可逆性相对较差。 附录A中的图S17和表S1还提供了上述两个样品在第 3次、第50次和第100次循环时的电化学阻抗谱(EISs)。 在100次循环后,TCP@C/rGO的电荷转移电阻(R_{r})从 21.7 Ω 降至 5.2 Ω, 而 TCP-1@C/rGO 从 95.7 Ω 增加到 205.6 Ω 。此外, TCP@C/rGO的Li⁺扩散系数($D_{r,*}$)高达 5.0×10⁻⁹ cm²·s⁻¹,在100次循环前后几乎保持不变,如图3 (e) 所示。插图给出了循环后的 TEM 图像, SnP/CoP 晶粒 在碳骨架中仍然保持约4 nm 的尺寸并均匀分布。TCP-1@C/rGO的D_{L+}值在第3次循环时仅为1.0×10⁻⁹ cm²·s⁻¹, 并在第100次循环时衰减为10⁻¹¹ cm² · s⁻¹(附录A中的 图 S18)。这些结果表明晶粒尺寸对电化学性能影响显著, 因而我们通过赝电容拟合研究两个样品在第3次和第100次 循环中的储锂行为。如附录A中的图S19所示,TCP@C/ rGO第3次和第100次循环时赝电容均占主导地位,占比分 别为76.8%和69.7%。不同的是,TCP-1@C/rGO在100次 循环后赝电容贡献有40%的显著降低。该分析表明,超小 SnP/CoP纳米晶粒具有更高且更稳定的赝电容容量贡献, 因而即使在超快的充放电速率下也具有高的比容量。

图4(a)提供了TCP@C/rGO在0.2 mV·s⁻¹下最初三 次充放电的CV曲线。在第一次锂化过程中,1.5 V的峰对 应于CoP和SnP转化为相应金属Co和Sn以及固体电解质 界面(SEI)膜的形成。0.01 V处的峰属于Sn的合金化生 成Li_xSn的反应。后续的充放电曲线高度重合。总的来说, CoP的氧化还原反应发生在红色区域内,其中,1.8 V和 2.5 V的峰对应于CoP+xLi \implies Co+Li_xP的可逆转化反

应。黄色区域发生的是 SnP 的可逆转化和合金化反应。由 于CoP转化为金属Co在高电位发生,能够自加速后续低 电位反应的电子转移,如插图所示。不同的是,TCP-1@C/rGO的CV曲线在高电位没有CoP可逆反应的氧化还 原峰,而是在与SnP近似的低电位才发生反应[图4 (b)]。这些现象表明,晶粒尺寸和材料脱嵌锂反应存在 明显的关联性。为了进一步阐明反应机理,我们在附录A 中的图 S20 中给出了 TCP@C/rGO 的充放电曲线和对应的 ex-XPS结果。电化学反应可以概述如下: CoP + xLi⁺ + $xe^- \Longrightarrow Co + Li_vP; SnP + yLi^+ + ye^- \Longrightarrow Sn + Li_vP; Sn +$ zLi⁺ + ze⁻ ↔ Li₋Sn。具体来说,在第一次放电过程中,伴 随着Co⁰和Sn⁰特征峰的出现,Co-P和Sn-P峰在1.0V完全 消失。进一步放电到0.01 V后, Sn^⁰的峰值向更高的结合 能移动,对应着Sn-Li合金特征峰。在接下来的充电过程 中, Sn-Li的峰消失, Sn⁰的峰在0.8 V出现, 然后在1.7 V 下完全转变为Sn-P键。当充电到3.0V时,Co-P峰重新出 现,而Co⁰峰消失。在第二次放电过程中,化学键的变化 与第一次几乎相同,表明电化学可逆性很高。CoP和SnP 之间的协同效应可以通过计算 GITT 的反应电阻进行进一 步验证(附录A中的图S21)[42-43]。TCP@C/rGO在约 2.0 V和约0.6 V时表现出两次明显的反应电阻降低,分别 对应于金属Co和Sn的生成。相比之下,TCP-1@C/rGO 在0.6 V时仅出现一次反应电阻降低,与上文分析一致。 附录A中的图S22和表S2给出了TCP@C/rGO电极从 3.0 V放电到 1.0 V 的 EIS 曲线, 阻值从 21.7 Ω 显著降低到 8.3 Ω, 也表明生成的金属Co使电荷转移大大增强。

随后,我们引入有限元模拟来深入分析碳骨架包覆的

图3. (a) 不同晶粒尺寸的 TCP@C/rGO 复合材料在 0.5~50 A·g⁻¹电流密度下的平均可逆比容量和 (b) 在 2.0 A·g⁻¹下的循环稳定性; (c) TCP@C/rGO 与 Sn 基负极材料文献的性能综合比较; (d) TCP@C/rGO 在 3.0 mV·s⁻¹扫速下循环 100 个周期的 CV 曲线; (e) TCP@C/rGO 循环 3 次和 100 次时的 GITT 曲线(插图为循环 100 次后的 TEM 图像)。CE: 库仑效率; C_{10} : 10 A·g⁻¹时的容量; C_1 : 1 A·g⁻¹时的容量。

图4.在0.2 mV·s⁻¹扫速下TCP@C/rGO(a)和TCP-1@C/rGO(b)的前三次CV曲线;(c)用于有限元模拟的TCP@C立方体接入电路的模型及其二 维截面示意图;不同晶粒尺寸模型的相对电流密度分布图(d)和晶粒中心处的平均电流密度(e);(f)不同程度CoP转化为Co的模型的相对电流密度分布图;(g)SnP晶粒中的平均电流密度和变异系数(δ)。

不同尺寸异质纳米晶的电流密度分布情况。首先,我们搭 建了一个如图4(c)所示的电路,并构建了碳包覆 SnP/ CoP异质纳米晶的二维截面模型。当碳骨架中 SnP/CoP异 质晶的尺寸为4 nm 和 20 nm 时,其相对电流密度分布如 图4(d)所示。导电碳骨架的电流密度约为 SnP/CoP 晶粒 内的 1000 倍,因此在大范围标尺图中,SnP/CoP 呈深蓝 色。将标尺局部放大后,SnP和 CoP 内的电流分布几乎相 同,这主要是因为它们的本征电阻位于同一数量级。显 然,尺寸为4 nm 的晶粒内电流密度远高于 20 nm 晶粒。 我们还模拟了其他尺寸晶粒的电流密度分布(附录 A 中的 图 S23)并统计晶粒正中心的平均电流密度值(*J*_c),结果 如图4(e)所示。可以发现,当晶体尺寸在4~20 nm 范围 内时,晶粒尺寸与电流密度呈一次函数关系。然而,当尺 寸小至2 nm时,电流密度变化并不显著,这说明减小晶 粒尺寸对导电性的提升是有限的,且TCP@C/rGO将晶粒 尺寸控制在4 nm 是合理的。我们进一步研究了嵌锂到 1.0 V时CoP转化为Co的程度(*D*_c)对模型内电流密度分 布的影响(附录A中的图S24)。图4(f)给出了初始态 (CoP未转化为Co, *D*_c=0)和终态(全部CoP都已转化 为Co, *D*_c=100%)时SnP晶粒内的电流密度分布。结果 表明,CoP的完全转化可以显著增加电流密度。我们引入 变异系数(δ)来评估电流密度分布的均匀性,δ是数据标 准差与平均数相除得到的数值,可以衡量有限元模拟体系 中电流密度在二维平面上分布的均匀程度。δ越小,表明 整个体系中的电流密度分布越均匀,越有利于电化学反应 在电极片的所有位置上都能均匀同步地进行。模拟所得 SnP晶体中的平均电流密度 (J_a) 、δ以及 D_c 的关系如图4 (g)所示。当 D_c 从0增加到100%时, J_a 的值从52A·cm⁻² 增加到229A·cm⁻²。在 CoP 逐渐转化为 Co 的过程中 $(D_c = 25\% - 87\%)$, Co 附近的 SnP 晶粒的 J_a 值始终高达 200A·cm⁻²,而处于 CoP 附近的 SnP 晶粒的电流密度几乎 没有变化,因此相应的δ值较高。当 $D_c = 100\%$ 时,δ值降 至47.6%,表明 CoP 完全转化为 Co 最有利于改善 SnP 中的 电流分布。拟合结果与上述实验结论和分析是一致的。

4. 结论

总之,本工作使用低温CoP催化磷化策略来合成SnP/ CoP异质纳米晶嵌入rGO包覆碳骨架复合材料并将其应用 于高功率锂离子电池负极。其具有极佳的循环稳定性 (2A·g⁻¹下循环1500次容量为645 mA·h·g⁻¹)和超高的倍 率性能(50A·g⁻¹下容量为260 mA·h·g⁻¹)。DFT计算揭示 了当氧化锡在CoP表面磷化时,SnP的相对生成能显著降 低。ex-XPS分析和CV曲线阐明了SnP/CoP异质纳米晶的 脱嵌锂机理,发现其电化学可逆性与晶粒尺寸(<4 nm) 密切相关,且CoP在相对高电位下先转化形成的金属Co 可进一步加速SnP后续的嵌锂动力学,从而赋予其超快充 放电性能。通过有限元分析,进一步研究了SnP的相对电 流密度分布,结果表明,随着CoP向金属Co转化的D_c的 增大,SnP的电流密度显著增加。这一发现为促进高功率 型锂离子电池用Sn基负极材料的发展提供了深刻见解。

致谢

本工作得到了国家自然科学基金(21975074, 21838003,91834301)、上海社会发展项目(17DZ1200900)、 上海市科技创新项目(18JC1410500)以及中央高校基本科 研业务费专项经费(222201718002)的支持。

Compliance with ethics guidelines

Chen Hu, Yanjie Hu, Aiping Chen, Xuezhi Duan, Hao Jiang, and Chunzhong Li declare that they have no conflict of interest or financial conflicts to disclose.

Appendix A. Supplementary data

Supplementary data to this article can be found online

at https://doi.org/10.1016/j.eng.2021.11.026.

References

- Liu Y, Zhu Y, Cui Y. Challenges and opportunities towards fast-charging battery materials. Nat Energy 2019;4(7):540–50.
- [2] Zhao W. A forum on batteries: from lithium-ion to the next generation. Natl Sci Rev 2020;7(7):1263–8.
- [3] Babu B, Simon P, Balducci A. Fast charging materials for high power applications. Adv Energy Mater 2020;10(29):2001128.
- [4] Choi S, Kwon TW, Coskun A, Choi JW. Highly elastic binders integrating polyrotaxanes for silicon microparticle anodes in lithium ion batteries. Science 2017;357(6348):279–83.
- [5] Liu T, Chu Q, Yan C, Zhang S, Lin Z, Lu J. Interweaving 3D network binder for high-areal-capacity Si anode through combined hard and soft polymers. Adv Energy Mater 2019;9(3):1802645.
- [6] Jin H, Wang H, Qi Z, Bin DS, Zhang T, Wan Y, et al. A black phosphorusgraphite composite anode for Li-/Na-/K-ion batteries. Angew Chem Int Ed Engl 2020;59 (6):2318–22.
- [7] Wu Y, Wang W, Ming J, Li M, Xie L, He X, et al. An exploration of new energy storage system: high energy density, high safety, and fast charging lithium ion battery. Adv Funct Mater 2019;29(1):1805978.
- [8] Genser O, Hafner J. Structure and bonding in crystalline and molten Li-Sn alloys: a first-principles density-functional study. Phys Rev B 2001; 63(14): 144204.
- [9] Wen CJ, Huggins RA. Chemical diffusion in intermediate phases in the lithium– tin system. J Solid State Chem 1980;35(3):376–84.
- [10] Shi J, Wang Z, Fu YQ. Density functional theory study of diffusion of lithium in Li–Sn alloys. J Mater Sci 2016;51(6):3271–6.
- [11] Fedorov AS, Kuzubov AA, Eliseeva NS, Popov ZI, Visotin MA, Galkin NG. Theoretical study of the lithium diffusion in the crystalline and amorphous silicon as well as on its surface. Solid State Phenom 2014;213:29–34.
- [12] Levi MD, Aurbach D. Diffusion coefficients of lithium ions during intercalation into graphite derived from the simultaneous measurements and modeling of electrochemical impedance and potentiostatic intermittent titration characteristics of thin graphite electrodes. J Phys Chem B 1997;101(23): 4641–7.
- [13] Chou CY, Kim H, Hwang GS. A comparative first-principles study of the structure, energetics, and properties of Li-M (M = Si, Ge, alloysSn). J Phys Chem C 2011;115(40):20018–26.
- [14] Kim Y, Hwang H, Yoon CS, Kim MG, Cho J. Reversible lithium intercalation in teardrop-shaped ultrafine SnP0.94 particles: an anode material for lithiumion batteries. Adv Mater 2007;19(1):92–6.
- [15] Nazri G. Preparation, structure and ionic conductivity of lithium phosphide. Solid State Ion 1989;34(1-2):97–102.
- [16] Park MG, Lee DH, Jung H, Choi JH, Park CM. Sn-based nanocomposite for Liion battery anode with high energy density, rate capability, and reversibility. ACS Nano 2018;12(3):2955–67.
- [17] Liang SZ, Cheng YJ, Zhu J, Xia YG, Müller-Buschbaum P. A chronicle review of nonsilicon (Sn, Sb, Ge)-based lithium/sodium-ion battery alloying anodes. Small Methods 2020;4(8):2000218.
- [18] Hu R, Chen D, Waller G, Ouyang Y, Chen Yu, Zhao B, et al. Dramatically enhanced reversibility of Li₂O in SnO₂-based electrodes: the effect of nanostructure on high initial reversible capacity. Energy Environ Sci 2016;9(2): 595–603.
- [19] Xia Y, Han S, Zhu Y, Liang Y, Gu M. Stable cycling of mesoporous Sn₄P₃/ SnO₂@C nanosphere anode with high initial coulombic efficiency for Li-ion batteries. Energy Storage Mater 2019;18:125–32.
- [20] Wang J, Huang W, Kim YS, Jeong YK, Kim SC, Heo J, et al. Scalable synthesis of nanoporous silicon microparticles for highly cyclable lithium-ion batteries. Nano Res 2020;13(6):1558–63.
- [21] Ying H, Han WQ. Metallic Sn-based anode materials: application in highperformance lithium-ion and sodium-ion batteries. Adv Sci 2017; 4(11): 1700298.
- [22] Gullman J. The crystal structure of SnP. J Solid State Chem 1990;87(1):202-7.
- [23] Ritscher A, Schmetterer C, Ipser H. Pressure dependence of the tin-phosphorus phase diagram. Monatsh Chem 2012;143(12):1593–602.
- [24] Katz G, Kohn JA, Broder JD. Crystallographic data for tin monophosphide. Acta Crystallogr 1957;10(9):607.
- [25] Aso K, Kitaura H, Hayashi A, Tatsumisago M. SnP0.94 active material

synthesized in high-boiling solvents for all-solid-state lithium batteries. J Ceram Soc Jpn 2010;118(1379):620–62.

- [26] Liu J, Kopold P, Wu C, van Aken PA, Maier J, Yu Y. Uniform yolk-shell Sn4P3@C nanospheres as high-capacity and cycle-stable anode materials for sodium-ion batteries. Energy Environ Sci 2015;8(12):3531–8.
- [27] Wang W, Zhang J, Yu DYW, Li Q. Improving the cycling stability of Sn₄P₃ anode for sodium-ion battery. J Power Sources 2017;364:420–45.
- [28] Xu Y, Peng B, Mulder FM. A high-rate and ultrastable sodium ion anode based on a novel Sn₄P₃–P@Graphene nanocomposite. Adv Energy Mater 2018;8 (3): 1701847.
- [29] Choi J, Kim WS, Kim KH, Hong SH. Sn₄P₃-C nanospheres as high capacitive and ultra-stable anodes for sodium ion and lithium ion batteries. J Mater Chem A 2018;6(36):17437–43.
- [30] Ding Y, Li ZF, Timofeeva EV, Segre CU. *In situ* EXAFS-derived mechanism of highly reversible tin phosphide/graphite composite anode for Li-ion batteries. Adv Energy Mater 2018;8(9):1702134.
- [31] Fan X, Gao T, Luo C, Wang F, Hu J, Wang C. Superior reversible tin phosphidecarbon spheres for sodium ion battery anode. Nano Energy 2017;38: 350–7.
- [32] Wang A, Qin M, Guan J, Wang L, Guo H, Li X, et al. The synthesis of metal phosphides: reduction of oxide precursors in a hydrogen plasma. Angew Chem Int Ed Engl 2008;47(32):6052–4.
- [33] Yang Y, Zhao X, Wang H, Li M, Hao C, Ji M, et al. Phosphorized SnO₂/ graphene heterostructures for highly reversible lithium-ion storage with enhanced pseudocapacitance. J Mater Chem A 2018;6(8):3479–87.
- [34] Lou XW, Wang Y, Yuan C, Lee JY, Archer LA. Template-free synthesis of SnO₂ hollow nanostructures with high lithium storage capacity. Adv Mater 2006; 18(17):2325–9.

- [35] Li H, Zhu Y, Zhao K, Fu Q, Wang K, Wang Y, et al. Surface modification of coordination polymers to enable the construction of CoP/N, P-codoped carbon nanowires towards high-performance lithium storage. J Colloid Interface Sci 2020;565:503–12.
- [36] Jiang Y, Li Y, Zhou P, Lan Z, Lu Y, Wu C, et al. Ultrafast, highly reversible, and cycle-stable lithium storage boosted by pseudocapacitance in Sn-based alloying anodes. Adv Mater 2017;29(48):1606499.
- [37] Mo R, Tan X, Li F, Tao R, Xu J, Kong D, et al. Tin-graphene tubes as anodes for lithium-ion batteries with high volumetric and gravimetric energy densities. Nat Commun 2020;11(1):1374.
- [38] Zhou X, Dai Z, Liu S, Bao J, Guo YG. Ultra-uniform SnO_x/carbon nanohybrids toward advanced lithium-ion battery anodes. Adv Mater 2014;26(23): 3943–9.
- [39] Wu C, Maier J, Yu Y. Sn-based nanoparticles encapsulated in a porous 3D graphene network: advanced anodes for high-rate and long life Li-ion batteries. Adv Funct Mater 2015;25(23):3488–96.
- [40] Ferrara G, Arbizzani C, Damen L, Guidotti M, Lazzari M, Vergottini FG, et al. High-performing Sn – Co nanowire electrodes as anodes for lithium-ion batteries. J Power Sources 2012;211:103–7.
- [41] Ke FS, Huang L, Jamison L, Xue LJ, Wei GZ, Li JT, et al. Nanoscale tin-based intermetallic electrodes encapsulated in microporous copper substrate as the negative electrode with a high rate capacity and a long cycle ability for lithiumion batteries. Nano Energy 2013;2(5):595–603.
- [42] Yang Y, Qu X, Zhang X, Liu Y, Hu J, Chen J, et al. Higher than 90% initial coulombic efficiency with staghorn-coral-like 3D porous LiFeO_{2-x} as anode materials for Li-ion batteries. Adv Mater 2020;32(22):1908285.
- [43] Xu Y, Zhu Y, Liu Y, Wang C. Electrochemical performance of porous carbon/tin composite anodes for sodium-ion and lithium-ion batteries. Adv Energy Mater 2013;3(1):128–33.