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Application  Author Algorithm Inputs Content and innovation
Prediction of  Gamal et al. [6] and ANN Includes WOB, RPM and GA. Combination of mechanism model and
drillability ~ Asadi et al. [7] ANN algorithm
Li and Cheng [8] GA and ANN Bit type, drilling time, rotation, WOB, IGA-ANN avoids the local convergence in
etc. classical GA
Prediction of  Asadi [9] ANN UCS, BTS, and rock brittleness Combination of mechanism model and Al

bit wear

Sirdesai et al. [10]

MVRA, ANN, and ANFIS Includes compressive and tensile

algorithm

Comparison of various algorithms

strength and porosity

Kahraman et al. [11] Regression analysis
Lakhanpal and Samuel [12] Adaptive data analytics
Prediction of  Zhekenov et al. [13] RF

lithology

Includes UCS and BTS
Drilling parameters and ROP
RPM, ROP, WOB, TOB and SPP

Predict the value of CAI
Using EMD

Integrating ML with the mechanism

R2 GO SRR IR

Authors Methods/algorithms Inputs

Content/innovation

ANN and Monte-Carlo
ANN and GA

Batruny et al. [14]
Abbas et al. [15]
Tortrakul et al. [16]
Okoro et al. [17]
Rashidi et al. [18]

Big data analysis
ANN, PCA, and PSO
Clustering algorithm
Physics-based models
Gidh et al. [19] ANN

Losoya et al. [20] KNN, RF, and ANN

WOB, RPM, hydraulic, and formation properties
Nineteen parameters (i.e., geology, bit)

Database of neighboring wells

Drill bit images and drilling parameters

Drilling parameters

Real-time drilling parameters

Drilling parameters of neighboring wells

Includes WOB, RPM, TOB, ECD and MSE

ML-assisted bit selection and optimization
Drill bit selection and optimization

Bit and BHA selection

Drill bit selection

Drill bit design

Bit wear evaluation

Bit wear prediction and management

Drilling condition recognition

2.1.3. BT 54k

FHECFALEAEAL, N T BEH R TEFZ 90 Bl 5 2 M
Ji BERRHIE . TAESHEE R R 2 A S A4 et 5C R 07 T
B2 T INE S e EH DRl (1 R RS BANY A v fff T
TSR ZAE N AR, ERESR AL ST R AL TR S
B, RS FE SRS R . AR R AR AL L
P& 1 Bl TR ARG 1) 2 B B [21-30],  WLEK 3.

B AR B BE TN AR AR AL A, R I 3 e

R3 BETIET A IR

MASTIE L R R H SRS (nslhis. FdmE
&) [31-40], NS HCE REILAL 5 T i)t R T AR P A
FENH E, k4R,

2.2, FEIRBPUZE R BE T 5 Ak

KV FERR AL FH R LB ARH FU = s BOT A H
AL, ORI H TR A A BRI L & e S PR R 2 o
P, IR 5 B BT HUE, B2 FIRPUZ T iL

Authors Methods/algorithms Inputs

Content/innovation

Liao et al. [21] ANN

Thrust, RPM, flushing media, and compres- Bee colony optimize ANN

sive strength

Mehrad et al. [22]
Gan et al. [23]

COA, PSO, GA, SVR, MLP, and LMR
Hybrid SVM and eight other methods
Anemangely et al. [24] MLP-COA and MLP-PSO

Abbas et al. [25] ANN

Hegde et al. [26] Integrated RF, ANN and linear regression.

Han et al. [27] ANN and LSTM

Sabah et al. [28] FT, RF, SVM, MLP, BF, and MLP-PSO
Soares et al. [29] RF, SVM, ANN

Diaz et al. [30] MR and ANN

UCS, FR, WOB, depth, MD, and RPM
Depth, WOB, RPM, and flow rate
Rotary speed, WOB, and flow rate
MD and other 19 parameters

WOB, RPM, and flow rate

Includes WOB and normal compaction

Use a variety of algorithm

A hybrid model

MLP is combined with COA and PSO
Features are optimized using FSCARET

A better integration model

Includes well logging and mud logging data Timing relation of ROP
Includes WOB, RPM and flow rate
Depth, WOB, RPM, and flow rate

Comparison of multiple prediction models
The random forest has higher accuracy

Fast Fourier transform improves the model
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Authors Methods/algorithms Inputs

Content/innovation

Hegde and Gray [31] RF and PSO
Arabjamaloei and Shadizadeh [32] ANN and GA
and ECD
Bataee and Mohseni [33] ANN, LM, and GA
Nadaboost-ELM and
RBFNN-IPSO
LR, LDA, QDA,
SVM and RF

Gan et al. [34]

Oyedere and Gray [35]

Hegde et al. [36]

Momeni et al. [37] ANN and GA
Jiang and Samuel [38] BRNN and ACO
Zhang et al. [39] K-means

Moazzeni and Khamehchi [40] ROA

Includes FD, depth, SWOB, RPM and MW

Includes WOB, flow rate, RPM and UCS,

RF and gradient ascent Includes WOB, RPM and UCS

Includes hole size, WOB, RPM and MW
Includes depth, WOB, RPM, mud FR and GR
Includes depth, AC, GR, density, and UCS
Includes WOB and MSE

Includes WOB, RPM, Flow-rate and rock strength Coupling ROP, MSE and TOB models
Includes bit type, RPM, WOB, bit tooth wear

GA optimized ANN to obtain the optimal pa-

rameters

Includes bit diameter, depth, WOB, RPM and MW  Using GA to optimize real-time drilling parame-

ters

A novel two-level intelligent modeling method

The best classifier for each formation

Consider the effect of drilling vibrations

Using ROP model to optimize bit

ACO and BRNN were combined to optimize ROP
Enhancing ROP with lithology

Use ROA algorithm to optimize ROP
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Authors

Algorithms

Objectives

Contents

Wang et al. [41]

Selveindran et al. [42]

Lee et al. [43]
Vlemmix et al. [44]

Computer vision

LSTM

Geneti

Gradient-based search

Images showing oil and gas distribution

Well depth, inclination angle, and azi-
muth angle
¢ algorithm Production rate and cost

Net present value

method
Zheng et al. [45] MOC-PSO Length, torque, and well strain energy
Mansouri et al. [46] MOGA Length and torque
Wang et al. [47] Heuristic algorithm Total trajectory length, well profile ener-

Zheng et al. [48]
Liu and Samuel [49]

Analytical target cascading

Minimum energy method

gy, and target hitting
Length, torque, and profile energy

Minimum well profile energy criterion

Li and Tang [50] Mogi-coulomb condition =~ Measured depth
with MCM
Khosravanian et al. [S1] GA, ABC, ACO, and HS = Measured depth

Consider the reservoir-encountered rate as the target and the
build-up rate as the constraint

RNN classifies wells with similar trajectories

Improving both profit and cumulative production

Significant improvement in NPV of the well

Constructed neighbors affected the search
The adaptive function for parameter setting

Optimal clusters sidetracking horizontal
Decomposition of the objective functions yields a better result
Less electric power consumption

The stability of wellbore trajectory improved

ACO took less computational time than GA

®6  JFIRBUL I AL S HRALHE S IR

Authors

Algorithms

Inputs/objectives

Contents

Vabg et al. [52]

Koryabkin et al. [53]

Tunkiel et al. [54] RNN and MLP Logging parameters and well inclination parame-
ters

Noshi and Schubert [55]  ANN, AdaBoost, RF, Includes BHA, parameters of drill bit and logging

and GBM parameters

Lietal. [56] PSO with AHP Target hitting, lowest cost, and least drilling string
friction

Atashnezhad and Wood [57] PSO True measured depth

Sha and Pan [58] FSQGA True measured depth

Xu and Chen [59] Bat algorithm optimizer True measured depth

Halafawi and Avram [60]

Tree search algorithm

Lasso regression and RF

MCM

Well location and target location

Includes block position, WOB, ROP and SPP

Includes wellbore stability and stress determination

Evaluating results for the optimization of drilling
based on risk, value, and cost

The result shows MedAE of depth, inclination, and
azimuth

The study can predict 23 m, while the existing meth-
ods can only predict 7 m

The side forces in the form of seven dominant fac-
tors are primarily responsible

Numerical solutions are computed

Meta optimization helped PSO to perform better
The Fibonacci series enhanced the convergence speed
Stable wellbore trajectory designed

Optimal horizontal wellbore trajectories are designed

KT IFIRBULE VIR S PRI BT S BUIR

Authors

Methods/algorithms

Inputs/objectives

Contents

Zalluhoglu et al. [61] Physics-based and self-learning model

Sugiura et al. [62]

Physics-based models

and LWD

and LWD

Real-time parameters from RSS, MWD,

Real-time parameters from RSS, MWD,

Steering decisions given the BHA configuration

Saving four days compared with non-high-dogleg
RSS runs

Zhang et al. [63] Dual-loop feedback cooperative control
method
Song et al. [64]

Kullawan et al. [65]

Physics-based models

Discretized stochastic

Real-time parameters from RSS, MWD,
and LWD
Real-time parameters from RSS

Real-time parameters from LWD

Trajectory tracking control for RSSs

Tracking-based tool faces positioning on RSS

Decision-oriented geosteering
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Application Authors Algorithms Input parameters Content/innovation
Prediction of formation Kazei et al. [66] CNN and Zero-oftset VSP and well-logging Predict the rock mechanics of the lower part
pressure pre-drilling LSTM of the bit

Monitoring of forma-  Rashidi and Asadi [67] ANN

tion pore pressure in

real-time Ahmed et al. [68] ANN
WOB
Vefring et al. [69] LM and Kal-
man filter

Post-drilling assess- Zambranoet al [70]
ment of formation

pore pressure Mylnikov et al. [71] ANN

Booncharoen et al. [72]  Quantile,
Ridge, and
XGBoost

Naeini et al. [73] DNN

ray and density

MSE and DE

Pump rate, SPP, RPM, ROP, torque, and

Pump pressure, BHP, outlet rates

DT, RF, SVM, Includes gamma-ray, bulk density and

and AdaBoost  deep resistivity

TVD and acoustic well-logging

Includes net sand thickness, porosity and

Includes compressional velocity, gamma-

Using MSE and DE to predict the formation
pressure

Using mechanical and hydraulic parameters
to monitor formation pressure

Inversion of the pore pressure based on the
drilling parameters

Using the parameters of the normal compac-
tion trend line as the input

Using the vertical depth and sonic logging to
establish a formation pressure evaluation
model

Considering the influence of reservoir param-

water saturation eters

Three neural network models are connected

in series to predict geomechanical parameters
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Application  Authors Algorithms Input parameters Main content
Bottom hole Liang et al. [74] GA-BPNN Includes inlet and outlet flow, overflow  Real-time prediction of BHP
pressure time and depth
Al Shehri et al. [75] FCNN and LSTM Water-gas ratio, well depth, wellhead Considering the sequence of BHP and the
temperature, and pressure flow mechanism
Fruhwirth et al. [76] BPNN and SVM Includes engineering parameters and Integration parameters enhance model gener-
combine parameters alization ability
Zhang and Tan [77] Naive Bayesian Engineering parameters and combina- ~ Improved the prediction accuracy
tion parameters
Lietal. [78] Mechanism-based BPNN Incline angle, surface velocity, and sur-  Broadened the model application range
models face tension
Gola et al. [79] Grey box Includes pump flow, throttle valve open- Combine mechanism and Al model for a sta-
ing, back pressure and pump flow rate  ble result
Feili et al. [80] Neural fuzzy system Various engineering parameters Higher prediction accuracy
Ashena et al. [81] ANN Various engineering parameters Higher prediction accuracy
ECD Alsaihati et al. [82] ANN Various engineering parameters Various Al models were compared

and Alkinani et al. [83]

Han et al. [84] ARIMA-BP

Elzenary et al. [85]

BHP sequence

Adaptive fuzzy neural network ROP, inlet density, and riser pressure

ARIMA-BP model captures the linear and
nonlinear trend

Fuzzy logic enhances generalization
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Application  Author Algorithms Input parameters Main content
Wellbore Jahanbakhshi et al. [86] PCA and ANN Geological, engineering parameters, and mud PCA implements dimension reduction of in-
stability properties put factor
Okpo et al. [87] ANN ROP, pressure, MD, and other 26 parameters Integrated drilling, geological and reservoir
information
Lin et al. [88] BRNN and SVM ROP, BHA, depth, and other 20 parameters Noise and variation in data were eliminated
by EMD
Tewari [89] RF, ANN, and SVM Includes FR, well angle, well depth and ROP Accurately predict wellbore stability in devi-
ated wells
Drilling risk  Mohan et al. [90] Monte Carlo Includes well trajectories, completions and his-  Risk can be integrated into the system in real-
torical events time to ensure model timeliness
Lietal. [91] FL Drilling monitoring parameters Grade classification of nine risks
Yin et al. [92] Bayes and FL Formation pressure, fluid density, and drilling The probability profile of risk is established
parameters by FL
Blowout Sule et al. [93] Bayesian networks ~ Wellhead back pressure, BHP, etc. A 7-level classification of blowout risk
and gas Yin et al. [94] LSTM and RNN Includes flow difference, pool volume and WOB A 5-level classification of gas kick
kick Yin et al. [95] LSTM Includes flow difference, pool volume and WOB  Data preprocessing reduces late warning time
Muojeke et al. [96] ANN Includes downhole pressure, inlet-outlet flow Data from laboratory risk experiments
and density
Lost circula- Liang et al. [97] ANN and PSO- Includes pore pressure, fracture pressure and A risk level index was constructed by FL
tion SVR BHP
Pang et al. [98] Mixture density net- FR, density, cell volume, and hook load Accurate warning of loss risk
works
Lietal. [99] BPNN, SVM and RF Includes MD, filtration loss and pump pressure ~ Real-time prediction of loss level
Hou et al. [100] ANN Formation, fluid, and engineering parameters Well loss probability distribution of six grades
Alkinani et al. [101] SVM MW, equivalent loss density, and yield point Classification and identification of loss degree
Shi et al. [102] RF and SVM Includes flow, pressure and temperature Data preprocessing can reduce detection time
Stuck Mopuri et al. [103] CNN, SVN, and RF Includes Torque, ROP and bit position Reverse learning of a few sample data

Al Dushaishi et al. [104] DT

Includes rotation speed, BHA and fluid parameters

Sticking prediction under different conditions

R11 JFEREVEE R IR

Application  Authors Algorithms Input parameters Main content
Wellbore Siahaan et al. [105] Adaptive PID Wellhead throttle valve Based on real-time data, not limited by
pressure prior knowledge
Zhou et al. [106] Adaptive predictor control Backpressure pump and throttle valve Considered time delay of wellbore pres-
sure transmission
ECD Yin et al. [107] Wellhead control equipment ~ Backpressure pump and throttle valve =~ Automatic management of gas kick
BHP Pedersen and Godhavn [108] MPC Backpressure pump and throttle valve  Pressure control under different conditions

Lietal. [109]
Nandan and Imtiaz [110]
Nandan et al. [111]

Adaptive controller

NMPC

Robust gain switching control

Backpressure pump, throttle valve, FR

Backpressure pump

Backpressure pump and throttle valve

Robust to BHP noise
Constant BHP after kick

The robustness of the controller is en-

hanced
Sule et al. [112] NMPC Choke manifold Automatic management of gas kick
2.5.2. e &5t o RE R e M ERFEE SRS R ERI T RERS . EREERE

F L R S R 7K 7 I R R ) EE A, AR
TS T EHR AR IS 528 TR, AN THEREEAR

FEMR I £ ZAFE A T R TR BRI S XU
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01 02
Quality Quality
prediction evaluation

Cementing quality evaluation
based on CBL and VDL data

Prediction of cementing quality
based on geo-engineering data
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Real-time monitoring
and risk warning

01 01 03
Fracturing Intelligent Fracturing
optimization

design warning

Production prediction and
fracturing parameter optimization

Fracturing location
and parameters design
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Authors Algorithm Inputs Content and innovation
Tran et al. [118] KNN Surface drilling data Identified brittle and frackable zones
Palmer [119] Fuzzy C-means Acoustic logging and natural fracture logging Classified similar shale formations

Xu et al. [120]

Dalamarinis et al. [121] RR and RF

Rahmanifard and Plaksina [122] = Genetic, differential evolu- Includes well spacing, porosity and permeability

tion and PSO
Gong et al. [123] Clustering algorithm and

ANN

Fracturing process parameters

GA and adaptive evolution Reservoir structure grid and hydraulic parameters The azimuth and perforation clusters were

optimized
Reduce inter-well interference and improve
fracture complexity

PSO has the highest net present value

Rock structure and geomechanical characteristics ~ANN is used to identify brittle clusters
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Application Authors Algorithm Inputs

Content and Innovation

Event recogni- Ramirez and
tion Iriarte [124]

SVM and logistic
regression
Decision tree concentration
Shen et al. [125] CNN, U-net

Pump pressure Benetal. [126] MLP, CNN and

prediction RNN
Casing failure  Li et al. [78] Random forest
recognition
Maucec etal.  CART
prediction [127]

Sun et al. [128] CNN-LSTM

Screen-out

and injection rate
Yuetal [129] GHMMs
Huetal [130] ARMA

concentration

Includes pump pressure,

injection rate and proppant

Includes pump pressure

Includes pump pressure,

injection rate and proppant

Automatically mark the beginning and end of hydraulic fracturing

The pressure changes are analyzed and abnormal conditions are identified.
Mark fracturing start and end points

Real-time prediction of wellhead pressure

Casing failures are identified

The prediction of screen-out, and identifying the affecting factors

Combination of physics-based inverse slope method and newly-developed
machine learning techniques

Successful warning about 8.5 min before screen-out

The early warning rules were designed based on the prediction of pump

pressure

R14 FRETINAE RS BULMAT FHLR

Content and Innovation

Application  Authors Algorithm  Inputs
Productivity — Pankaj et al. [131]
prediction and BHP
Bhattacharya et al. RF
[132] pressure
Al Shehri et al. [75] Boost
jected fluid volume
Liu et al. [133] ANN
formation thickness
Fracturing Duplyakov et al. [134] CatBoost
parameter ration spacing
optimiza-  Duplyakov et al. [134] CatBoost
tion pressure

GradBoost Includes fluid type; proppant quantity; pumping rate

Includes length of fracturing, fracturing clusters and

Includes formation thickness, angle, and formation

Provide the best directional response in real-time

Includes fracturing length and casing pressure, tubing Optical fiber parameters are introduced to im-

prove the accuracy of the model

Includes the number of stages, propping dose and in-  Model integration and uncertainty quantification

The underlying algorithm of time series analysis

Injected fluid volume, TVD, perforation angle, perfo- The recommendation system for optimizing frac-

turing parameters

Euclidean distance was used to find similar wells

Configuration of
downhole control devices

1
Completion
design

3
Production
optimization

Configuration
optimization

A i

Multi-lateral well
planning

Intelligent control of downhole
fluid flow by AICD
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Application Authors Algorithms Input parameters Main content

Completion design optimization Ma et al. [135] Augmented Al  Engineering and geological properties Model sensitivity analysis

Production prediction Klie [136] RBF Production data and time The fusion of physics-based models and
data-driven models

Inflow performance in wellbore Tariq et al. [137] SVM-PSO Production data and time The data source is a numerical simulation

Dynamic production optimiza-  Prosvirnov et al. [138] —

tion
Random forest

Wellbore production profile Chaplygin et al. [139]

Multilateral inflow prediction =~ Khamehchi et al. [140] ANN

Multilateral inflow optimization Aljubran and Horne [141] ANN
Well and reservoir management Bello et al. [142] Data-driven

Completion design Solovyev and Mikhay-  Data-driven

lov [143]
Goh et al. [144]

ICD and packer optimization Data-driven

Wellbore inflow and pressure distri-
The number of tracers

ICV and production parameters
ICV and production parameters
Downhole monitoring data

Production log data

ICD and packer layout

Based on an intelligent completion system

bution

Determine the inflow distribution based on
the number of tracers

Prediction of downhole flow conditions
Optimization of downhole flow

Real-time reservoir management

Layout of the AICD

Dynamic optimization of a single well

WOB, RPM, pump pressure, TOB, MPV,
standpipe pressure, flow in, well-logging parameters
(gamma, resistivity, etc.), mud temperature...

$ B @ $ @ @

Drill Bit-rock ) Drill string Drill

bit ’ interaction mechanics . string
Drill Hydro Pressure/ "
fluids mechanics € properties ‘ Formation

B 9. &t s Rt
BIRESRE . @R RS S EAE E P, ARok
BReRL e TAEN B AW Bk (E10).

3.1, Bl S B - TR R KR b v Al i v 2
B SE I REE ROFRHEAL Rl R B B RE B e ROR K

JeH) B RA . BRI 2 RUE. RN,
Data processing Al techniques
1. Digital twin

1. Data standards

2. Automatic processing

3. Multi-source data
fusion

2. Mapping knowledge

3. Reinforce learning

4. Computer vision

5. Integration of edge
and cloud

B 10. ¥
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Modeling methods Application
1. Fusion of data and 1. Explainability

mechanism 2 Portability_ :
2. Few sample learning 3. Characteristic
3. Uncertainty modeling algorithms

4. Multi-agent coupling 4. Software system

LAERE, NR T ST
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Authors/institute Scope Involved systems

Content/innovation

Shishavan et al. [145] MPD
Ambrus et al. [146]  Model building
Zhou et al. [147] Drilling optimization
NORCE [148-150]  Autonomous drilling
hydraulic system
Texas A&M Univer- Drilling simulator
sity [151-152] hydraulic system
University of Stavan- autonomous drilling rig  —
ger [153—155]
Mayani [156]
Mayani [157]
Wanasinghe [158]
eDrilling [159]

Digital twin —

Business software
hydraulic system

DrillOps [160] Business software —

Rock-breaking and hydraulic system
Rock-breaking and drill-string system
Rock-breaking and hydraulic system

Includes rock-breaking, drill-string and

Includes rock-breaking, drill-string and

Includes rock-breaking, drill-string and

Combining ROP and BHP into a comprehensive controller for MPD
Modeling bit-rock interaction and drill-string dynamics
Multi-objective optimization and decision-making combing ROP
and MPV

Autonomous decision-making system while drilling

Drilling simulator development

Designing a small-scale autonomous drilling rig and control system

Architectures of drilling optimization, decision-making, and control

based on digital twin

Real-time modeling, monitoring, optimization, and visualization of
the drilling process
Real-time drilling risk monitoring, optimization, and decision-mak-

ing of the drilling process

3.3, G R SEH R

N TR RESOAR N 75 255 FE i 52 HF TREI Sk Pr s
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Nomenclature

Abbreviation
5G Sth Generation Mobile Communication Technology

AdaBoost Adaptive boosting



ABC
AC
ACO
ADNOC
AHP
Al
AICD
ANFIS
ANN
ARIMA
ARMA
ATC
BHA
BHP
BPNN
BQ
BRNN
BTS
CAI
CART
CBL
CNN
COA
DE

DL
DNN
DS

DT
ECD
ELM
EMD
FCNN
FD

FL
FNN
FR
FSCARET
FSQGA

GA

GBM
GHMMs
GR
GradBoost

Artificial bee colony

Acoustic time difference

Ant colony optimization

Abu Dhabi National Oil Company
Analytic hierarchy process

Artificial intelligence

Autonomous Inflow Control Device
Adaptive neuro-fuzzy inference system
Artificial neural network

Auto regressive integrated moving average
Auto-regressive and moving average model
Analytical target cascading

Bottom hole assembly

Bottom hole pressure

Back propagation neural network
Bond quality

Bayesian regularization neural network
Brazilian tensile strength

CERCHAR Abrasivity Index
Classification and regression tree
Cement bond logging

Convolutional neural networks

Cuckoo optimization algorithm
Drilling efficiency

Deep learning

Deep neural networks

Differential search

Decision tree

Equivalent circulating density

Extreme learning machine

Empirical mode decomposition

Fully convolutional neural network
Formation drillability

Fuzzy logic

Functional neural network

Flow rate

Automated feature selection from “caret”
Fibonacci sequence based quantum genetic algo-
rithm

Genetic algorithm

Gradient Boosting Machine

Gaussian hidden markov models
Gamma ray

Gradient boosting

HI
HS
ICD
ICV
IGA
IoT
IPSO

LDA
LM
LMR
LR
LSTM
LWD
MCM
MD
MedAE
ML
MLP
MOC
MOGA
MPC
MPD
MPV
MRGC
MSE
MW
MWD
MVRA
NPV
PCA
PID
PSO
QDA
RBF
RBFNN
RF
RNN
ROA
ROP
RPM
RR
RSS
SPP

Hydraulic isolation

Harmony search

Inflow control device

Interval control valve

Improved Genetic Algorithm
Internet of Things

Improved particle swarm optimization
K-nearest neighbor

Linear discriminant analysis
Levenberg-Marquardt

Linear multivariate regression
Logistic regression

Long short-term memory neural network
Logging while drilling

Minimum curvature method

Mud density

Median absolute error

Machine learning

Multi-layer perceptron
Multi-objective cellular
Multi-objective genetic algorithm
Model predictive control
Managed pressure drilling

Mud pit volume

Multi-resolution graph-based clustering
Mechanical specific energy

Mud weight

Measurement while drilling
Multivariate regression analysis
Net present value

Principal component analysis
Proportional integral differential
Particle swarm optimization
Quadratic driscriminant analysis
Radial basis function

Radial basis function neural network
Random forest

Recurrent neural network

Rain optimization algorithm

Rate of penetration

Revolutions per minute

Ridge regression

Rotary steerable system

Stand pipe pressure
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SVM Support vector machine

SVR Support-vector regression
SWOB Specific weight on bit

TOB Torque on bit

TVD True vertical depth

ucCs Unconfined compressive strength
VDL Variable density log

VSp Vertical seismic profile

WOB Weight on bit

XGBoost  Extreme gradient boosting
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