ELSEVIER

Contents lists available at ScienceDirect

Engineering

journal homepage: www.elsevier.com/locate/eng

基于时空数据的地下空间基础设施智能监测系统

杜博文^a, 叶俊辰^a, 朱合华^b, 孙磊磊^{a,*}, 杜彦良^c

^a State Key Laboratory of Software Development Environment, Beihang University, Beijing 100191, China

^b Department of Geotechnical Engineering, College of Civil Engineering, Tongji University, Shanghai 200092, China

摘要

^c Institute of Urban Smart Transportation and Safety Maintenance, Shenzhen University, Shenzhen 518060, China

ARTICLE INFO

Article history: Received 19 December 2021 Revised 7 July 2022 Accepted 10 July 2022 Available online 13 September 2022

关键词

结构健康监测 地下空间结构 机器学习 时空数据 基于时空大数据的智能感知、机理认知和劣化预知,不仅促进了基础设施安全的发展,同时也是基础设施 建设向智能化转变的基础理论和关键技术。地下空间利用的发展,形成了深、大、集的三大特征和立体的 城市布局。然而,与地上的建筑物和桥梁相比,发生在地下的病害和退化更为隐蔽,难以识别,在建设和 服务期间仍然存在许多挑战。针对这一问题,本文总结了现有的方法,在现实世界的空间安全管理中评 估了它们的长处和短处,并在统一的智能监控系统中,讨论关键科学问题和解决方案。

© 2022 THE AUTHORS. Published by Elsevier LTD on behalf of Chinese Academy of Engineering and Higher Education Press Limited Company. This is an open access article under the CC BY-NC-ND licenses (http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. 背景

经济的快速增长增加了对地下空间的利用和开发的需 求,中国地下基础设施的起步时间可以追溯到1990年, 当时建设主要集中在地铁交通和地下停车场。随着城市化 水平的提高,城市地下空间开发开始加快。自2016年以 来,新增地下空间面积8.44×10⁸ m²,中国已经成为世界 上拥有最大地下空间的国家。在建的上海北横通道项目是 地铁站、火车站和超市的结合体。区域运行方式不再单 一,综合的设计已成为地下基础设施的主要趋势。此外, 北横通道工程的最大深度可达48 m,这个深度足以表明 该项目是一个多层次和立体的结构。由此可见,地下基础 设施的主要特点是深、大、集。 与影响建筑物和桥梁的病害及劣化趋势相比,在地下 空间结构中的情况更难以定位。首先,服务检查和维护受 到空间的限制。其次,地下复杂的环境使得难以识别病害 和应对突发事件。地下空间结构的病害可以分为三大类: 渐进性病害、突发灾难和自然灾害。对于渐进性病害,由 于城市地质条件复杂,大部分沿江和沿海城市都建在松软 土壤上,地面沉降严重。随着施工和外力扰动,城市地下 空间的渐进性病害频发,降低了其使用寿命。对于突发灾 害,如爆炸、火灾、交通事故等,事故链难以确定,加重 了基础设施的结构破坏和劣化。最后,如台风、暴雨和地 震等自然灾害,很容易破坏结构,同时由于地下空间的限 制,损失难以被及时发现和准确评估,此类灾害往往造成 生命财产损失。

* Corresponding author.

E-mail address: leileisun@buaa.edu.cn (L. Sun).

^{2095-8099/© 2022} THE AUTHORS. Published by Elsevier LTD on behalf of Chinese Academy of Engineering and Higher Education Press Limited Company. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/). 英文原文: Engineering 2023, 25(6): 194–203

引用本文: Bowen Du, Junchen Ye, Hehua Zhu, Leilei Sun, Yanliang Du. Intelligent Monitoring System Based on Spatio–Temporal Data for Underground Space Infrastructure. *Engineering*, https://doi.org/10.1016/j.eng.2022.07.016

2. 现有存在问题

地下基础设施的特点使得其灾变与病害难以识别和预 警。然而,一旦损害发生就会造成巨大的损失。因此,地 下空间结构的建设和使用安全是亟待解决的重大问题。尽 管地下基础设施技术发展迅速,但目前的传感和建模方法 仍无法确保基础设施或与之相关的个人的安全。在性态感 知、模式认知以及未来状态预测三个方面,现有技术与现 实需求之间仍然存在巨大差距。

2.1. 数据质量低下

自动化传感设备已逐渐代替人工采集的方法。人工敲 击和目视检查的方法烦琐且耗费人力。在物联网环境中, 部署大规模监控传感器有助于收集多种类型的数据,形成 大数据环境。传感器收集的数据包括基础设施的性态、结 构的变形、温度和内部损坏等一些重要信息。然而,大多 数监控系统都基于光纤传感器网络、雷达和激光设备构 建,它们通过声学和光学监控基础设施的状态。然而这些 设备中大多数只能记录单一类型的性能指标,同时受到传 输延迟、极端环境的影响,导致多种类型的数据质量参差 不齐。无法对基础设施整体进行完整可靠的监测会导致状 态评估和动态建模的错误。由此可见,传感数据质量有待 提高。

2.2. 灾变特征隐蔽

通过对原始监测数据的分析,可以发现某些类型的病 害与灾变。维护人员可以通过人为设计的阈值对单一类型 传感器收集的数据进行简单的分类,来判断是否发生了紧 急情况。然而,在复杂的地下空间中,灾变和破坏可能发 生在不显眼的地方,甚至是监测传感器没有覆盖的地方。 此外,受一些极端环境的影响,灾变可能是由多种因素共 同导致的,给机理分析和溯源带来了很大的困难。由于缺 乏系统科学的结构性灾害预警理论和安全信息管理方法, 导致难以追溯地下空间结构性病害的来源。为了捕获更可 靠的预警信号和异常特征,必须对当前的异常检测技术进 行改进。

209

2.3. 结构性态突变

分析病害的形成能够有助于检测和确定异常。此外, 它有助于对即将到来的损害进行早期预警,并为相关人员 留出足够的时间来应对与解决。在这个过程中,预测起着 至关重要的作用。统计分析方法计算目标时间步长与历史 数据的相关性,或采用自回归综合移动平均模型(ARI-MA)等时间序列分析模型。这些方法相对较低的表示和 建模能力难以在复杂的地下空间环境中提取隐藏模式。有 限元法 (FEM) 和离散元法 (DEM) 等数值模拟模型[1-2]可以通过应用实际边界条件计算结构的薄弱位置,然 而,这可能需要大量的实地调查结果和高度复杂的模型[3 -4]。此外,在紧急情况发生时,原有的边界条件失效。 同时地下空间状态演变迅速,并伴随着随时可能发生的塌 方和开裂,无论是紧急情况还是缓慢病变,杂乱无章的致 因使得很难捕捉到主要问题。由此可见,急需准确且可靠 的未来性态预测方法,同时一个完整的监测系统包括智能 诊断、裂化趋势的精准预测和地下空间结构病害与灾难的 动态预警。

3. 解决方案

近年来,计算机科学迅速发展,广泛应用于交通规 划、推荐系统、自然语言处理等领域,为维护基础设施的 安全提供了新的视角。与这些领域相比,地下基础设施的 数据质量较低,难以发掘的病害模式和多变的性态阻碍了 致因的分析。针对上述问题,我们从四个主题开展了研 究:①基于时空大数据分析的一体化地下空间基础设施监 测系统;②基于轻量特征空间构建的实时信息感知;③基 于隐藏模式认知的异常检测;④基于时空依赖学习模型的 未来趋势预测。表1对后续内容进行了总结[5-94]。

4. 时空地下基础设施监测框架

在本节中,我们将讨论图1所示的智能监控系统的框架。系统的基础是由监控传感器收集的数据和外部因素

表1 研究目标与相关工作总结

Goal	Existing problem	Solutions
Holographic sensing	Low data quality	Data augmentation based on feature compression [5-17]
		Response reconstruction based on heterogeneous data fusion [18-41]
State understanding	Latent disease feature	Anomaly detection based on clustering methods [42-50]
		Disease diagnosis based on multi-view analysis [51-70]
Degradation forecasting	Multiple affect factors	Spatial correlation modeling based on graph neural network [71-74]
		Temporal dependency extraction based on external factors [75-94]

(如结构数据、环境数据、风险类别等)组成的。多种原 始数据以结构化的形式排列,如时间序列、时空数据和图 形数据。工程大数据的分析揭示了病害的机理,从基于领 域知识的方法和数据驱动的方法两个角度发现了知识。以 下三个问题的研究在智能监控领域起着至关重要的作用。 首先,数据丢失的问题和传感器位置的限制都导致数据质 量低下。然而,感知结构提供数字环境,为以后的分析奠 定了基础,整个结构的空间上推断可以提供一个完整的视 图。其次,结构上的一些损坏和病害不会立即出现。了解 背后的机制并捕获隐藏的表示有助于发现异常和损坏,从 而为结构提供安全诊断和状态评估。最后,利用完整的历 史数据和结构现状,预测未来趋势,使系统具备早期预警 的能力,事先采取的对策将损失降到最低,保护生命安 全。通过对以上三个问题的深入挖掘,构建了一套一体化 的智能监控系统。感知、认知和预知相结合,全面地管理 基础设施,整体化的中心接收异构信息并进行病害预防和 延长结构服务寿命。

5. 基于特征压缩的数据增强

传感器技术的进步促进了大量数据的收集,能够从几 个不同的角度显示基础设施的状态。但是,合并多种类型 的数据很具挑战性。一是数据丢失问题,它在现实世界的 场景中很常见且无法根除。二是数据的格式不同。不同的 采样频率、相位和时间长度都会对状态传感造成挑战。三 是冗余信息占数据中的绝大部分。高额的存储和计算成本 导致低效率的监测和滞后的状态感知。因此,需要基于轻 量化特征空间构建的实时信息感知。张量分解和自动编码 器以物理空间的信息为输入,可以从海量异构监测数据中 提取深层隐藏特征。正交的基础特征可以与统计分析融

合。使用地下空间基础设施的特征增强方法,获得大规模 特征集,并可以评估相关性。此外,在信息丰富的基础特 征中,物理空间可以重建为数字空间,这有助于揭示完整 的基础设施状态。框架如图2所示。

5.1. 数据增强

迅速发展的无线传感器技术以更低的安装成本提供了 与传统有线系统类似的功能,导致了收集的数据量爆炸式 增长。然而,数据丢失问题阻碍了结构健康监测领域中无 线传感器技术的发展和应用。数据丢失的原因多种多样, 如无线电交互、传输错误、传感器故障、供电中断等,都 在一定程度上损害了数据采集的过程,要消除这种影响并 从根本上解决问题是不可能的。

图2. 基于特征压缩的数据增强。

有许多研究者在此领域做出贡献。使用数值模拟模型 来解决丢失数据问题的研究可以被划分到基于模型的方法 类别中, 然而这需要现场精细的调查和高度复杂的模型 [5-6]。此外,在紧急情况发生时采用初始边界条件是无 效的。为了克服上述问题,基于机器学习方法的数据插补 已被广泛采用,这些方法大多通过传感器之间的相关性来 重建数据[7-9]。Bao等[10]提出了一种新的压缩采样的方 法来估算桥梁结构数据中的缺失值。Huang等[11-12]利用 传感器之间的相关性以及应变数据与温度值之间的相关性 来恢复缺失值。Zhang等[13]提取不同应变传感器的空间 相关性以插入缺失的应力测量值,同时这项工作还指出, 丢失数据的比例不应超过30%。Chen等[14]对多源城市数 据进行了实时增强。值得一提的是, Tan 等[15]采用非矩 阵分解来提取具有低秩假设的多个传感器之间的相关性, 并使用端到端随机梯度下降框架进行训练,取得了很好的 结果。他们一次填补一个传感器,如果异常传感器的数量 多于一个,则通过重复填充过程来解决此问题。数据填补 过程定义如下:

$$X \approx UV^{\mathrm{T}} \qquad \hat{X} = UV^{\mathrm{T}} \tag{1}$$

式中,X代表原始数据;U和V是低秩矩阵。随着人工智能技术在计算机科学中的快速发展,一些深度神经网络被引入来处理复杂的非线性相关性。Fan等[16]通过卷积神经网络(CNN)恢复动态加速度数据。Jiang等[17]通过生成对抗网络对不完整的数据集进行数据插补,与传统插补方法相比有显著的提升。随着用于长期监测的无线传感器网络的发展,每天将收集更多的数据。深度学习方法是缺失数据填补的潜在未来方向。

211

5.2. 响应重构

有效的监测数据为力学行为分析提供了基础。在上一 小节中讨论了如何确保数据质量。然而,虽然监测传感器 的安装位置是经过精心挑选的,但由于预算的限制和某些 位置的不可达性,传感器的数量远小于结构的自由度 (DOF)总数[18]。然而,在没有监测传感器的地点的监 测数据有时候也起着重要的作用。为了解决数据量过大和 传感器布置位置限制的问题,目前已有一些研究者开展响 应重构方面的工作。响应重构的方法分为两类:基于模型 的方法和基于数据的方法。前者主要基于传递性概念,通 过函数的变换矩阵来重构响应。这些方法是在时域[19-20]、频域[21-22]或小波域[23-25]中进行的。卡尔曼滤波 器是一种著名的状态估计器,通过结合结构模型和瞬时测 量信息来提供无偏的最小方差状态估计,在此领域发挥了 重要作用[26-28]。

与基于模型的方法受限于复杂、动态的环境和操作条件不同,数据驱动方法主要用于重构短期连续丢失的数据。Bao等[29-30]提出了压缩感知技术来恢复和估计无线系统中丢失的信号。Wan和Ni [31]引入了贝叶斯多任务学习框架来重构丢失的温度数据和加速度信号。主成分分析(PCA)、奇异值分解(SVD)和自动编码器(AE)是广泛采用的遵循信息压缩和重建工作流程的无监督机器学习方法[32-35]。值得一提的是,Tan等[36]不仅采用了非负分解的重构方法,还融入了力学行为分析。框架如图3所示。以海底隧道结构为例,将其建模为I行J列的矩阵。

由于隧道结构为连续体,在相邻区域具有相似的力学 行为,因此可得到空间推演中的邻近约束条件。然而,并 非所有隧道工作面的连续相似性都相同。例如,拱顶中的

受力的邻近相似性与拱腰处便不尽相同。为了解决这个问题,并将力学分析与数据驱动结合,可采用力学分布来优化非负矩阵分解(NMF)的训练过程。此外,还可以利用隧道结构的轴对称的特性。在两个约束项下空间推演的损失函数*L*定义如下:

$$L(U, V, \mu_{1}, \mu_{2}) = \sum_{(i,j) \in \mathbb{A}} ||X_{i,j} - U_{i,:} \cdot V_{:,j}^{\mathsf{T}}||^{2} + \mu_{1} \sum_{i=1}^{J} \sum_{j=1}^{J} Y_{i,j} ||U_{i,:} \cdot V_{:,j}^{\mathsf{T}} - U_{i,:} \cdot V_{:,j+1}^{\mathsf{T}}||^{2} + \mu_{2} \sum_{i=1}^{J} \sum_{j=1}^{J} Y_{i,j} ||U_{i,:} \cdot V_{:,j}^{\mathsf{T}} - U_{i,:} \cdot V_{:,J+1-j}^{\mathsf{T}}||^{2}$$

$$(2)$$

$$Y_{i,j} = 1 - \frac{\max\left(\left|F_{i,j}\right|, \left|F_{i,j+1}\right|\right) - \min\left(\left|F_{i,j}\right|, \left|F_{i,j+1}\right|\right)}{\max\left(\left|F_{i,j}\right|, \left|F_{i,j+1}\right|\right)} \quad (3)$$

式中,*F*是受力。A 是非空单元的集合。 $Y_{i,j} \in (0,1)$ 是受力 分析计算得到的相似度,其中, $Y_{i,j}$ 值越大,表示点 $i \pi j$ 的关系越密切。 $\mu_1 \pi \mu_2$ 是用于平衡两个约束项的值的超 参数。 $U_{i,:} \pi V_{:,j}$ 表示U的第i行和V的第j列。 $I \pi J 是 i \pi j$ 的总数。重构的结果如图4所示。左边的圆环代表隧道模 型,彩色网格表示有传感器的位置,白色网格表示没有监 控传感器。颜色越深,表示压力越大。空间推演后,能得 到整个隧道断面的状态,此方法也能获得历史值。

近年来,随着计算机科学的迅速发展和数据量的快速 增长,一些深度学习方法因能够在处理海量数据的同时拥 有端到端的训练框架而备受关注。一些人工神经网络 (ANN)[37-38]和CNN[39-40]被广泛用于响应重构。Jiang等[41]采用 sequence-to-sequence 的架构配合注意力机 制为响应重构提供了新的视角。

6. 基于性态认知的异常检测

与传统的基于有限元的分析方法相比,数据驱动的识 别方法受外部环境变化的影响较小,从而可以更准确地识 别地下空间结构中的微损伤和隐藏缺陷。因此,我们可以 从不同的角度评估结构行为的相关性,并通过度量学习和 非线性特征提取来构建早期微损伤的特征集。通过深入的 数据挖掘和特征提取,可以开发出具有自适应异常行为发 现能力的方法。通过对源数据进行降维分析,获取病害的 不同基底,解决了小样本异常数据和异常特征难挖掘的问 题。此外,它有助于智能化识别城市地下空间结构的隐藏 缺陷和早期微损伤,以上框架如图5所示。

6.1. 异常检测

在数据传输方面,无线传感系统数据采集质量受湿度、电磁场环境、温度、传输功率等诸多外部因素的影响。此外,数据采集过程会因传输错误而出现故障。异常的监测数据给结构性态分析带来了困难,而信息的不完整 又导致无法对当前状态做出准确的评价。最近,Bao等 [42]和Tang等[43]从计算机视觉角度检测了数据异常。他 们绘制了动态应变响应的图片以显示结构的状态,使用了 计算机视觉中的技术,并结合深度神经网络(如卷积神经 网络和全连接神经网络等)来识别传感器的不同模式。但 是,原始时间序列数据中包含的精确信息在图像转换的过 程中会在一定程度上损失。Chen等[44]使用 iBOAT 在线

图5. 基于性态认知的异常检测。

检测异常轨迹。这些类型的问题通常以数据驱动的方法处理,其中大多数遵循分解-重构的方式。诸如 SVD [45]、 PCA [46-47]和小波分析[48-49]等光谱分析技术被广泛采用。NMF将原始矩阵分解为两个小的非负矩阵,新颖的 重构方法将数据压缩到低维空间以提取隐藏的相关性。原 始数据X与重构数据U、V之间的元素距离决定了它是否 异常,定义如下:

$$\boldsymbol{\xi} = \vartheta \left(\boldsymbol{\epsilon} - \left| \left| \boldsymbol{X} - \boldsymbol{U} \boldsymbol{V}^{\mathsf{T}} \right| \right| \right) \tag{4}$$

式中, *ϵ*是将数据分为正常和异常的阈值,其可以经过多 次调整和搜索来确定; *ξ*是输出; *9*()是一个对每个元素进 行操作的函数。以上所描述的过程是以端到端的方式使用 随机梯度下降进行训练。此领域的主要目的是获取隐藏在 数据中的常见模式。生成对抗网络(GAN)是一种新颖 的机器学习方法,它由生成器和鉴别器两个组件组成。在 两个模块的竞争对抗过程中,生成器逐渐获得正常数据的 共同模式[50],并欺骗判别器。基于GAN的方法为目前 的异常检测提供了一个新的视角和解决方案。

6.2. 损伤评估

损伤定位和评估是结构健康监测的一个主要研究领域。可靠地定位损伤并预测其趋势对于保护结构的安全具 有重要意义。目前已有许多关于结构损伤评估的研究,大 多数使用基于物理的[51-53]和基于数据驱动的[54]方法探 究这个问题。固有的频率、模式、曲率和振动特性在基于 物理的方法中起着至关重要的作用。分析模型与用于校准 的模拟一起使用,以获得结构的物理特性和当前状态。然 而,快速增长的数据量对基于物理的方法提出了挑战。此 外,确定物理模型可能相当困难,因为数据的质量可能会 有所不同并造成巨大的影响。数据驱动的方法以发现隐藏 的相关性和敏感特征的方式来评估结构条件,许多统计方 法被用于此领域,如状态空间模型[55-56]、自回归模型 [57-59]和ANN [60-61]。Gul 等[62]使用马氏距离来检测 异常值。Skarlatos等[63]提出了一个模糊逻辑模型来构建 最大加速度幅度与列车速度之间的相关性。聚类也是一种 流行的无监督学习方法,可以根据离群点发现异常数据 [64-65]。Liu和Ni等[66]假设归一化之后的钢轨弯曲应变 为高斯分布。为解决统计方法捕捉非线性相关性的能力不 足的问题,最近一些深度学习方法,如一维的CNN和 DNN,也被引入此领域[67-68]。然而,这些解决方案并 没有改进问题的形式化,也没有捕捉到监测数据和损伤的 高级特征与相关性, 多种监测数据之间的相关性也尚不清 楚。深度多任务学习框架探究输入和输出中的信息共享机 制[69-70],通过特征的选择和组合,隐藏的模式和信息 可以在该领域中正确共享和传输,为解决现实世界的问题 提供了新的视角。

7. 基于时空建模的趋势预测

虽然线性回归方法可以通过最小二乘法计算劣化趋势 与各个变量之间的关系,但单变量预测方式使得它们忽略 了关键信息,如不同传感器之间的相互依赖关系。实时监 测数据中包含的特征可以准确反映结构的劣化趋势,而快 速发展的时空神经网络适合建立时序依赖性。循环神经网 络可以通过不断获取长短期关系来消除序列过长导致的梯 度消失的问题。此外,可以以图论的方式形成多元时间序 列。通过构建自适应邻接矩阵并在训练过程中自动对其进 行优化,自适应地得到非欧几里得距离来准确预测地下空 间结构的长期退化趋势。框架如图6所示,其中,X是监 控数据, *t*表示时间步长, *p*是历史长度, *c*_t和*h*_t代表隐藏 状态。

7.1. 空间依赖挖掘

探究多个监测传感器之间的空间相关性是捕捉时间序 列动态变化的新方法。在地下空间中,无论传感器位于相 同的基础设施中,还是监测相同的力学特性,空间相关性 都可以通过训练过程计算或以手工方式定义。CNN 广泛 用于计算机视觉[71–72],该结构通过卷积核处理邻居之 间的关系。由于卷积核全局共享参数,因此可以提取整张 图片中的特征。例如,无论是人脸出现在图片的左上角还 是右下角,图片经过相同的 CNN 卷积核处理后都会得到 相同的特征。如果对地下结构进行精确建模,则可以通过 CNN 提取传感器之间的相关性。然而,传感器的位置信 息的缺少给隐藏模式捕获带来了困难。为了解决这个问 题,引入了图神经网络这种 CNN 的推广模型,它自然适 合处理非欧几里得数据,其定义如下:

$$X \star_{G} g_{\theta} = \sum_{i=0}^{K} (\hat{A})^{i} X \theta_{i}$$
(5)

式中,*X*表示输入值; \star_{G} 表示图*G*=(*v*, *ε*)上的卷积运算, 其中*v*和*ε*分别是节点和边的集合; *g*_θ是参数;*K*表示扩 散过程的步数; \hat{A} 表示归一化的邻接矩阵。以随机游走的 归一化为例,如果给定邻接矩阵为*A*,则 $\hat{A}=D^{-1}A$,其 中, $D_{ii}=\sum_{j}A_{ij}$ 。在交通预测领域,用于表示拓扑相关性 的邻接矩阵由传感器之间的距离确定[73–74]。然而,人 为设计的邻接矩阵无法正确描述传感器之间真实的关系。 为了在结构健康监测领域解决这个问题,我们为每个传感 器构建了自适应邻接矩阵,该矩阵在训练过程中进行了 优化:

$$A = softmax \left(\text{ReLU} \left(E_1 E_2^{\text{T}} \right) \right)$$
(6)

式中, *E*₁和*E*₂是每个传感器的表示。虽然自适应邻接矩 阵可以自动描绘空间的相关性,但仍然有一些问题待解 决,如分层空间相关性提取和随时间演化依赖建模。

7.2. 融合外部因素的时序依赖挖掘

时间序列预测是一个被广泛研究的主题,从记录的时 间序列中预测应力的变化是结构状态监测和评估的常见手 段,自回归(AR)及其变体已在这方面得到广泛应用 [75]。奇异谱分析(SSA)分解和重构从时间序列中获得 的轨迹矩阵,并提取代表不同分量的信号[76]。基于贝叶 斯的预测方法在建模非线性动态系统方面非常有效,无需 重建自身即可更新模型,同时适用于静止和非静止时间依 赖性的能力使它们非常适合预测应变响应[77-81]。高斯 过程表示变量服从正态分布,广泛用于结构状态预测[82-86]。一些混合的方法考虑了季节性影响和短期趋势,以 精确捕获隐藏的表示[87-88]。近年来,在信息化、智能 化的趋势下,一些深度学习方法被用来处理非线性相关 性,如全连接网络[89-92]。递归神经网络(RNN)也是 一种深度学习模型, 它采用序列数据作为输入并提取时序 依赖性。隐藏层用于保存先前输入传递的信息,定义 如下:

$$h_t = \phi \left(w \left[x_t, h_{t-1} \right] + b \right) \tag{7}$$

式中, x_t 表示时间步t的输入; h_t 为保留先前信息的隐藏 状态; ϕ 表示激活函数;w和b分别是参数和偏差。

图6.基于时空建模的趋势预测。X表示监测数据; t表示时间步长; p表示历史长度; c,和h,表示隐藏状态。

图7.基于RNN的融合预测框架。x表示第i个传感器的原始数据; e表示外部因素; q为预测时间步长数; η为外部因素总数。

在时间序列问题中,基本的RNN存在梯度爆炸和消 失问题。为了解决这个问题,Du等[93]采用了RNN的一 个重要变体——长短期记忆网络(LSTM)[94]来结合外 部因素,以做出更准确的预测,模型结构如图7所示。选 择性遗忘的设计使得学习长期和短期的依赖关系成为可 能。然而,传感器监控的力学性态可能不仅与历史数据本 身相关,而且与同一时间步的周围的传感器高度相关。为 了同时提取空间和时间依赖关系,可以将图卷积和时间序 列预测结合起来形成一个统一的框架,从而更好地捕捉到 状态的变化趋势。但是,这个解决方案仍然是在经典预测 框架下,因此很难处理性态的突变,了解时间序列背后的 含义可能是该领域未来的方向。

8. 结构寿命预测和预防性维护策略

结构的使用寿命可以从三个方面来评价:①经济使用 寿命是指结构维修不如拆卸更换经济的时期;②功能使用 寿命是结构使用到不能满足功能要求的时间;③技术使用 寿命是指结构使用到承载能力、完整性、变形等某一技术 指标不合格的时间。这里的剩余寿命预测是指地下结构的 技术使用寿命,即从地下结构完工到结构不能有效承载或 发生过度变形的时间。

在进行寿命预测之前,需要明确结构的预定功能包括 哪些内容,以及如何确定结构功能失效,即耐久性极限标 准。对于混凝土结构耐久性的评估和预测,主要有以下几 个标准。①碳化或氯离子侵蚀需要时间,发生在混凝土保 护层完全碳化时;它会导致钢筋腐蚀,是结构寿命的临界 点,或在氯离子环境中,钢筋表面的氯离子浓度达到引起 钢筋锈蚀的最低浓度的时间(取为钢筋的寿命)。②覆盖 层开裂的寿命判据是锈蚀扩展裂纹与混凝土表面钢筋一起 成为结构使用寿命临界点所需的时间。③裂纹宽度和钢筋 锈蚀作为标准的话,则锈胀裂纹宽度或钢筋锈蚀量达到一 定限度时为使用寿命临界点。④承载力是指将承载力降低 到一定限度作为耐久性极限标准。

地下结构的寿命预测可分为两类:一类是基于地下结构环境的材料耐久性研究;另一类是基于材料降解的结构 安全性研究,其不考虑地下结构的影响,强调材料降解。 一个新的研究思路是结合上述两类研究提出地下结构体系 的受力演化模型,以反映各种因素的相互作用以及隧道结 构内力和安全性的演化。

为使地下结构的维护具有较高的效率,应采取主动预防性维护,以延长使用寿命,最大限度地降低地下结构全 生命周期的维护成本,获得最佳的安全运行保障。预防性 维护概念的核心是防患于未然,预防性维护具有时间敏感 性:如果错过了最佳时间,其效果将大打折扣。预防性维 护对于降低地下结构物的全生命周期成本,提高设施的耐 用性和使用寿命,以及节约资源和保护环境具有重要 作用。

因维护管理不善、结构耐久性受损、无有效承重、变 形过大等原因造成的交通安全事故众多,如隧道渗水结 冰、风机脱落、隧道火灾。操作安全维护过程中存在众多 隐患,应该尽快对隧道进行专业化、系统化的预防性维 护,维护内容包括:①定期结构检查。如发现异常情况, 便确定结构的技术状态、结构的功能状态,以及制定相应 的维修对策和措施。②对结构进行及时的预防性维护和修 理。对结构的轻微损坏进行修复,使结构保持健康状态。 ③物联网与传统运营模式相结合,大规模处理地下结构群 的维护管理问题,形成一体化巡检。养护数字化、评估智 能化、资产管理信息化、决策科学化,可有效提高养护工 的经济效益和社会效益。

9. 结论

地下空间的开发是未来城市建设的必要步骤。智能化 对提升中国竞争力具有至关重要的作用,研究重点应集中 在基础理论和关键技术上。结合物联网、新型基础设施和 计算机科学,可以以多源融合的方式建立智能监控系统。 为构建完整、有效、绿色、可靠的系统,推进城市基础设 施智能化改造,下面提出三点建议和未来方向。①发展基 础设施智能协同全息传感设备。有了这个设备,深度耦合 和在线时空推理框架可以一直获取整个结构的状态。②推 进地下交通基础设施一体化[95]。全生命周期的智能传 感、健康诊断[96]和安全预警系统应该建立在领域知识与 数据挖掘技术的结合之上。③面向可持续的基础设施发 展。对经济、环境和安全友好应该是基础设施发展的 目标。

致谢

本工作由国家重点研发计划项目(2018YFB2101003) 和国家自然科学基金项目(51991395,51991391,71901011, U1811463)资助。

Compliance with ethical guidelines

Bowen Du, Junchen Ye, Hehua Zhu, Leilei Sun, and Yanliang Du declare that they have no conflicts of interest or financial conflicts to disclose.

References

- [1] Nadimi S, Shahriar K, Sharifzadeh M, Moarefvand P. Triaxial creep tests and back analysis of time-dependent behavior of siah bisheh cavern by 3dimensional distinct element method. Tunnel Undergr Space Technol 2011; 26(1):155–62.
- [2] Debernardi D, Barla G. New viscoplastic model for design analysis of tunnels in squeezing conditions. Rock Mech Rock Eng 2009;42(2):259–88.
- [3] Jimenez R, Recio D. A linear classifier for probabilistic prediction of squeezing conditions in Himalayan tunnels. Eng Geol 2011;121(3–4):101–9.
- [4] Guan Z, Jiang Y, Tanabashi Y. Rheological parameter estimation for the prediction of long-term deformations in conventional tunnelling. Tunnel Undergr Space Technol 2009;24(3):250–9.
- [5] Li J, Hao H, Chen Z. Damage identification and optimal sensor placement for structures under unknown traffic-induced vibrations. J Aerosp Eng 2017;30(2): B4015001.
- [6] He J, Guan X, Liu Y. Structural response reconstruction based on empirical mode decomposition in time domain. Mech Syst Signal Process 2012; 28: 348–66.

- [7] Lu W, Teng J, Li C, Cui Y. Reconstruction to sensor measurements based on a correlation model of monitoring data. Appl Sci 2017;7(3):243.
- [8] Zhao X, Jia J, Zheng YM. Strain monitoring data restoring of large-span steel skybridge based on BP neural network. J Archit Civil Eng 2009;26(1):101–6. Chinese.
- [9] Zhigang F, Katsunori S, Qi W. Sensor fault detection and data recovery based on LS-SVM predictor. Chin J Sci Instrum 2007;28(2):193–7. Chinese.
- [10] Bao Y, Li H, Sun X, Yu Y, Ou J. Compressive sampling-based data loss recovery for wireless sensor networks used in civil structure health monitoring. Struct Health Monit 2013;12(1):78–95.
- [11] Huang Y, Wu D, Liu Z, Li J. Lost strain data reconstruction based on least squares support vector machine. Meas Control Tech 2010;29:8–12. Chinese.
- [12] Huang YW, Wu DG, Li J. Structural healthy monitoring data recovery based on extreme learning machine. Comput Eng 2011;16:241–3.
- [13] Zhang Z, Luo Y. Restoring method for missing data of spatial structural stress monitoring based on correlation. Mech Syst Signal Process 2017;91:266–77.
- [14] Chen C, Jiao S, Zhang S, Liu W, Feng L, Wang Y. TripImputor: real-time imputing taxi trip purpose leveraging multi-sourced urban data. IEEE Trans Intell Transp Syst 2018;19(10):3292–304.
- [15] Tan X, Sun X, Chen W, Du B, Ye J, Sun L. Investigation on the data augmentation using machine learning algorithms in structural health monitoring information. Struct Health Monit 2021;20(4):2054–68.
- [16] Fan G, Li J, Hao H. Lost data recovery for structure health monitoring based on convolutional neural networks. Struct Control Health Monit 2019; 26(10): e2433.
- [17] Jiang H, Wan C, Yang K, Ding Y, Xue S. Continuous missing data imputation with incomplete dataset by generative adversarial networks-based unsupervised learning for long-term bridge health monitoring. Struct Health Monit 2021; 21(3):1093–109.
- [18] Kammer DC. Estimation of structural response using remote sensor locations. J Guid Control Dyn 1997;20(3):501–8.
- [19] Wan Z, Li S, Huang Q, Wang T. Structural response reconstruction based on the modal superposition method in the presence of closely spaced modes. Mech Syst Signal Process 2014;42(1–2):14–30.
- [20] Iliopoulos A, Shirzadeh R, Weijtjens W, Guillaume P, Van Hemelrijck D, Devriendt C. A modal decomposition and expansion approach for prediction of dynamic responses on a monopile offshore wind turbine using a limited number of vibration sensors. Mech Syst Signal Process 2016;68–69:84–104.
- [21] Mace B, Halkyard C. Time domain estimation of response and intensity in beams using wave decomposition and reconstruction. J Sound Vib 2000;230(3): 561–89.
- [22] Li J, Law SS, Ding Y. Damage detection of a substructure based on response reconstruction in frequency domain. Key Eng Mater 2013;569–570:823–30.
- [23] Li J, Law SS. Substructural response reconstruction in wavelet domain. J Appl Mech 2011;78(4):041010.
- [24] Li J, Hao H. Substructure damage identification based on wavelet-domain response reconstruction. Struct Health Monit 2014;13(4):389–405.
- [25] Lai T, Yi TH, Li HN. Wavelet-galerkin method for reconstruction of structural dynamic responses. Adv Struct Eng 2017;20(8):1174–84.
- [26] Zhang X, Wu Z. Dual-type structural response reconstruction based on movingwindow Kalman filter with unknown measurement noise. J Aerosp Eng 2019; 32(4):04019029.
- [27] Zhang C, Xu Y. Structural damage identification via response reconstruction under unknown excitation. Struct Control Health Monit 2017;24(8):e1953.
- [28] Peng Z, Dong K, Yin H. A modal-based Kalman filter approach and OSP method for structural response reconstruction. Shock Vib 2019;5475696:1–14.
- [29] Bao Y, Beck JL, Li H. Compressive sampling for accelerometer signals in structure health monitoring. Struct Health Monit 2011;10(3):235–46.
- [30] Bao Y, Yu Y, Li H, Mao X, Jiao W, Zou Z, et al. Compressive sensing-based lost data recovery of fast-moving wireless sensing for structure health monitoring. Struct Control Health Monit 2015;22(3):433–48.
- [31] Wan HP, Ni YQ. Bayesian multi-task learning methodology for reconstruction of structure health monitoring data. Struct Health Monit 2019;18 (4):1282–309.
- [32] Kerschen G, Poncelet F, Golinval JC. Physical interpretation of independent component analysis in structural dynamics. Mech Syst Signal Process 2007; 21(4):1561–75.
- [33] Hasanov A, Baysal O. Identification of an unknown spatial load distribution in a vibrating cantilevered beam from final overdetermination. J Inverse Ill-Posed Probl 2015;23(1):85–102.
- [34] Li Y, Sun L. Structural deformation reconstruction by the Penrose-Moore pseudo-inverse and singular value decomposition-estimated equivalent force. Struct Health Monit 2021;20(5):2412–29.

- [35] Shang Z, Sun L, Xia Y, Zhang W. Vibration-based damage detection for bridges by deep convolutional denoising autoencoder. Struct Health Monit 2020;20(4): 1880–903.
- [36] Tan X, Wang Y, Du B, Ye J, Chen W, Sun L, et al. Analysis for full face mechanical behaviors through spatial deduction model with real-time monitoring data. Struct Health Monit 2021;21(4):1805–18.
- [37] Bani-Hani KA. Vibration control of wind-induced response of tall buildings with an active tuned mass damper using neural networks. Struct Control Health Monit 2007;14(1):83–108.
- [38] Ni Y, Li M. Wind pressure data reconstruction using neural network techniques: a comparison between BPNN and GRNN. Measurement 2016;88:468–76.
- [39] Oh BK, Glisic B, Kim Y, Park HS. Convolutional neural network-based data recovery method for structure health monitoring. Struct Health Monit 2020; 19(6):1821.
- [40] Zhang Y, Miyamori Y, Mikami S, Saito T. Vibration-based structural state identification by a 1-dimensional convolutional neural network. Comput Aided Civ Infrastruct Eng 2019;34(9):822–39.
- [41] Jiang K, Han Q, Du X, Ni P. Structural dynamic response reconstruction and virtual sensing using a sequence to sequence modeling with attention mechanism. Autom Constr 2021;131:103895.
- [42] Bao Y, Tang Z, Li H, Zhang Y. Computer vision and deep learning–based data anomaly detection method for structure health monitoring. Struct Health Monit 2019;18(2):401–21.
- [43] Tang Z, Chen Z, Bao Y, Li H. Convolutional neural network-based data anomaly detection method using multiple information for structure health monitoring. Struct Control Health Monit 2019;26(1):e2296.
- [44] Chen C, Zhang D, Castro PS, Li N, Sun L, Li S, et al. iBOAT: isolation-based online anomalous trajectory detection. IEEE Trans Intell Transp Syst 2013; 14(2):806–18.
- [45] Yang WX, Tes PW. Development of an advanced noise reduction method for vibration analysis based on singular value decomposition. NDT E Int 2003; 36(6):419–32.
- [46] Žvokelj M, Zupan S, Prebil I. Non-linear multivariate and multiscale monitoring and signal denoising strategy using kernel principal component analysis combined with ensemble empirical mode decomposition method. Mech Syst Signal Process 2011;25(7):2631–53.
- [47] Calabrese L, Campanella G, Proverbio E. Noise removal by cluster analysis after long time ae corrosion monitoring of steel reinforcement in concrete. Constr Build Mater 2012;34:362–71.
- [48] Jiang X, Mahadevan S, Adeli H. Bayesian wavelet packet denoising for structural system identification. Struct Control Health Monit 2007;14(2):333–56.
- [49] Katicha SW, Flintsch G, Bryce J, Ferne B. Wavelet denoising of TSD deflection slope measurements for improved pavement structural evaluation. Comput Aided Civ Infrastruct Eng 2014;29(6):399–415.
- [50] Du B, Sun X, Ye J, Cheng K, Wang J, Sun L. GAN-based anomaly detection for multivariate time series using polluted training set. IEEE Trans Knowl Data Eng 2021:1–13.
- [51] Neerukatti RK, Hensberry K, Kovvali N, Chattopadhyay A. A novel probabilistic approach for damage localization and prognosis including temperature compensation. J Intell Mater Syst Struct 2016;27(5):592–607.
- [52] Pavlopoulou S, Worden K, Soutis C. Novelty detection and dimension reduction via guided ultrasonic waves: damage monitoring of scarf repairs in composite laminates. J Intell Mater Syst Struct 2016;27(4):549–66.
- [53] Yuan L, Fan W, Yang X, Ge S, Xia C, Foong SY, et al. Piezoelectric PAN/ BaTiO₃ nanofiber membranes sensor for structure health monitoring of realtime damage detection in composite. Compos Commun 2021;25:100680.
- [54] Castaldo P, Jalayer F, Palazzo B. Probabilistic assessment of groundwater leakage in diaphragm wall joints for deep excavations. Tunn Undergr Space Technol 2018;71:531–43.
- [55] Liu G, Mao Z, Todd M, Huang Z. Damage assessment with state-space embedding strategy and singular value decomposition under stochastic excitation. Struct Health Monit 2014;13(2):131–42.
- [56] Nichols J, Todd M, Wait J. Using state space predictive modeling with chaotic interrogation in detecting joint preload loss in a frame structure experiment. Smart Mater Struct 2003;12(4):580–601.
- [57] Sohn H, Allen DW, Worden K, Farrar CR. Statistical damage classification using sequential probability ratio tests. Struct Health Monit 2003;2(1):57–74.
- [58] Lynch JP, Sundararajan A, Law KH, Kiremidjian AS, Carryer E. Embedding damage detection algorithms in a wireless sensing unit for operational power efficiency. Smart Mater Struct 2004;13(4):800–10.
- [59] Nair KK, Kiremidjian AS, Law KH. Time series-based damage detection and localization algorithm with application to the ASCE benchmark structure. J

Sound Vib 2006;291(1–2):349–68.

- [60] Wu Z, Xu B, Yokoyama K. Decentralized parametric damage detection based on neural networks. Comput Aided Civ Infrastruct Eng 2002;17(3):175–84.
- [61] Yan L, Elgamal A, Cottrell GW. Substructure vibration NARX neural network approach for statistical damage inference. J Eng Mech 2013;139(6):737–47.
- [62] Gul M, Necati CF. Statistical pattern recognition for structure health monitoring using time series modeling: theory and experimental verifications. Mech Syst Signal Process 2009;23(7):2192–204.
- [63] Skarlatos D, Karakasis K, Trochidis A. Railway wheel fault diagnosis using a fuzzy-logic method. Appl Acoust 2004;65(10):951–66.
- [64] Sohn H, Kim SD, Harries K. Reference-free damage classification based on cluster analysis. Comput Aided Civ Infrastruct Eng 2008;23(5):324–38.
- [65] Kesavan KN, Kiremidjian AS. A wavelet-based damage diagnosis algorithm using principal component analysis. Struct Control Health Monit 2012; 19(8): 672–85.
- [66] Liu XZ, Ni YQ. Wheel tread defect detection for high-speed trains using FBGbased online monitoring techniques. Smart Struct Syst 2018;21(5):687–94.
- [67] Abdeljaber O, Avci O, Kiranyaz MS, Boashash B, Sodano H, Inman DJ. 1-d CNNs for structural damage detection: verification on a structure health monitoring benchmark data. Neurocomputing 2018;275:1308–17.
- [68] Mousavi Z, Varahram S, Ettefagh MM, Sadeghi MH, Razavi SN. Deep neural networks-based damage detection using vibration signals of finite element model and real intact state: an evaluation via a lab-scale offshore jacket structure. Struct Health Monit 2021;20(1):379–405.
- [69] Zhao J, Du B, Sun L, Zhuang F, Lv W, Xiong H. Multiple relational attention network for multi-task learning. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining; 2019 Aug 4 – 8; Anchorage, AK, USA. New York City: Association for Computing Machinery; 2019. p. 1123–31.
- [70] Chen C, Liu Q, Wang X, Liao C, Zhang D. semi-Traj2Graph: identifying finegrained driving style with GPS trajectory data via multi-task learning. IEEE Trans Big Data 2021;8(6):1–15.
- [71] Tran D, Bourdev L, Fergus R, Torresani L, Paluri M. Learning spatiotemporal features with 3D convolutional networks. In: Proceedings of the 2015 IEEE International Conference on Computer Vision (ICCV); 2015 Dec 11–18; Santiago, Chile. Danvers: Institute of Electrical and Electronics Engineers (IEEE); 2015. p. 4489–97.
- [72] LeCun Y, Kavukcuoglu K, Farabet C. Convolutional networks and applications in vision. In: Proceedings of 2010 IEEEInternational Symposium on Circuits and Systems ISCAS); 2010 May 30–Jun 2; Paris, France. Paris: Institute of Electrical and Electronics Engineers (IEEE); 2010. p. 253–6.
- [73] Li Y, Yu R, Shahabi C, Liu Y. Diffusion convolutional recurrent neural network: data-driven traffic forecasting. In: Proceedings of 6th International Conference on Learning Representations; 2018 Apr 30 – May 3; Vancouver Convention Center, Vancouver, BC, Canada. OpenReview.net; 2017. p. 1–16.
- [74] Yu B, Yin H, Zhu Z. Spatio-temporal graph convolutional networks: a deep learning framework for traffic forecasting. In: JérômeL, editor. Proceedings of the Twenty-Seventh International Joint Conference on Artificial Intelligence (IJCAI-18); 2018 Jul 13–19; Stockholm, Sweden. Palo Alto: AAAI Press; 2017. p. 3634–40.
- [75] Chen Y, Ye YQ, Sun BN, Lou W, Yu J. Application of model prediction technology to bridge health monitoring. J Zhejiang Univ Eng Sci 2008;42(1): 157–63.
- [76] Yang N, Bai X. Forecasting structural strains from long-term monitoring data of a traditional Tibetan building. Struct Control Health Monit 2019;26(1):e2300.
- [77] Solhjell IK. Bayesian forecasting and dynamic models applied to strain data from the Göta river bridge [dissertation]. Blindern: University of Oslo; 2009.
- [78] Wang Y, Ni Y. Bayesian dynamic forecasting of structural strain response using structure healthmonitoring data. Struct Control HealthMonit 2020;27(8):e2575.
- [79] Ching J, Chen YC. Transitional Markov chain Monte Carlo method for Bayesian model updating, model class selection, and model averaging. J of Eng Mech 2007;133(7):816–32.
- [80] Cheung SH, Beck JL. Calculation of posterior probabilities for Bayesian model class assessment and averaging from posterior samples based on dynamic system data. Comput Aided Civ Infrastruct Eng 2010;25(5):304–21.
- [81] Fei X, Lu CC, Liu K. A Bayesian dynamic linear model approach for real-time short-term freeway travel time prediction. Transp Res Part C Emerg Technol 2011;19(6):1306–18.
- [82] Fan X, Liu Y. Dynamic extreme stress prediction of bridges based on nonlinear mixed Gaussian particle filtering algorithm and structure health monitoring data. Adv Mech Eng 2016;8(6):1–10.
- [83] Dervilis N, Shi H, Worden K, Cross E. Exploring environmental and

operational variations in SHM data using heteroscedastic Gaussian processes. Dyna Civil Struct 2016;2:145–53.

- [84] Worden K, Cross E. On switching response surface models, with applications to the structure health monitoring of bridges. Mech Syst Signal Process 2018;98: 139–56.
- [85] Caywood MS, Roberts DM, Colombe JB, Greenwald HS, Weiland MZ. Gaussian process regression for predictive but interpretable machine learning models: an example of predicting mental workload across tasks. Front Hum Neurosci 2017;10:647.
- [86] Su G, Yu B, Xiao Y, Yan L. Gaussian process machine-learning method for structural reliability analysis. Adv Struct Eng 2014;17(9):1257–70.
- [87] Prakash G, Sadhu A, Narasimhan S, Brehe JM. Initial service life data towards structure health monitoring of a concrete arch dam. Struct Control Health Monit 2018;25(1):e2036.
- [88] Wang X, Yang K, Shen C. Study on MGPA-BP of gravity dam deformation prediction. Math Probl Eng 2017;2586107:1–18.
- [89] Kang F, Liu J, Li J, Li S. Concrete dam deformation prediction model for health monitoring based on extreme learning machine. Struct Control Health Monit

2017;24(10):e1997.

- [90] Deng NW, Qiu FQ, Xu H. Application of BP model to data analysis of earthrock dams. Eng J Wuhan Univ 2001;34(4):17–20. Chinese.
- [91] Kao CY, Loh CH. Monitoring of long-term static deformation data of Fei-Tsui arch dam using artificial neural network-based approaches. Struct Control Health Monit 2013;20(3):282–303.
- [92] Lam HF, Yuen KV, Beck JL. Structure health monitoring via measured ritz vectors utilizing artificial neural networks. Comput Aided Civ Infrastruct Eng 2006;21(4):232–41.
- [93] Du B, Li W, Tan X, Ye J, Chen W, Sun L. Development of load-temporal model to predict the further mechanical behaviors of tunnel structure under various boundary conditions. Tunn Undergr Space Technol 2021;116:104077.
- [94] Hochreiter S, Schmidhuber J. Long short-term memory. Neural Comput 1997; 9(8):1735–80.
- [95] Chen C, Zhang D, Wang Y, Huang HY. Enabling smart urban services with GPS trajectory Data. Heidelberg: Springer; 2021.
- [96] Troisi R, Castaldo P. Technical and organizational challenges in the risk management of road infrastructures. J Risk Res 2022;25(6):791–806.