

Contents lists available at ScienceDirect

Engineering

journal homepage: www.elsevier.com/locate/eng

Research Engines and Fuels—Article

H_2 对 Pt-Ba-Ce / γ -Al₂O₃ 催化剂 NO_x 存储和还原机理的影响研究

王攀*, 裔静, 孙川, 罗鹏, 雷利利

School of Automotive and Traffic Engineering, Jiangsu University, Zhenjiang 212013, China

ARTICLE INFO

Article history: Received 17 April 2018 Revised 20 August 2018 Accepted 15 February 2019 Available online 19 April 2019

关键词

Pt-Ba-Ce / γ -Al₂O₃ 催化剂 物理化学性质 NO_x 存储和还原 NO_x 排放 H₂ 还原剂

摘要

本研究采用浸渍法制备了 Pt-Ba-Ce/γ-Al₂O₃ 催化剂,利用实验评价了 H₂ 对 NSR (NO_x storage and reduction)催化剂存储和还原机理的影响,并采用综合表征技术研究了 Pt-Ba-Ce /γ-Al₂O₃ 催化剂的 理化性能。结果表明,透射电子显微镜 (TEM)显示 X 射线衍射 (XRD)光谱中观察到的 PtO_x、 CeO₂和 BaCO₃ 峰很好地分散在 γ-Al₂O₃ 上, X 射线光电子能谱 (XPS) 检测到 Ce³⁺和 Ce⁴⁺ 之间的 差异, Ce³⁺和 Ce⁴⁺ 促进了活性氧在催化剂上的迁移。在 NO_x 完全存储 - 还原实验中, NO₂ 产量的 增加 使 NO_x 的存储能力在 250~350 ℃ 的温度范围内大大提高,在 350 ℃ 达到最大值 315.3 µmol·g⁻¹。在 NO_x 吸附和脱附循环实验中,随着 H₂暴露时间 (30 s、45 s 和 60 s)延长, NO_x 的存储效率和转化率增加。当稀燃和富燃持续时间分别为 240 s 和 60 s 时,催化剂的 NO_x最大 转化率达到 83.5%。适当增加 H₂量加速了硝酸盐或亚硝酸盐的分解,有利于 NO_x存储 - 还原,并 促进了下一循环 NSR 吸附位点的再生。

© 2019 THE AUTHORS. Published by Elsevier LTD on behalf of Chinese Academy of Engineering and Higher Education Press Limited Company This is an open access article under the CC BY-NC-ND licenses (http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. 引言

与传统的化学当量比发动机相比,稀燃发动机可以 提供更高的燃料效率并产生更低的二氧化碳(CO₂)排 放。然而,由于废气中氧气(O₂)含量较高,稀燃发动 机排放的氮氧化物[NO_x,指一氧化氮(NO)和二氧化 氮(NO₂)]无法通过传统的三效催化剂(TWC)脱除。 目前,降低NO_x排放主要有选择性催化还原和NO_x存储-还原(NSR)技术,这些技术最初由丰田公司研究人员 在20世纪90年代提出以满足排放标准要求[1,2]。NSR催 化剂主要由用于NO_x存储的碱金属或碱土金属(如BaO 和CeO₂)以及良好分散在载体上的贵金属如铑(Rh) 和铂(Pt)组成。研究发现,氧化铈(CeO₂)可以有效 地促进NSR催化剂的稳定性和耐久性。在NSR作用过程 中,废气中的NO被贵金属氧化成NO₂,在稀燃期内以 亚硝酸盐或硝酸盐的形式存储;在富燃期中,还原剂如 氢气(H₂)、一氧化碳(CO)或丙烯(C₃H₆)等被引入 废气中,引起亚硝酸盐或硝酸盐分解为NO₂,随后与还 原剂反应转化成氮气(N₂)[3]。

为了获得较高NO_x转化率,国内外学者对催化剂配 方和制备工艺的优化进行了大量研究[4-11]。传统的NSR 催化剂通常选用Pt-Ba/γ-Al₂O₃。然而,研究发现,CeO₂作 为NO_x存储组分,有利于提高NO_x存储效率(NO_x storage efficiency,NSE),促进水蒸气重整反应和水煤气反应, 并有利于保持催化剂中贵金属的高分散度[12]。CeO₂用 作载体的催化剂已经得到广泛研究,其较高的NO_x存储

^{*} Corresponding author.

E-mail address: wangpan@ujs.edu.cn (P. Wang).

^{2095-8099/© 2019} THE AUTHORS. Published by Elsevier LTD on behalf of Chinese Academy of Engineering and Higher Education Press Limited Company This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/). 英文原文: Engineering 2019, 5(3): 568–575

引用本文: Pan Wang, Jing Yi, Chuan Sun, Peng Luo, Lili Lei. Evaluation of H₂ Influence on the Evolution Mechanism of NO_x Storage and Reduction over Pt–Ba– Ce/ γ -Al₂O₃ Catalysts. *Engineering*, https://doi.org/10.1016/j.eng.2019.02.005

能力与硝酸盐和亚硝酸盐物质有关[13-15]。Le Phuc等 [16]制备了一系列具有不同铈/钡(Ce/Ba)摩尔比的Pt/ Ba/Ce/Al₂O₃催化剂,发现Ce的存在在一定程度上可以 促进NO_x转化率增加。最近,NSR条件的影响得到了 广泛研究,包括还原剂类型、还原剂量和不同的稀燃 和富燃持续时间[17,18]。在还原剂类型方面, Masdrag 等[19]研究了H₂、CO、C₃H₆和H₂+CO+C₃H₆对Pt/10%-BaO/Al₂O₃催化剂NO_x转化率的影响。结果表明,H₂在 200~400℃温度范围内是一种优良的还原剂,在400℃ 时获得最大转化率为78%——这一发现与Abdulhamid等 [20]研究的结果相似。AL-Harbi和Epling[18]在NSR催化 剂模型上检测了200~500℃的温度窗口中不同再生方案 作用下稀燃和富燃持续时间对NSR的影响。结果表明, 在200℃、300℃和400℃条件下,再生时间增加后催 化剂性能有明显改善。此外, Ansari等[21-24]通过溶胶-凝胶法合成CoTiO₃/CoFe₂O₄纳米催化剂,当钴/钛(Co/ Ti)的摩尔比为1:1时,在X射线衍射(XRD)图谱和 能量色散谱(EDS)中发现均匀分布的球形纳米粒子。 Mahdiani等[23,24]采用溶胶-凝胶法制备了PbFe12O19纳 米催化剂,发现纳米结构的缬氨酸为5123 Oe。

本研究目的是优化NSR催化剂性能,进而在模拟气 实验中上获得更高的NO_x转化率。本文通过在Pt-Ba-Ce/ γ-Al₂O₃(在此表示为PBCA)催化剂上分别进行NO_x完 全存储-还原实验及NO_x吸附和脱附循环实验,研究温度 和H₂通入时间对NO_x演化机制的作用。通过浸渍法制备 催化剂,根据XRD、透射电子显微镜(TEM)和X射线 光电子能谱(XPS)来表征催化剂的Pt分散、形态和尺 寸以及表面化学组分价态。

2. 实验方案

2.1. 催化剂制备

通过浸渍法制备一系列PBCA催化剂。首先,将 γ -Al₂O₃(Umicore)浸渍在Ce(NO₃)₂·6H₂O溶液(AR, Sinopharm Chemical Reagent Co., Ltd., China)中使Ce负 载量为15%(质量分数)。随后使用相同的方法将Ba(O₂C-CH₃)₂(AR, Sinopharm Chemical Reagent Co., Ltd., China)作为前体掺入样品中,使Ba负载量为10%(质 量分数)。将样品在120°C下干燥24 h,并于550°C条件 下在空气中煅烧5 h。将H₂PtCl₆·6H₂O(AR, Sinopharm Chemical Reagent Co., Ltd., China)溶解在去离子水中, 并进行超声波振荡30 min以获得均匀的分散溶液。然 后,将其加入上述样品中分别获得0.285%、0.577%和0.855%的Pt负载量。每次浸渍后,将样品干燥并在上述相同条件下煅烧。最后,研磨筛选40~60目的催化剂用于表征和模拟气实验。

2.2. 催化剂表征

在Bruker D8 Advance X射线衍射仪上对催化剂样品 进行XRD测试。辐射源采用镍(Ni)-过滤铜(Cu)Kα (*λ*=0.154068 nm);测试时扫描角速度为7°·min⁻¹,扫 描角度范围: 20°~80°扫描; 管电压为40 kV, 管电流 为200 mA。利用MDI Jade 5.0 软件(Jade Software Co., Ltd., New Zealand) 对测得的XRD谱图进行分析处理, 将获得的谱图与标准卡片 (JCPDS) 进行对比分析, 确定催化剂的物相信息。利用FEI Tecnai 12电子显微镜 (Thermo Fisher Scientific Inc., USA) 对所制备催化剂 进行TEM测试,加速电压为120 kV。在对催化剂样品 进行TEM表征测试前,首先将催化剂样品进行充分研 磨,然后取少量催化剂样品溶于适量的无水乙醇中,并 超声震荡15 min,将得到的悬浮溶液滴于200目的碳支 撑膜铜网上,充分干燥后进行TEM测试。XPS实验在美 国Thermo Fisher Scientificer公司生产的型号为ESCAL-AB[™] 250Xi 仪器上进行。该仪器采用单色铝(Al)Kα源 (hv =1486.6 eV) 双阳极靶作为X射线源,分析室的真 空度优于5×10⁻¹⁴ MPa。所测样品中元素的结合能均以 有机污染碳的结合能C1s(284.6 eV)作为标准来校正。

2.3. 催化剂性能评价

NSR实验的装置如图1所示。该装置由反应器、气路、气路控制部分和气体分析仪组成。利用内径为 10 mm的固定床石英管反应器,对0.3 mL(0.40 g)催化剂进行性能评价。将催化剂置于管状升温炉内,其温度通过嵌入式热电偶控制。将催化剂插入并夹在两个石英棉之间以防止样品移动。气路和气路控制部分包括气瓶、减压阀、阀门控制器和质量流量控制器。所有气体均由质量流量控制器引入,总流速为280 mL·min⁻¹,空速为5.6×10⁴ h⁻¹。通过NO_x分析仪(Thermo ScientificTM Model 42*i*-HL, Thermo Fisher Scientific Inc., USA)检测出NO_x(NO和NO₂)浓度。在NSR实验前,催化剂样品温度在N₂中升高(20℃·min⁻¹)至450℃,然后持续暴露于由1%H₂和N₂组成的还原气体混合物中30 min。然后,在N₂中将催化剂冷却至所需的反应温度,反应温度在250~400℃之间变化。当在350℃下进行NO_x吸附 和脱附循环实验时,选用固定的稀燃时间240 s和变化的富燃时间(30 s、45 s、60 s)。NO_x完全存储-还原和NO_x吸附脱附循环实验的气体组成及参数如表1所示。

通过下式评价稀燃和富燃期间催化剂样品的活性。 NO_x存储量(NSC)定义如下:

$$NSC = \frac{\int_0^{t_L} (f_{NO,in} - f_{NO_x,out}) dt}{m_{cat}}$$
(1)

式中, $f_{NO,in}$ 是入口处的NO摩尔流量(mol·min⁻¹); $f_{NO,xout}$ 是出口处的NO_x摩尔流量; t_L 是稀燃阶段的持续时间; m_{cat} 是催化剂的质量(g)。

平均NO_x转化率根据下式计算:

$$NO_{x,conversion} = \frac{f_{NO_{x},in}t_{L} - \int_{0}^{t}f_{NO_{x},out}dt}{f_{NO_{x},in}t_{L}}$$
(2)
式中, t是循环总时间。

3. 结果与讨论

3.1. 催化剂的表征

图2显示了PBCA催化剂的XRD图谱。结果分析表 明,PBCA中的主相是γ-Al₂O₃(JCPDS No.48-0366), 其表现出典型的立方萤石结构。在国际衍射数据中心 (ICDD)数据库中观察到BaCO₃(JCPDS No.05-0378) 的存在,这是由于催化剂在500 °C煅烧时,Ba(O₂CCH₃)₂ 分解产生BaCO₃晶体[25]。BaCO₃的峰值随着Pt含量的 增加而降低,并且当Pt含量为0.855%(质量分数)时完 全消失。在XRD图谱中未发现Pt和PtO_x,这表明Pt以无 定形或单相层存在,大量分散在存储组分γ-Al₂O₃的表面 上,因此不能通过XRD直接观察到。当2θ等于28.04°、 28.68°和66.80°时,衍射峰属于BaO,CeO₂(JCPDS No.43-1002)峰出现在28.68°和47.02°时。

图1.NSR实验装置。MCF:质量流量计。

表1 实验气体组成和含量

Experiment type	Phase	Flow conditions				Reaction		
		Space	NO content	O ₂	H_2	N ₂	temperature	Time
		velocity (h ⁻¹)	(ppm)	content	content	content	(°C)	
Complete NSR	Lean	$5.6 imes 10^4$	500	10%	0	10%	250, 300, 350,	Till the spilled NO_x concentration is equal to
							and 400	the inlet NO concentration
	Rich	5.6×10^4	0	0	1%	1%		Till outlet NO_x concentration is equal to zero
Cycling NSR	Lean	5.6×10^4	500	10%	0	10%	350	240 s
	Rich	$5.6 imes 10^4$	0	0	1%	1%		30, 45, and 60 s

图2. PBCA样品的XRD图谱。2θ: 散射角。

图3显示PBCA催化剂的TEM结果,用于检测 0.577Pt-10Ce-15Ba/ γ -Al₂O₃催化剂的形态和尺寸。TEM 图像显示在催化剂上存在许多尺寸在1~5 nm范围内变化 的纳米颗粒(如红色圆圈所示),主要为Pt或PtO_x颗粒, 且Pt分散性好,这主要由于Pt和CeO₂之间存在强相互 作用[26]。图中较大的黑色颗粒(由白色圆圈表示)为 CeO₂和BaCO₃的聚集体。PtO_x、CeO₂和BaCO₃沉积的浅 灰色区域主要是 γ -Al₂O₃。

图4显示了PBCA催化剂的XPS结果,扫描分析在 0和1200 eV之间的结合能范围内进行。图4(a)显示, 在0.577Pt-10Ce-15Ba /γ-Al₂O₃催化剂表面上存在Ce、 Ba、O、C、Pt和Al,并且没有明显的杂质存在。Ce的 化学状态XPS光谱如图4(b)所示。Ce 3d水平谱具有 复杂的3d52和3d32的自旋轨道双峰,V和U分别对应于 Ce 3d_{5/2}和Ce 3d_{3/2}。此外, V(882.6 eV)、V["](889.2 eV)、 $V^{'''}$ (898.4 eV)、U (901.1 eV)、U^{''} (906.9 eV) 和U^{'''} (916.9 eV)峰归属于Ce⁴⁺, V['](885.6 eV)和U['](903.6 eV) 处的峰属于Ce³⁺。这些峰清楚地表明Ce主要以Ce⁴⁺形式 存在,且含有少量的Ce³⁺。根据光谱区域,Ce³⁺/Ce⁴⁺为 0.06。Ba 3d52的结合能为780.1 eV,这表明在催化剂上 Ba主要以BaCO₃形式存在,这与观察到280.9 eV附近的 C 1s组分是一致的,表明是碳酸盐结构。图4(c)中描 绘了具有两个峰的窄谱O 1s,位于529.1 eV的峰(以下 表示为O_g)对应于表面晶格氧物种(O²⁻)[27],其中一 小部分可归因于PtO_x物种[28]。此外,531.2 eV的第二 个峰(以下称为O_B)对应于化学吸附氧[29]。文献表明 表面化学吸附氧是最活跃的氧,在NO-NO2氧化反应中 起重要作用[30,31]。对于Pt, 仅记录了Pt 4d_{5/2}光谱, Pt 4f的峰值被Al 2p峰值(74.1 eV)覆盖[32,33]。从图4(d)

图3.0.577Pt-10Ce-15Ba /γ-Al₂O₃催化剂的TEM图像。

可以看出,较低结合能(314.5 eV)的主峰与金属Pt(Pt⁰⁺) 相关,而较高位(316.8 eV)的较小峰表示存在氧化Pt (PtO或PtO₂)。

3.2. 完全存储 - 还原 NO_x 实验

为了更好地研究NSR过程,进行了完全存储-还原 NO_x实验。稀燃阶段持续到溢出的NO_x浓度等于入口 NO浓度,然后切换为富燃阶段,并且当富燃阶段出口 NO_x浓度降低至零时才开始下一循环。该实验在250℃、 300℃、350℃和400℃下进行,采用稀燃阶段500 ppm NO、10%O₂和N₂(平衡)混合气,在富燃阶段使用 1%H₂和N₂(平衡)混合气。通过NO_x分析仪获得出口 处的NO_x(NO + NO₂)浓度值。图5显示了在不同温度 下完全存储-还原NO_x实验中NO/NO₂组分的演变。完全 存储-还原NO_x实验结果如表2所示。如图5(a)所示,

当实验开始时 (*t*=0), 气体混合物切换为稀燃状态混合 气时, NO_x浓度保持为0, 3 min后逐渐增加至NO入口浓 度500 ppm左右。在NO_x中, NO最先被检测到, 通过反 应 (3) NO在Pt或Pt的氧化位点上氧化为NO₂, 使得NO₂ 也被观察到。正如文献[34,35]中所述, NO_x分子在不同 的Ba吸收位点上被吸收, 其中最活跃的成分是BaO, 尽 管主要以BaCO₃存在[36], 如下反应 (3)~(7):

$$2NO + O_2 \rightarrow 2NO_2 \tag{3}$$

$$2\text{BaO} + 4\text{NO} + 3\text{O}_2 \rightarrow 2\text{Ba}(\text{NO}_3)_2 \tag{4}$$

$$2BaCO_3 + 4NO + 3O_2 \rightarrow 2Ba(NO_3)_2 + 2CO_2$$
 (5)

$$BaO + 3NO_2 \rightarrow Ba(NO_3)_2 + NO \tag{6}$$

$$BaCO_3 + 3NO_2 \rightarrow Ba(NO_3)_2 + CO_2 + NO \tag{7}$$

由图5和表2可知,在250℃条件下,NO_x完全存储 所需时间为41 min,NSC为119.8 μmol·g⁻¹,相应的NSE

为18.7%。值得注意的是,当气体成分转换为富燃状态 时,H₂迅速将NO浓度降低至零,而NO₂在迅速降至零 之前显示出大的脉冲增长至650 ppm[清楚地显示在图5 (a)中的放大区域]。NO,脱附峰面积主要由NO,组成, 表明NO2比NO更容易存储。当引入H2时,表面吸附NOx 被迅速还原,催化剂温度升高导致NO_x放热反应,加速 硝酸盐或亚硝酸盐的分解。NO,脱除效率不仅与稀燃状 态中的NSC有关,还与富燃阶段存储的NO_x的减少有关。 因此,与NSE相比,富燃状态中的NO,释放导致其转化 率降低(13.5%)。当温度从250℃升高到400℃时, NO_x的变化曲线与250℃时的曲线相似。然而,NSC在 250~350℃的范围内大大增强,并且在350°C时达到最 大值315.3 µmol·g⁻¹,在400℃时略有下降,这归因于 NO2产量增加。此外,NO2浓度随温度升高,并且NO2/ NO_x比率在250~400℃的温度范围内从0.09增加到0.59。 在250~350℃温度范围内,NSC增加可主要归因于NO₂/ NO_x增加,与NO相比,NO₂以硝酸盐或亚硝酸盐形式更 有利地被存储在BaO位点上。在400℃时,NSC达到接 近350℃观 察 到 的 值,但NO₂/NO_x比 率 较 高 (表2)。这表明较高的温度加速NO_x存储过程中硝酸盐 或亚硝酸盐的热分解,并且在较高温度下占优势,导致 NSC降低。催化剂在350℃达到最大NSC,远高于 250℃和300℃。然而,整个测试温度范围内的NO_x转 化率在13.5%~21.3%的范围内变化,如表2所示。 图6描绘了NSE在不同温度下随存储时间变化曲线。由图中清楚地显示,在所有温度下,NSE在最初的5 min内随存储时间的增加而降低,所有温度下的NSE都大于90%,在350℃时最大为94.7%。在初始稀燃阶段期间NO_x被催化剂捕获。当存储时间达到40时,NSE分别在250℃、300℃、350℃和400℃下降至22.5%、28.5%、42.9%和43.7%,这是由于NO_x吸附相位逐渐减少并最终达到饱和。

图5. 在不同温度下完全存储-还原实验中NO_x(NO+NO₂)的变化: (a) 250 ℃; (b) 300 ℃; (c) 350 ℃; (d) 400 ℃。

表2	在不同温度	下完全存储	还原NO	实验结果
----	-------	-------	------	------

Temperature (°C)	NO ₂ /NO _x	NSC (μ mol \cdot g ⁻¹)	NSE (%)	NO_x conversion rate (%)
250	0.09	119.8	18.7	13.5
300	0.13	186.3	22.5	19.5
350	0.27	315.3	24.1	21.3
400	0.59	295.1	25.4	20.6

3.3. NO_x吸附和脱附循环实验

如上所述,在350℃时NO,吸附量最大。图7为 350 ℃时NO_x吸附和脱附循环实验结果, 富燃时间为 30 s、45 s和60 s,稀燃时间为240 s。由图7可知,在 约5个循环后,NO,的吸附脱附曲线达到稳定状态,结 果如表3所示。从局部放大视图中可以看出,在稀燃阶 段催化剂能有效吸附NO_x并具有非常低NO_x浓度, 富燃 时间分别为30 s、45 s和60 s时,稀燃阶段NO,浓度分 别稳定在116 ppm、102 ppm和81 ppm, 且都远小于通 入的NO浓度(500 ppm),表明NO_x可以有效地存储在 催化剂上;对于30 s、45 s和60 s再生时间,催化剂对 的NO_x的吸附量分别为112.6 μmol·g⁻¹、117.2 μmol·g⁻¹和 118.4 μmol·g⁻¹,对应的NO_x吸附效率分别为90.0%、93.4% 和94.7%。此外,在每个实验循环的稀燃阶段观察到 NO₂,表明NO₂吸附效率不受NO氧化动力学的限制。当 稀燃阶段向富燃阶段切换,出现了显著的NO,峰值,这 可以说明硝酸盐或亚硝酸盐的分解速率(反应(8)~ (10)[37,38])高于NO_x被还原速率[反应(11)和(12)]。

$$2\text{Ba}(\text{NO}_3)_2 \leftrightarrow 2\text{BaO} + 4\text{NO}_2 + \text{O}_2 \tag{8}$$

$$2Ba(NO_3)_2 \leftrightarrow 2BaO + 4NO + 3O_2 \tag{9}$$

$$2Ba(NO_2)_2 \leftrightarrow 2BaO + 4NO + O_2 \tag{10}$$

$$2NO + 2H_2 \to 2H_2O + N_2 \tag{11}$$

$$2NO_2 + 4H_2 \rightarrow 4H_2O + N_2 \tag{12}$$

此外,NO_x的脱附量显著增加,尤其是在富燃期内 随着再生时间的延长,未还原NO₂持续增加。如表3所 示,随着再生时间延长,NO_x的吸附量先增加,随后迅

速降低,但降低程度不同,在富燃时间为30 s时,NO_x 最低为50 ppm;但当富燃时间逐渐增加至45 s和60 s时, NO_x分别降至最低30 ppm和17 ppm。这是因为随着富燃 时间增加,通入还原剂H₂量增加,可以将稀燃阶段吸附

图7. NO_x吸附脱附循环实验图: (a) 30 s; (b) 45 s和 (c) 60 s。

(c)

表3 不同富燃时间下的循环NSR测量

Lean, rich phase time	Trapped NO _x (μ mol \cdot g ⁻¹)	NSE (%)	NO_x conversion rate (%)
240 s, 30 s	112.6	90.0	76.3
240 s, 45 s	117.2	93.4	80.4
240 s, 60 s	118.4	94.7	83.9

的NO_x更多地还原为N₂,为下一循环提供更多的NO_x吸附活性位,进而使对NO_x的吸附量增加。随着富燃时间增加,被还原的NO_x量增加。通过上述分析可知,当稀燃和富燃持续时间分别为240 s和60 s时,NO_x吸附效率和NO_x转化率达到最高。该结果表明,适当延长富燃时间有利于促进硝酸盐或亚硝酸盐的分解以及为下一循环提供NO_x吸附位点。

4. 结论

本文通过浸渍法制备了PBCA催化剂,利用XRD、 TEM和XPS技术对其理化性能进行表征。通过NO,完 全存储-还原及NO_x吸附和脱附循环实验,研究了H₂对 NSR催化剂上NO_x吸附和脱附演变机制的影响。结果表 明,催化剂结晶良好。TEM结果显示活性组分,特别是 粒径在 $1\sim5$ nm范围内的PtO_x,均匀地分散在 γ -Al₂O₃上。 此外, Ce³⁺/Ce⁴⁺为0.06, Ce促进了活性氧在催化剂上的 迁移。在NO_x完全存储-还原实验中,在250~350°C的温 度范围内NSC增加,主要是由于NO₂/NO_x增加,NO₂更 有利地存储在BaO位点上。在富燃阶段内,NO2迅速降 低到零。NO_x吸附和脱附循环实验结果表明,与NO_x完 全存储-还原实验相比,NO,转化率显着增加。此外,当 再生时间延长(30 s、45 s和60 s)时,NSE和转化率逐 渐增加,这是由于硝酸盐或亚硝酸盐的分解增加以及 下一循环的活性吸附位点再生。当稀燃和富燃时间分别 为240 s和60 s时,催化剂的最大NO,转化率达到83.5%, 表明适当延长再生时间有利于提高NO,的转化效率。

致谢

感谢国家自然科学基金(51676090)、江苏省自然 科学基金(BK20150513)和江苏省六大人才项目的资助。 同时感谢乔冠军教授对本文提供的技术支持。

Compliance with ethics guidelines

Pan Wang, Jing Yi, Chuan Sun, Peng Luo, and Lili Lei

declare that they have no conflict of interest or financial conflicts to disclose.

References

- Fridell E, Skoglundh M, Westerberg B, Johansson S, Smedler G. NO_x storage in barium-containing catalysts. J Catal 1999;183(2):196–209.
- [2] Rico-Pérez V, García-Cortés JM, Bueno-López A. NO_x reduction to N₂ with commercial fuel in a real diesel engine exhaust using a dual bed of Pt/beta zeolite and RhO_x/ceria monolith catalysts. Chem Eng Sci 2013;104(50):557– 64.
- [3] Park S, Choi B, Kim H, Kim JH. Hydrogen production from dimethyl ether over Cu/γ-Al₂O₃ catalyst with zeolites and its effects in the lean NO_x trap performance. Int J Hydrogen Energy 2012;37(6):4762–73.
- [4] Dai H. Environmental catalysis: a solution for the removal of atmospheric pollutants. Sci Bull 2015;60(19):1708–10.
- [5] Wu W, Wang X, Jin S, Wang R. LaCoO₃ perovskite in $Pt/LaCoO_3/K/Al_2O_3$ for the improvement of NO_x storage and reduction performances. RSC Advances 2016;6(78):74046–52.
- [6] Harold MP. NO_x storage and reduction in lean burn vehicle emission control: a catalytic engineer's playground. Curr Opin Chem Eng 2012;1(3):303–11.
- [7] He X, Meng M, He J, Zou Z, Li X, Li Z, et al. A potential substitution of noble metal Pt by perovskite LaCoO₃ in ZrTiO₄ supported lean-burn NO_x trap catalysts. Catal Commun 2010;12(3):165–8.
- [8] Rui Y, Zhang Y, Liu D, Meng M, Jiang Z, Zhang S, et al. A series of ceria supported lean-burn NO_x trap catalysts LaCoO₃/K₂CO₃/CeO₂ using perovskite as active component. Chem Eng J 2015;260:357–67.
- [9] Perng CCY, Easterling VG, Harold MP. Fast lean-rich cycling for enhanced NO_x conversion on storage and reduction catalysts. Catal Today 2014;231(8):125– 34.
- [10] Kabin KS, Muncrief RL, Harold MP, Li Y. Dynamics of storage and reaction in a monolith reactor: lean NO_x reduction. Chem Eng Sci 2004;59(22):5319–27.
- [11] Mei X, Wang J, Yang R, Yan Q, Wang Q. Synthesis of Pt doped Mg-Al layered double oxide/graphene oxide hybrid as novel NO_x storage-reduction catalyst. RSC Advances 2015;5(95):78061–70.
- [12] Atribak I, Bueno-López A, García-García A. Combined removal of diesel soot particulates and NO_x over CeO₂–ZrO₂ mixed oxides. J Catal 2008;259(1):123– 32.
- [13] Casapu M, Grunwaldt JD, Maciejewski M, Baiker A, Eckhoff S, Gobel U, et al. The fate of platinum in Pt/Ba/CeO₂ and Pt/Ba/Al₂O₃ catalysts during thermal aging. J Catal 2007;251(1):28–38.
- [14] Roy S, Baiker A. NO_x storage-reduction catalysis: from mechanism and materials properties to storage-reduction performance. Chem Rev 2009;109(9):4054–91.
- [15] Caglar B, Uner D. NO oxidation and NO_x storage over Ce–Zr mixed oxide supported catalysts. Catal Commun 2011;12(6):450–3.
- [16] Le Phuc N, Courtois X, Can F, Royer S, Marecot P, Duprez D. NO_x removal efficiency and ammonia selectivity during the NO_x storage-reduction process over Pt/BaO(Fe,Mn,Ce)/Al₂O₃ model catalysts. Part II: influence of Ce and Mn– Ce addition. Appl Catal B 2011;102(3):362–71.
- [17] Lin S, Yang L, Yang X, Zhou R. Redox properties and metal-support interaction of Pd/Ce_{0.67}Zr_{0.33}O₂-Al₂O₃ catalyst for CO, HC and NO_x elimination. Appl Surf Sci 2014;305:642–9.
- [18] AL-Harbi M, Epling WS. Effects of different regeneration timing protocols on the performance of a model NO_x storage/reduction catalyst. Catal Today 2010;151(3–4):347–53.
- [19] Masdrag L, Courtois X, Can F, Duprez D. Effect of reducing agent (C₃H₆, CO, H₂) on the NO_x conversion and selectivity during representative lean/rich cycles over monometallic platinum based NSR catalysts. Influence of the support formulation. Appl Catal B 2014;146(5):12–23.
- [20] Abdulhamid H, Fridell E, Skoglundh M. Influence of the type of reducing agent (H₂, CO, C₃H₆, and C₃H₈) on the reduction of stored NO_x in a Pt/BaO/Al₂O₃ model catalyst. Top Catal 2004;30(1–4):161–8.
- [21] Ansari F, Sobhani A, Salavati-Niasari M. Simple sol-gel synthesis and characterization of new CoTiO₃/CoFe₂O₄ nanocomposite by using liquid glucose, maltose and starch as fuel, capping and reducing agents. J Colloid Interface Sci 2018;514:723–32.
- [22] Amiri O, Mir N, Ansari F, Salavati-Niasari M. Design and fabrication of a high

- [23] Mahdiani M, Sobhani A, Ansari F, Salavati-Niasari M. Lead hexaferrite nanostructures: green amino acid sol-gel auto-combustion synthesis, characterization and considering magnetic property. J Mater Sci Mater Electron 2017;28(23):17627-34.
- [24] Mahdiani M, Soofivand F, Ansari F, Salavati-Niasari M. Grafting of CuFe₁₂O₁₉ nanoparticles on CNT and graphene: eco-friendly synthesis, characterization and photocatalytic activity. J Clean Prod 2018;176:1185–97.
- [25] Shi C, Ji Y, Graham UM, Jacobs G, Crocker M, Zhang Z, et al. NO_x storage and reduction properties of model ceria-based lean NO_x trap catalysts. Appl Catal B 2012;119–120:183–96.
- [26] Shinjoh H, Hatanaka M, Nagai Y, Tanabe T, Takahashi N, Yoshida T, et al. Suppression of noble metal sintering based on the support anchoring effect and its application in automotive three-way catalysis. Top Catal 2009;52:1967.
- [27] Shi C, Zhang ZS, Crocker M, Xu L, Wang C, Au C, et al. Non-thermal plasmaassisted NO_x storage and reduction on a LaMn_{0.9}Fe_{0.1}O₃ perovskite catalyst. Catal Today 2013;211(4):96–103.
- [28] Peuckert M. XPS investigation of surface oxidation layers on a platinum electrode in alkaline solution. Electrochim Acta 1984;29(10):1315–20.
- [29] Zhang ZS, Chen BB, Wang XK, Xu L, Au C, Shi C, et al. NO_x storage and reduction properties of model manganese-based lean NO_x trap catalysts. Appl

Catal B 2015;165:232-44.

- [30] Jing L, Xu Z, Sun X, Shang J, Cai W. The surface properties and photocatalytic activities of ZnO ultrafine particles. Appl Surf Sci 2001;180(3–4):308–14.
- [31] Kang M, Park ED, Kim JM, Yie JE. Manganese oxide catalysts for NO_x reduction with NH₃ at low temperatures Appl Catal A 2007;327(2):261–9.
- [32] Persson K, Ersson A, Jansson K, Fierro J, Jaras S. Influence of molar ratio on Pd-Pt catalysts for methane combustion. J Catal 2006;243(1):14–24.
- [33] Infantes-Molina A, Righini L, Castoldi L, Loricera CV, Fierro JLG, Sin A, et al. Characterization and reactivity of Ce-promoted PtBa lean NO_x trap catalysts: Catal Today 2012;197(1):178–89.
- [34] Lietti L, Forzatti P, Nova I, Tronconi E. NO_x storage reduction over Pt-Ba/γ-Al₂O₃ Catalyst J Catal 2001;204(1):175–91.
- [35] Symalla MO, Drochner A, Vogel H, Büchel R, Pratsinis SE, Baiker A. Structure and NO_x storage behaviour of flame-made BaCO₃ and Pt/BaCO₃ nanoparticles. Appl Catal B Environ 2009;89(1–2):41–8.
- [36] Broqvist P, Panas I, Grönbeck H. Toward a realistic description of NO(_{*}) storage in BaO: the aspect of BaCO₃. J Phys Chem B 2005;109(19):9613–21.
- [37] Castoldi L, Righini L, Matarrese R, Lietti L, Forzatti P. Mechanistic aspects of the release and the reduction of NO_x stored on Pt-Ba/Al₂O₃. J Catal 2015;328:270–9.
- [38] Mudiyanselage K, Weaver JF, Szanyi J. Catalytic Decomposition of Ba(NO₃)₂ on Pt(111). J Phys Chem C 2011;115(13):5903–9.