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Due to their rising economic importance as an enabling technol-
ogy for the energy transition from fossil fuels to renewables [1–3]
and to their ubiquitous use in the miniaturization of electronic
devices [2,4], permanent magnets are one of the key frontiers of
technological development in the modern world.

Neodymium–iron–boron (Nd–Fe–B) (Coey, this issue; Liang
et al., this issue) and samarium–cobalt (Sm–Co) (Coey, this issue;
Liang et al., this issue) permanent magnets are at the forefront of
new environmentally friendly technology developments, as are
other rare earth magnet alloys (Insard and Kinast, this issue) and
rare-earth-free/lean permanent magnets (Hadjipanayis et al., this
issue; Kovacs et al., this issue; Rial et al., this issue).

Rare earth permanent magnets underpin the global adoption of
wind turbine technologies [2,3] and of electric vehicles [1,2]. We
sit on the cusp of a new global energy paradigm in which selected
rare earth elements—rather than hydrocarbons—will help to ‘‘fuel”
our future energy and transportation needs.

The use of rare earth permanent magnets in energy-transition
technologies is clearly beneficial for the environment. However,
concerns exist regarding upstream rare earth extraction methods,
which can have negative environmental externalities—most nota-
bly, in the management of waste streams from the mining, pro-
cessing, and separation of rare earth raw materials [5].
Nonetheless, while the ultimate societal impact of new-generation
permanent magnet-based technologies is unknown, research in
accelerating the adoption of rare earth and other permanent
magnet-led technology continues to advance apace, and is the
focus of this special issue of Engineering.

1. Recent changes in rare earths supply

Enabling a ready supply of rare earths at reasonable cost has
already become a societal focus, with most rare earths being pre-
sent on numerous ‘‘critical minerals” and/or ‘‘critical metals” lists
issued by global and regional organizations [6]. A critical metal is
a metal that has important economic uses, but also faces supply
risks for geopolitical or sustainable development reasons [2,7].
For example, the concentration of rare earth mine production in
China is seen as a geopolitical supply-risk factor for many
non-Chinese governments and industrial end-users [8], whereas
the concerns surrounding radiation exposure at Lynas Corpora-
tion’s facilities in Malaysia are an example of a sustainable devel-
opment (e.g., social and environmental)-related supply-risk factor
[5]. Faced with such market constraints, the future potential for
rare earths recycling [9–11] and thrifting or substitution [11] is
becoming a clear research focus on the demand-side, with sup-
ply-side research aiming at the removal of one or more of the
value-chain constraints in order to achieve greater, environmen-
tally conscious, and ‘‘cleaner” rare earth procurement [12,13].

The rare earth elements, which number 21,39, and 57–71 on the
periodic table, are not rare within nature, and are present in small
concentrations within many rock types and on all continents
[14–18]. In fact, they are about as abundant in the crust as the sig-
nificantly more widely extracted base metals [12,19]. The known
global resources and reserves of rare earth elements are relatively
large, with the United States Geological Survey [20], for example,
citing a figure of 1.2 � 108 t of known reserves—substantially more
than the current mine production rate of 1.7 � 105 t�a�1. This
706-to-1 ratio of production-to-known reserves compares favor-
ably with other important industrial metals, such as copper, whose
known reserves of 8.3 � 108 t and annual production of 2.1 � 107 t
gives a ratio of 40-to-1 [21]. Such calculations also exclude the high
likelihood of substantial further discoveries of mineral deposits,
which has historically always been the case. In a Malthusian sense
[22], the world will not ‘‘run out” of rare earths soon and, as such,
the rare earths could potentially present a relatively sure footing
upon which to build the new ‘‘green” economy, should the
geopolitical and sustainable supply issues be overcome.

The above being said, the supply side of the rare earths industry
remains complicated. First, although there are abundant rare earth
resources, significant economic accumulations of rare earths where
both the physical and chemical form and absolute concentration of
rare earth minerals are sufficient to allow both extraction and
processing to useable raw materials in an economically and an
environmentally efficient manner are indeed rare [12,16,20].
Therefore, it has been pleasing to see the considerable advancement
of our understanding of both the geology of rare earth deposits
[14–17] and the required mineral processing techniques [23–27],

http://crossmark.crossref.org/dialog/?doi=10.1016/j.eng.2019.12.007&domain=pdf
https://doi.org/10.1016/j.eng.2019.12.007
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1016/j.eng.2019.12.007
http://www.sciencedirect.com/science/journal/20958099
http://www.elsevier.com/locate/eng


116 A. Trench, J.P. Sykes / Engineering 6 (2020) 115–118
as well as significant further exploration efforts [18,28–30]. We
have also seen the relatively successful development of a major
new rare earth mine at Mount Weld in Western Australia, with
associated separation facilities in Malaysia, all owned by Lynas
Corporation [28,31]. In addition, there was a temporary—but
ultimately failed—restart of the Mountain Pass mine in California
[31]. Finally, there remains a relatively robust pipeline of rare
earths mine projects, focused on both the light and heavy rare
earths, all around the world, at different stages of development
from exploration to feasibility study [14–18].

The other option for increasing rare earths supply is via sec-
ondary supply—that is, scrap supply, which is also known as recy-
cling. At present, rare earth metals are essentially not recycled
[9,32]; however, many efforts are underway to begin this process.
Nonetheless, over the short to medium term, recycling cannot be
the total solution we require. The minority economic status of rare
earths means that we have mined relatively little of these metals,
such that we could not sustain future demand based on even the
most efficient recycling efforts. For example, the United States
Geological Survey estimates that we have mined less than
3.3 � 106 t of rare earths since 1900 [33], which approximates
all of the rare earths mined in history. This figure compares
unfavorably with the known geological reserves of 1.2 � 108 t cited
earlier [20], the current annual supply (and thus demand) of
1.7 � 105 t [20], and the current compound annual supply (and
thus demand) growth rates of about 9.5% [20,33]. Furthermore,
the difficulty in extracting rare earths for reuse from end-use pro-
duct such as electronic goods means that much of these rare earths
have been discarded to landfills or other very diffuse locations
where end-of-life products end up [32]. Nonetheless, the present
lack of recycling should not discourage investigations to increase
rare earth recycling rates, such as the efforts by some authors in
this special issue (Yin et al., this issue). Indeed, they suggest that
increasing rare earth recycling rates is a matter of urgency. Again,
by comparison, a ‘‘typical” industrial metal, such as copper, has a
recycling rate of 33%, which is largely based on economic opportu-
nity rather than on any specific environmental cause. With many
governments expressing the desire to move to a recycling-based
‘‘circular economy” [34–39], rare earth recycling rates can only
become a more urgent issue.
2. Recent changes in rare earths demand

Although rare earths are classified as critical metals, this has not
been reflected in their prices in recent years, which have been
histori- cally low [30]. There are supply-and-demand reasons for
these low prices. Most simply, on the supply side, the low prices
are evidence of the widespread occurrence of the metals, as dis-
cussed above. From a demand perspective, the 2010–2012 price
spike in rare earths [18,28–30], which was possibly among the
greatest in commodity market history, led to significant demand
destruction [28].

Rare earth demand statistics are extremely difficult to collate
[30], so to illustrate the level of demand destruction, this article
will use mine production data [33], making the reasonable
assumption that rare earth secondary supply (from scrap) is still
virtually nonexistent and that over longer time periods (such as a
decade), the effects of stockpiling and ‘‘hardship” cancel out;
thus, supply broadly equates to demand. With these assump-
tions, it is worth noting that in the ten-year period up to and
including 2006, when rare earth prices were low, global supply
(and assumedly demand) increased from 6.83 � 104 t�a�1 in
1997 to 1.37 � 105 t in 2006—a 101% increase over the period
[33]. The year 2006 represented a temporary period of peak pro-
duction and demand, as rare earth prices began to increase, first
due to a broader commodities boom, and then specifically relat-
ing to the rare earths price spike from 2010 to 2012. However,
ten years later, by 2015, production was 1.3 � 105 t —5% lower
than in 2006, following the ructions of the price spike in 2010–
2012 [33]. In the last few years, rare earths production (and per-
haps demand) has increased rapidly to nearer 1.7 � 105 t�a�1

[20]—an increase of nearly 25% in just a few years. There are
clearly supply-side issues affecting these figures: first, the reduc-
tion of Chinese rare earth export quotas from 2005 [18,28,30];
and second, the start-up of Mount Weld from 2013 [28] and
the start-up and closure of Mountain Pass between 2013 and
2015 [28]. However, it is clear overall that when the supply dis-
appears, the demand disappears as well, and potentially vice
versa.

It is unsurprising that close to the time of the price spike of
2010–2012, many research programs were launched around the
Western world on the supply security, recycling, substitution, or
thrifting of rare earths [40]. It is likely that we will continue to
see the results of these efforts in the near future, as these
research programs reach maturity; some are seen in this special
issue. We have already seen the effective end of the use of rare
earths as phosphors in lighting and displays, replaced by
indium-based light-emitting diodes (LEDs) [28,41,42]. Although
a direct link cannot be drawn between this demand change for
rare earth phosphors and the 2010–2012 price spike, the price
spike was likely a contextual factor. Overall, then, rare earths
demand has not grown as robustly as was perhaps expected five
to ten years ago [43].

The economic context for the use of rare earths is thus very
different now, in comparison with just five years ago. Low prices
make rare earths an affordable option for many technologies, and
it is right that efforts should be directed toward end-use innova-
tion, as many of the authors of the papers in this special issue do.
A cheap and reliable supply of rare earths in the future will facil-
itate a much greater chance that the permanent magnet innova-
tions discussed in this paper will enter the mainstream
economy [32]. In addition, demand diversity is an under-recog-
nized component of demand ‘‘creation” [32]. The largest metals
markets are typified by broad demand patterns, with the metals
being used across several key sectors, in several applications,
and in thousands of products, utilizing several chemical or phys-
ical properties of the metal. For example, to the best of our
knowledge, the largest demand sector for copper is the very
broad category of ‘‘industrial equipment” (31%) [44], whereas
the largest demand category for neodymium and dysprosium is
the much more specific category of Nd–Fe–B magnets—at 76%
and 100%, respectively [12,32]. Such diverse demand, as seen
for copper, is critical for price stability, as is diverse supply. The
innovations in this issue may help to stimulate this demand
diversity by providing new and different uses for rare earth per-
manent magnets and, hopefully, beyond just magnets.

Nonetheless, the economically efficient use of rare earths in
permanent magnets will continue to form one of the key down-
stream technological challenges, where the continuous improve-
ment in permanent magnet performance, production efficiency,
and sustainability has become a focus for research. Such factors
can only serve to stimulate demand, whatever the supply-side con-
ditions. Cost efficiency will remain a key focus of all stages of the
rare earth value chain, as well as of the associated alloying metals
that complement rare earth technologies, such as cobalt (Coey, this
issue; Liang et al., this issue). Continuous cost improvements from
‘‘mine to magnet” will accelerate and bring forward permanent
magnet demand and open new and emergent end-use markets,
as indeed will stronger magnet performance and improved weight
efficiency. On this note, we welcome a group of eight papers in this
special issue of Engineering, which present some of the latest
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research developments targeting an improved permanent magnet
value chain.

In this issue, Coey discusses the perspective and prospects for
rare earth permanent magnets, while reviewing the mineral
economics of the rare earth elements and the historical develop-
ment of permanent magnet technologies. Aside from the now-tra-
ditional deployment of permanent magnets in renewable energy
and electric transportation, Coey identifies robotics as a major
future end-use market opportunity as the automation of manufac-
turing processes gathers pace.

Yang et al. (this issue) discuss the structural and magnetic prop-
erties of nanocomposite NdFeB prepared by a rapid thermal pro-
cessing technique. These authors propose that the performance
of Nd2Fe14B/a-Fe nanocomposite magnets will be further
improved if a soft magnetic phase with a width in the critical
dimension range can be formed to continuously surround the hard
magnetic phase.

Liang et al. (this issue) investigate the structural properties
associated with the magnetic anisotropy of amorphous Sm–Co
films and highlight the significant potential for applications, both
in information storage media and spintronic materials.

Yin et al. (this issue) investigate the potential for an efficient
recycling process of Nd–Fe–B sludge for high-performance sintered
magnets, with the aim of both reducing recycling cost and improv-
ing recycling efficiency at commercial scale.

Rial et al. (this issue) explore the optimization of magnet prop-
erties via alternative production processes for the rare-earth-free
MnAl permanent magnet, with a focus on the relevance of nanos-
tructuring and a short milling time to avoid high temperatures in
the milling process.

Isnard and Kinast (this issue) provide a fundamental study of
magnetic behavior with respect to temperature dependence
through a neutron diffraction investigation of the DyFe11Ti mag-
netic structure and its spin reorientations.

Kovacs et al. (this issue) report on a study of the computational
design of rare-earth-reduced permanent magnets and present an
overview on how the extrinsic magnetic properties of a virtual
magnet, such as coercivity and energy density product, can be pre-
dicted from first principles including nanostructuring, grain
boundary conditions, and (to a lesser extent) grain shape.

Finally, Hadjipanayis et al. (this issue) report on the use of
ThMn12-type alloys for permanent magnets and suggest that
iron-rich compounds with the ThMn12-type structure may address
the demand for rare-earth-lean permanent magnets with high
energy density.
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