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Pine wilt disease (PWD) has recently caused substantial pine tree losses in Republic of Korea. PWD is con-
sidered a severe problem due to the importance of pine trees to Korean people, so this problem must be
handled appropriately. Previously, we examined the history of PWD and found that it had already spread
to some regions of Republic of Korea; these became our study area. Early detection of PWD is required.
We used drone remote sensing techniques to detect trees with similar symptoms to trees infected with
PWD. Drone remote sensing was employed because it yields high-quality images and can easily reach the
locations of pine trees. To differentiate healthy pine trees from those with PWD, we produced a land
cover (LC) map from drone images collected from the villages of Anbi and Wonchang by classifying them
using two classifier methods, i.e., artificial neural network (ANN) and support vector machine (SVM).
Furthermore, compared the accuracy of two types of Global Positioning System (GPS) data, collected
using drone and hand-held devices, for identifying the locations of trees with PWD. We then divided
the drone images into six LC classes for each study area and found that the SVM was more accurate than
the ANN at classifying trees with PWD. In Anbi, the SVM had an overall accuracy of 94.13%, which is 6.7%
higher than the overall accuracy of the ANN, which was 87.43%. We obtained similar results in
Wonchang, for which the accuracy of the SVM and ANN was 86.59% and 79.33%, respectively. In terms
of the GPS data, we used two type of hand-held GPS device. GPS device 1 is corrected by referring to
the benchmarks sited on both locations, while the GPS device 2 is uncorrected device which used the
default setting of the GPS only. The data collected from hand-held GPS device 1 was better than those
collected using hand-held GPS device 2 in Wonchang. However, in Anbi, we obtained better results from
GPS device 2 than from GPS device 1. In Anbi, the error in the data from GPS device 1 was 7.08 m, while
that of the GPS device 2 data was 0.14 m. In conclusion, both classifiers can distinguish between healthy
trees and those with PWD based on LC data. LC data can also be used for other types of classification.
There were some differences between the hand-held and drone GPS datasets from both areas.

� 2020 THE AUTHORS. Published by Elsevier LTD on behalf of Chinese Academy of Engineering and
Higher Education Press Limited Company. This is an open access article under the CC BY-NC-ND license

(http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Pine trees are essential to Republic of Korea, both culturally and
spiritually [1]. There are vast pine forests (Pinus desiflora and Pinus
thunbergii) in Republic of Korea, occupying a total area of
1 507118 hm2 or 23.5% of the total forested area [2,3]. In 1980,
pine wilt disease (PWD) was detected for the first time in Busan,
Republic of Korea. This resulted in severe losses and is considered
a serious threat to Republic of Korea’s pine forests [1]. The
damaged area now covers 7820 hm2 and more than 60 cities in
Republic of Korea [4]. PWD is caused by a type of nematode,
Bursaphelenchus xylophilus, which is transmitted by insect vectors
known as pine sawyer beetles (Monochamus spp.). The vector
infects trees from early June to late July, which is the period of
maturation feeding time for adult pine sawyers [4,5].

PWD originated in North America [6–8] and first spread to
Japan, where it has caused severe problems for 100 years [8,9],
then to China [10] and Republic of Korea [1,4] over the last few
decades. PWD dissemination is closely related to environmental
factors, such as the temperature and water content of the soil
[11]. The pine wilt nematode (PWN) attacks pine trees, most of
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Fig. 1. (a) Study area, i.e., Wonchang and Anbi Villages, located in Chuncheon City,
Republic of Korea, shown in Landsat-8 images; (b) there are two PWD-indicated
trees in Wonchang, this image shows the first candidate, and (c) the second PWD-
indicated tree in Wonchang.
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which die within three months of infection [1,12,13]. Proper han-
dling, such as early detection, of this problem is required because
fumigation, burning, and felling of trees are currently the only
ways to control the spread of PWD [1,14].

Drone remote sensing is believed to have the potential to help
solve this problem. It is flexible and low-cost, and drone platforms
can be equipped with high-resolution remote sensing systems
[15]. Drone, or unmanned aerial vehicle (UAV), images have been
widely applied to overcome problems in forestry and agriculture
[15–17], urban vegetation [18], and even disasters such as earth-
quakes [19,20], landslides [21–23], and volcanic eruptions
[24,25]. In the case of the early detection of PWD, pine trees with
leaves that turn brown before autumn are categorized as PWD-
indicated trees. Drones are useful because it is difficult to identify
infected pine trees from field studies [13] due to the locations of
the trees, which are usually on mountains. The topographical
characteristics of forests also make direct access very challenging.
Furthermore, pine trees infected with PWD cannot always be
identified by the naked eye because they are viewed from below.

After obtaining drone images, we used supervised classification
to identify the locations of trees affected by PWD. Artificial neural
networks (ANNs) and support vector machines (SVMs) are two
widely used classifiers with proven classification accuracy
[26,27]. In this study, we used ANN and SVM classifiers to identify
trees with signs of PWD.

Based on the classification results from the ANNs and SVMs, the
next step was to assess their accuracy using error matrices. It is
very important to determine the accuracy of the classifiers so that
we can assess their effectiveness with respect to specific aims. This
will enable policyholders, evaluators, and other stakeholders to
easily identify and deal with PWD-indicated trees after forestry
researchers prove that the these trees are indeed infected by
PWD nematodes.

Furthermore, in addition to using drone global positioning sys-
tem (GPS) data, we also used two hand-held GPS devices to collect
field data and analyzed the differences between the results from
the drone and the hand-held GPS devices. Differences were seen
in the results even though the data were collected from the same
location. It is essential to be aware of the differences between
the results from hand-held GPS devices and drone GPS devices to
understand the error profiles. To summarize, the purpose of this
study was to identify the most effective classifier for detecting
PWD-indicated trees and elucidate the differences between results
collected from hand-held GPS devices and drone GPS devices.
2. Materials and method

2.1. Materials

High definition drone images (DJI Phantom 4 V 1.0; DJI, China)
and GPS data from two hand-held GPS devices (Garmin Oregon
750T;Garmin, Switzerland)wereused to collect data fromthe study
area.We focused on twoareas, namelyAnbi andWonchangVillages,
which are located in Chuncheon City, Gangwon Province, Republic
of Korea, at 37�50016.080 0N, 127�34059.880 0E and 37�48021.240 0N,
127�46030.360 0E, respectively. The two locations were selected due
to their previous track records of PWD, so we assumed that some
PWNs remain even though experts have already eradicated the
disease from these areas. The study areas in Wonchang and Anbi
Villages are shown in Fig. 1(a).

Drone images were collected from Anbi on 16 September 2018
and from Wonchang on 23 September 2018. The GPS data were
collected from both areas on 5 October 2018. A benchmark monu-
ment in Wonchang used to correct the results from GPS device 1
before identifying PWD-indicated trees (Figs. 1(b) and (c)). The
benchmark monument also known as survey marker, is a sited
object to spot the key survey on Earth’s surface which also indicate
the elevation. The default settings were used for GPS device 2
which then the GPS 2 called as uncorrected GPS. There was only
one PWD-indicated tree in Anbi and two PWD-indicated trees in
Wonchang. We used the following software in this study: Agisoft
Photoscan Professional to process the drone images, BaseCamp
version 4.7.0 to process the GPS data, and ArcMap 10.4 and ENVI
Classic 5.3 to classify and assess the accuracy of the classifiers.
To classify the images, we divided Anbi into 13 land cover (LC)
classes, and Wonchang into nine classes so that we could distin-
guish the indicated-PWD trees from other types of LC, such as nor-
mal pine trees, grass fields, other trees species, bare land, road, and
buildings. However, some types of LC, such as bare land, were clas-
sified as PWD due to the similarities in color. Hence, it was chal-
lenging to analyze the drone images in the study area. The
classification scheme and category definitions are listed in Table 1
for Wonchang and Anbi.

2.2. Method

When mapping PWD-indicated trees in the study area, we used
two types of artificial intelligence (AI): ANN and SVM classifiers.
Yuan et al. [16] used ANNs and SVMs to estimate an indicator



Table 1
Land cover (LC) classifications and definitions for Wonchang and Anbi areas.

Class
number

Class name in
Wonchang

Class name
in Abi

Class definition

1 PWD-indicated
tree

PWD-
indicated
tree

Pine tree assumed to be
infected by PWD

2 Normal pine tree Normal pine
tree

Pine tree that looks green and
healthy

3 Grass and trees Grass and
trees

Grass and other trees species
(not pine tree)

4 Road Road Road areas
5 Shadow Shadows Shadowed areas
6 Bare land — Area/land that is not covered

by anything
7 — Building Houses or building areas
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called the leaf area index (LAI) of soybean plants with high accu-
racy and precision. Thus, we assessed the ANNs and SVMs classifi-
cation results to calculate the accuracy of both classifiers using the
error matrix method, which evaluates the overall accuracy, kappa
coefficient, producer accuracy, and user accuracy. In addition to
evaluating the accuracy of both classifiers, we compared the drone
GPS results to the hand-held GPS results from both study areas. To
evaluate these differences, we compared the center points of each
PWD-indicated tree identified using the drone to the results from
the hand-held GPS device. In general, our method is divided into
four phases: collection of drone images, classification of images,
accuracy assessment, and comparison between the classification
and GPS results, as shown in Fig. 2.

2.2.1. Artificial neural network
An ANN is a mathematical framework that is intended to mimic

human learning processes through a parallel process that rein-
forces the linkage between input and output data [28,29]. One of
the most common implementations of ANNs, which we also used
in this study, is a feedforward network (FFN). This is a nonparamet-
ric nonlinear model that consists of an input layer, a hidden layer,
and an output layer [30]. All ANNs have a specific number of nodes,
which are linked to each other with specific weightings and biases
in the subsequent layer. The FFN is defined as:
Fig. 2. Flow chart of the methodology used in this study to determine the accuracy
of the ANN and SVM classifiers, and compare the drone GPS data to data from two
hand-held GPS devices.
xj ¼ f
Xn
i�1

wijxi þ bj

 !

where the subscripts i and j denote the previous and current layer,
respectively; x is the nodal value; b and w are bias and weight
values, respectively; n is the number of nodes in the previous layer;
and f signifies a transfer function of the present layer. Linear and
log-sigmoid functions were assigned to the output and hidden
layers, respectively. This combination is known to be effective for
enhancing the extrapolation ability of the ANN [29,31]. To minimize
the error between the output and input data, we used a back-
propagation algorithm (BPA) to train the ANN.

Hence, the input and output were repeatedly fed through the
network, and the error was propagated from the output to the
input layer [32]. The most critical parameter in the ANN model is
the quantity of the neurons; using more neurons results in higher
learning accuracy but weakens the generalizability of the ANN
[28]. In this study, we based our work on Kavzoglu’s network archi-
tecture and training patterns [33]. We used ENVI Classic 5.3 to
train the ANN. A logistic activation method was employed and
the training threshold contribution and momentum were set to
0.9, while the rate field, root mean squared (RMS) exit criterion,
and number of training iterations were set to 0.2, 0.1, and 100,
respectively.

2.2.2. Support vector machine
An SVM is a machine learning method based on statistical

learning theory. SVMs, originally proposed by Cortes and Vapnik
[34], are nonparametric algorithms based on structural risk mini-
mization (SRM) rather than empirical risk minimization (ERM),
which is employed by ANNs. ERM is designed to minimize the
errors in the training data used by classifiers, while SRM is
designed to maximize the margins between the data groups to
be classified, which in turn maximizes the generalizability of the
model [35]. When implementing an SVM, it is essential to use an
appropriate kernel function, i.e., one which reflects the similarities
between data points [36]. We used the radial basis function (RBF)
kernel due to its excellent performance in nonlinear classification
algorithms [37,38]. In this study, the penalty parameter and
gammawere set to 100 and 0.05, respectively, to generate the most
accurate model possible.
3. Results

The drone images collected from both study areas were classi-
fied using ANN and SVM classifiers implemented in ENVI Classic
5.3. In addition to the drone image data, GPS data were also col-
lected so that we could evaluate the differences between the GPS
data collected from the drone and hand-held GPS devices. The
images were grouped into six classes: PWD-indicated trees, normal
pines, grass and trees, road, shadows, and bare land for Wonchang.
In Anbi, we used the following classes: PWD-indicated trees, nor-
mal pines, grass and trees, buildings, roads, and shadows. The clas-
sification accuracy was assessed using a stratified sampling
method on a pixel by pixel basis. Pixels in each class were ran-
domly selected from drone images and then used as reference
points, which we compared with the results of the SVM and ANN
classifiers in both areas.

We used Microsoft Excel to calculate the matrices and evaluate
the overall accuracy, kappa coefficient, producer accuracy, and user
accuracy so that we could compare between the two reference
error matrices. The kappa coefficient is a discrete multivariate
technique that is often used to measure accuracy [39]. Kappa coef-
ficients are interpreted as a collective judgment, in which an agree-
ment is reached after excluding chance agreement [40]. Therefore,
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we calculated the kappa statistic of each error matrix obtained
from the ANN and the SVM classification results to determine
which classifier yielded the best results.

3.1. Land classification result in Anbi village

The drone images collected from Anbi were classified into six
categories, which were merged from 13 base classes. Thirteen
classes were specified due to differences in the colors of objects
in the images, such as buildings, which can have many roof colors.
Hence, dividing the images into 13 classes made it easier for the
algorithm to classify the images. After obtaining the classification
results, we merged several classes that represented different colors
of the same objects. The six classes thus generated were: PWD-
indicated trees, normal pine, grass and trees, buildings, roads,
and shadows, as shown in Fig. 3. To classify the images, we trained
five polygons for each group with similar colors. We used 65
samples in total to generate the LC map. In this case, the SVM
(Fig. 3(a)) distinguished PWD-indicated trees better than the
ANN (Fig. 3(b)). Fig. 3(c) shows that some parts of images, showing
items such as buildings and roads that have similar colors to
PWD-indicated trees. These were classified as having the same col-
ors as PWD-indicated trees by both the ANN and SVM classifiers,
but the SVM recognized the trees better.
Fig. 3. Land classification map of Anbi, generated using: (a) an SVM and (b) an ANN from
trees (orange), normal pine trees (light green), grass and trees (green), buildings (blue),
3.2. Accuracy assessment from Anbi classification

In Tables 2 and 3, we summarize the error matrices of the PWD
classification results from both the ANN and SVM algorithms. Both
methods were based on analyzing 358 pixels: 59 pixels from PWD-
indicated trees, 60 pixels from normal pines, 60 pixels from grass
and trees, 60 pixels from buildings, 59 pixels from roads, and 60
pixels from shadows. All sample data were based on multinomial
probability theory and stratified random sampling. The overall
accuracy of the SVM was 94.13%, while that of the ANN was
87.43%. The higher percentage of the SVM classifier indicates that
it was more accurate than the ANN. This conclusion is supported
by the kappa coefficients of both results: 0.9296 or 92.96% for
the SVM and 0.8492 or 84.92% for ANN.

3.3. Land classification result in Wonchang village

We initially classified drone images collected from Wonchang
into nine classes due to some objects having different colors, then
simplified the results into six classes by merging classes of the
same objects. As shown in Figs. 4(a) and (b), the land classification
maps of Wonchang generated using SVM and ANN have six classes.
The classes is divided based on its similarity as shown in the drone
image in Fig. 4(c), there are many different types and colors of
(c) drone image data. The images were classified into six categories: PWD-indicated
roads (light grey), and shadows (grey).



Table 2
Error matrix for Anbi classified using an ANN.

Class PWD Normal pine Grass and trees Buildings Roads Shadows Class total

PWD-indicated trees 51 0 0 6 4 0 61
Normal pine trees 0 46 7 0 0 0 53
Grass and trees 0 9 51 0 0 1 61
Buildings 6 0 0 53 2 0 61
Roads 1 4 0 1 53 0 59
Shadows 1 1 2 0 0 59 63
References total 59 60 60 60 59 60 358

Table 3
Error matrix for Anbi classified using an SVM.

Class PWD Normal pines Grass and trees Buildings Roads Shadows Class total

PWD-indicated trees 58 0 0 4 2 0 64
Normal pines 0 60 6 0 0 3 69
Grass and trees 0 0 53 0 0 0 53
Buildings 1 0 0 56 4 0 61
Roads 0 0 0 0 53 0 53
Shadows 0 0 1 0 0 57 58
References total 59 60 60 60 59 60 358
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vegetation, including bush, grass, and tree species that can be
grouped into one class. Nevertheless, to enable classifiers to distin-
guish the classes quickly, we classified nine categories using the
SVM and ANN.

As in the case of Anbi, we merged the SVM and ANN categories
based on their similarities. For example, grass, bush, and trees were
merged into one class. Overall, the classification results generated
by both classifiers can distinguish PWD-indicated trees, but the
SVM classifier yielded better results than the ANN classifier, as
shown in Figs. 4(a) and (b), respectively. In Wonchang, the SVM
misclassified some areas but not as many as the ANN that classified
some areas as PWD-indicated trees, such as bare land and other
trees species, which were similar in color to PWD-indicated trees
due to the arrival of peak fall season.

3.4. Accuracy assessment from Wonchang classification

We assessed the accuracy of the classification results for the
Wonchang area using 358 sample pixels: 59 pixels from the
PWD-indicated trees, 60 pixels from normal pines, 60 pixels from
grass and trees, 59 pixels from roads, 60 pixels from shadows,
and 60 pixels from bare land. The results of the accuracy assess-
ments of the ANN and SVM classifiers for Wonchang are shown
in Tables 4 and 5, respectively. The SVM was more accurate
(86.59%) than the ANN (79.33%), which means that the SVM distin-
guished among the classes, especially the PWD-indicated trees,
better than the ANN. This conclusion is supported by the kappa
coefficient, which was 0.8391 or 83.91% for the SVM and 0.7520
or 75.20% for the ANN. According to the Landis and Koch (1997)
characteristic, this indicates stronger agreement.

3.5. Differences between GPS datasets

There were some differences between the coordinates collected
from the hand-held GPS device and the drone GPS device, as shown
in Tables 6 and 7. There were several causes of these differences,
such as GPS-signal propagation errors, which are modified as the
signal travels through the ionosphere, and the effect of relativity.
The two types of GPS devices provided different coordinates for
the PWD trees in Anbi and Wonchang: the coordinate data from
hand-held GPS device 1 was corrected in the field, while that of
hand-held GPS device 2 was not corrected as we used the default
settings of the GPS device. There were larger gaps between the
drone GPS results and the results collected from hand-held GPS
device 2 (differences of 7.37 and 7.25 m) than from device 1 (dif-
ferences of 9.75 and 1.22 m) in Wonchang. Hence, GPS device 1,
which corrected the coordinate, yielded more similar results to
the drone GPS device. However, in Anbi, the results from GPS
device 2 were closer (differences of 0.14 and 2.49 m) to those
obtained using the drone GPS device. Hence, in this case, the
default data from the device yielded better results than the cor-
rected data provided by GPS device 1 (differences of 7.08 and
3.37 m).
4. Discussion

After processing the drone image by using two classifiers, ANN
and SVM, we generate classification result and accuracy assess-
ment of Wonchang and Anbi as well as the differences between
GPS dataset that already mentioned in result part. However, there
are some findings that need to be discussed that will be addressed
in the following section.
4.1. Land classification map from Anbi

From the classification result of SVM and ANN classifier in Anbi,
it looks slightly different in the map, but so different in their accu-
racy percentages. However, if we take a look to both classification
result (Figs. 3(a) and (b)) in details, there are some differences of its
classification result. For example the PWD-indicated tree class in
SVM result is not as many as the ANN, either for the PWD-
indicated tree itself or the misclassified region. Moreover, the other
classes such as road, shadow, and building were detected in some
areas that it should not be, especially for the ANN classification
result.

Since the confusion matrix (error matrix) method, which corre-
spondence between the classification result and reference, so it
makes the SVM and ANN has differences for its accuracy even
the LC map looks similar. In addition this method used the pixel
number to determine the accuracy, either for its overall accuracy
or kappa coefficient. So, even though the PWD-indicated tree shade
looks similar each other, the accuracy result shown was for all
classes which experienced misclassification also.



Fig. 4. Land classification map of Wonchang generated using: (a) an SVM classifier and (b) an ANN classifier from (c) drone images. Images classified into six classes: PWD-
indicated trees (orange), normal pines (light green), grass and trees (green), Bare land (pink), roads (light grey), and shadows (grey).

Table 4
Error matrix for Wonchang, classified using the ANN.

Class PWD Normal pines Grass and trees Roads Shadows Bare land Class Total

PWD-indicated trees 53 0 0 0 0 7 60
Normal pines 0 48 11 0 0 1 60
Grass and trees 0 10 45 0 0 2 57
Roads 0 1 2 59 2 0 64
Shadows 6 1 0 0 58 29 94
Bare lands 0 0 2 0 0 21 23
References total 59 60 60 59 60 60 358

924 M. Syifa et al. / Engineering 6 (2020) 919–926
4.2. Accuracy assessment from Anbi

The accuracy assessment represents the accuracy from the clas-
sification map generated. In assessing the accuracy, the confusion
matrix was employed to calculate the pixel number and its com-
parison. As can be seen form Tables 2 and 3, the SVM generates a
better result than the ANN for its overall accuracy and kappa coef-
ficients. From each table, we can see each class’ user accuracy that
referred to as reliability. Some classes are shown a very high per-
centage such as grass and trees and shadows classes in Table 3
which means these classes will actually be present on the ground
as often as it is when the user of this map go to the field.

4.3. Land classification map from Wonchang

As well as the Anbi village result, the classification result from
Wonchang is also slightly different yet the accuracy result is so
different. Since the same method was applied to calculate the
accuracy and employed the pixel number to determine the overall
accuracy and kappa coefficient, thus the differences between



Table 5
Error matrix for Wonchang, classified using the SVM.

Class PWD Normal pines Grass and trees Roads Shadows Bare land Class total

PWD-indicated trees 55 0 0 0 0 5 60
Normal pines 0 46 6 2 4 0 58
Grass and trees 0 13 52 1 0 1 67
Roads 0 0 2 56 0 0 58
Shadows 0 1 0 0 56 9 66
Bare land 4 0 0 0 0 45 49
References total 59 60 60 59 60 60 358

Table 7
Comparison of the three GPS datasets collected from Wonchang.

Class Drone GPS (m) Hand-held GPS 1 (m) Hand-held GPS 2 (m)

PWD-indicated tree 1 392226.388
4184732.877

392229.760
4184742.630

392233.888
4184740.248

Differences 16904.10
9.75

16 908.22
7.37

PWD-indicated tree 2 392215.327
4184726.705

392233.412
4184725.484

392233.888
4184719.452

Differences 18.085
1.22

18.56
7.25

Table 6
Comparison of the three GPS datasets collected from Anbi.

Class Drone GPS (m) Hand-held GPS 1 (m) Hand-held GPS 2 (m)

PWD-indicated tree 375325.664
4188772.272

375318.589
4188768.904

375325.8074188769.782

Differences 7.08
3.37

0.14
2.49
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classification and accuracy result that seems to be opposite can be
explained. If we look through the maps carefully in
Figs. 4(a) and (b), particularly the PWD-indicated tree class in the
ANN have larger misclassified area than the SVM. In addition, the
bare land and some grass that has brownish color also detected
as PWD-indicated tree which make the ANN has a lower overall
accuracy than the SVM in Wonchang result.

4.4. Accuracy assessment from Wonchang

Similar to the Anbi, accuracy assessment in Wonchang were
also used the same method. Error matrix method allows us to
generate the overall accuracy and kappa coefficient. As shown in
Tables 4 and 5, the overall accuracy for SVM is higher than the
ANN, so with the kappa coefficient. This accuracy percentage is
influenced by the classification result and the accuracy from each
class. For bare land class that generate a low percentage for
producer accuracy among the other classes which means only
35% of the bare land on the ground correctly shown on the classi-
fied map or we can said the probability of the bare land classified in
the map is only 35%. In contrast, the user accuracy of this class
generate a better percentage, which is 91.30% which means the
bare land class from the classification result map is reliable even
though its producer accuracy was low. However, since each class’
accuracy affect the overall and kappa accuracy, this example can
explained why the SVM more powerful than the ANN.

4.5. Differences between GPS datasets

The differences between hand-held GPS device 1 and GPS device
2 is only from its coordinate data. The hand-held GPS device 1 was
corrected by logging the GPS to the point on the benchmark nearby
Wonchang and Anbi. Meanwhile the hand-held GPS device 2 was
not corrected to the benchmark. Asmentioned in result part, the dif-
ferences can be occurred due to some technically causes such as
GPS-signal propagation errors and relativity effect, nevertheless
workflow in processing the data and field technique also might be
have a role in this study.

5. Conclusions

We used ANN and SVM algorithms to classify images from Anbi
and Wonchang and successfully distinguished PWD-indicated
trees from other types of LC observed in the drone images. We
obtained better results from the SVM classifier, which had a higher
overall accuracy (94.13% for Anbi and 86.59% for Wonchang) than
the ANN classifier (87.43% for Anbi and 79.33% for Wonchang).
Compared to the ANN classifier, the kappa coefficient indicated
stronger agreement in the case of the SVM (0.9296 for Anbi and
0.8391 for Wonchang). This indicates that SVM classifiers can clas-
sify types of LC or specific trees that have similar symptoms to
PWD better than ANNs.

There were some differences in the GPS datasets obtained from
the three devices used. The corrected hand-held GPS device was
more accurate in Wonchang, but in Anbi, results from the hand-
held GPS device that provided raw data were closer to those of
the drone. Overall, both algorithms successfully distinguished
between PWD-indicated trees and the other types of LC shown in
drone images. These algorithms can be used by experts, govern-
ments, and other policyholders to facilitate the early detection of
PWD, and will help them to find the best solution to this problem.
Follow-up observations by forestry researchers or experts are
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required to confirm whether the PWD-indicated trees are indeed
infected by PWD.
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