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The creation of high-performance energetic materials with good mechanical sensitivities has been a great
challenge over the past decades, since such materials have huge amounts of energy and are thus essen-
tially unstable. Here, we report on a promising fused-ring energetic material with an unusual two-
dimensional (2D) structure, 4-nitro-7-azido-pyrazol-[3,4-d]-1,2,3-triazine-2-oxide (NAPTO), whose
unique 2D structure has been confirmed by single-crystal X-ray diffraction. Experimental studies show
that this novel energetic compound has remarkably high energy (detonation velocity D = 9.12 km�s�1;
detonation pressure P = 35.1 GPa), excellent sensitivities toward external stimuli (impact sensitivity
IS = 18 J; friction sensitivity FS = 325 N; electrostatic discharge sensitivity EDS = 0.32 J) and a high thermal
decomposition temperature (203.2 �C), thus possessing the dual advantages of high energy and low
mechanical sensitivities. To our knowledge, NAPTO is the first fused-ring energetic material with 2D lay-
ered crystal stacking. The stabilization mechanism toward external stimuli were investigated using
molecular simulations, and the theoretical calculation results demonstrate that the ultraflat 2D layered
structure can buffer external mechanical stimuli more effectively than other structures by converting
the mechanical energy acting on the material into layer sliding and compression. Our study reveals
the great promise of the fused-ring 2D layered structure for creating advanced energetic materials.

� 2020 THE AUTHORS. Published by Elsevier LTD on behalf of Chinese Academy of Engineering and
Higher Education Press Limited Company. This is an open access article under the CC BY-NC-ND license

(http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Energetic materials (EMs)—a family of special energy materials
that can quickly release huge amounts of chemical energy—have
substantially contributed to the progress of human civilization
and social development since Alfred Nobel first tamed nitrogly-
cerin in 1863 [1,2]. Numerous EMs based on a diverse range of
backbones, such as alkanes, cyclanes, aromatics, strain-caged hete-
rocycles, and nitrogen-heterocycles, have been synthesized over
the past decades (Fig. 1(a)) [3–20]. However, EMs with very huge
energy generally encounter the problem of poor stability toward
external stimuli (e.g., impact, friction, electrostatic spark, and heat),
and thus lack the safety like 2,4,6-trinitrotoluene (TNT) or 1,3,5-
triamino-2,4,6-trinitro benzene (TATB). This makes most EMs dan-
gerous to produce, handle, and use in military and civilian applica-
tions [21]. The newly reported 2,4,6-triamino-5-nitropyrimidine-
1,3-dioxide (ICM-102) may be a good insensitive high explosive,
but its strong interaction with water molecules hinders its further
application (the dehydration temperature of ICM-102 is as high as
178 �C) [22]. Recently, scientists have turned their attention to
fused-ring energetic compounds due to the conjugated structures
and good molecular stability of these substances; examples of these
compounds include 2,9-dinitroditriazolo[1,5-d:5ʹ,1ʹ-f]-1,2,3,4-
tetrazine (DNDTT), 1,2,9,10-tetranitrodipyrazolo[1,5-d:5ʹ,1ʹ-f]-
1,2,3,4-tetrazine (TNDPT), and 3,6-dinitropyrazolo[4,3-c]pyrazole-
1,4-diamine (DNPPDA) (Fig. 1(a)) [23–31]. Most of these com-
pounds show good thermal stability and excellent energy perfor-
mance, but their instability toward mechanical stimuli have not
been completely resolved. Searching for powerful EMs with good
safety remains a significant challenge.

Two-dimensional (2D) layered structures are generally consi-
dered to be effective ‘‘energy converters” that can transform the
mechanical energy acting on bulk material into relative motion
between layers when the material is subjected to intense
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Fig. 1. (a) Various high-performance EMs based on diverse backbones; (b) a fused-
ring EM with a 2D layered structure, as reported in this work. PETN: pentaerythritol
tetranitrate; RDX: cyclotrimethylene trinitramine; HMX: cyclotetramethylene
tetranitramine; HNB: hexanitrobenzene; ONC: octanitrocubane; CL-20: hexanitro-
hexaazaisowurtzitane; DNT: 1,5-di(nitramino)tetrazole; DNPPDA: 3,6-dinitropyra-
zolo[4,3-c]pyrazole-1,4-diamine; TNDPT: 1,2,9,10-tetranitrodipyrazolo[1,5-d:50 ,10-
f]-1,2,3,4-tetrazine; DNDTT: 2,9-dinitroditriazolo[1,5-d:50 ,10 ,-f]-1,2,3,4-tetrazine.

Fig. 2. The design and ‘‘cross-shaped” configuration of NAPTO.
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mechanical stimuli. This enables many lamellar materials (e.g.,
graphite, MoS2, and h-BN) to be good solid lubricants in critical
engineering applications [32–36]. In addition, theoretical studies
have demonstrated that 2D layered structures can convert the
mechanical energy acting on explosive materials into intermolecu-
lar interaction energy via the sliding and compression of the layers,
thereby avoiding possible decomposition or detonation of high
explosives [37–41]. Clearly, a 2D structure is preferable for the
design of EMs. The insensitive high explosive TATB is a very good
example. However, the energy density of TATB is relatively low;
for example, the detonation energy of TATB is approximately 65%
of that of the widely used cyclotetramethylene tetranitramine
(HMX) [42]. Therefore, through the rational design of highly ener-
getic fused compounds, the ‘‘energy converter” function of 2D
structures could effectively stabilize the powerful fused-ring EMs,
in order to achieve many new high-performance EMs with high
energy, good thermal stability, and excellent mechanical sensitivi-
ties. Unfortunately, fused-ring EMs with a 2D layered structure
have not been reported so far.

Herein, we report the design, synthesis, and characterization of
the first fused-ring energetic compound with a 2D layered struc-
ture (Fig. 1(b)): 4-nitro-7-azido-pyrazol-[3,4-d]-1,2,3-triazine-2-
oxide (NAPTO). X-ray single-crystal diffraction shows that the 2D
planes in its crystal structure are constructed through hydrogen
bonding and dipole–dipole interactions. The experimental results
demonstrate that the as-synthesized NAPTO not only exhibits high
detonation energy (comparable to that of HMX), but also owns
good mechanical sensitivities (close to those of TNT) and good
thermal stability, thus demonstrating the advantage of 2D fused
structures in constructing high-performance EMs with good
mechanical sensitivities.
2. Results and discussion

2.1. Design and synthesis of NAPTO

Although fused-ring EMs are under intense scrutiny by ener-
getic materials experts, designing such substances with 2D layered
structures still presents great challenges. Very recently, a primary
explosive with an energy equivalent to that of HMX—that is,
6-nitro-7-azido-pyrazol[3,4-d]-1,2,3-triazine-2-oxide (ICM-103)
was reported by our group [43]. Its extremely high sensitivity to
mechanical stimuli can be partly attributed to its mixing p–p
stacking mode. After checking the molecular structure of ICM-
103 carefully, we found that the nitro (NO2) and azide (N3) groups
in ICM-103 have partial negative charge and positive charge,
respectively, while the N?O and N–H groups are potential hydro-
gen bond (HB) acceptors and HB donors, respectively. If the NO2

and NH groups change places with each other, a 2D layered struc-
ture may be constructed due to the formation of a ‘‘cross-shaped”
configuration of two sets of intermolecular interactions (HBs and
dipole–dipole interactions), just like that of TATB (Fig. 2), resulting
in good mechanical sensitivities. In addition, the NO2 and the N3 in
NAPTO will be located on different sides of the parent ring, which
will increase the stability of the molecule. This idea was later con-
firmed theoretically, and theoretical calculations showed that this
newly designed NAPTO has a long-sought-after 2D structure (Sec-
tion S1 in Appendix A).

Accordingly, NAPTO was synthesized using an approach that
was more complicated than that of ICM-103 (Fig. 3). 4-Amino-3-
cyanopyrazole (Compound 1 in the Fig. 3) was first synthesized
according to reported methods [44,45]. Compound 2 was synthe-
sized with a moderate yield of 67 wt% through the reaction of
sodium azide and 4-amino-3-cyanpyrazole in dimethylformamide
(DMF) using dimethylamine hydrochloride as the catalyst. After-
ward, by treating Compound 2 with a mixture of fuming HNO3

and 98% H2SO4 at 0–5 �C for 2 h, and then heating to 50 �C for
4 h, a clear orange-red solution was obtained. The dilute solution
was extracted with ethyl acetate, and then brown crystals of
NAPTO were obtained from the ethyl acetate by slow evaporation
(Section S2 in Appendix A).
2.2. Crystal structure

The structure of NAPTO was fully characterized by infrared
spectrum (IR), nuclear magnetic resonance (NMR), and elemental
analysis (Section S2 in Appendix A). The accurate structure of
NAPTO was confirmed by single-crystal X-ray diffraction. The
detailed crystallographic data and refinement can be found in Sec-
tion S3 in Appendix A. NAPTO crystallized in the orthorhombic
space group Pnma with four molecules per unit cell. All the
involved atoms in NAPTO, including the H atom and the NO2, N3,



Fig. 3. The synthesis of NAPTO. DMA: dimethylamine.
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and N?O groups, are accurately located in a plane, exhibiting a
completely planar molecular configuration, of which the planarity
surpasses those of known fused-ring EMs.

In the crystal structure, each molecule is connected to two
neighboring molecules through HBs O1–H9–N9 and N4–H9–N9
with distances of 1.93 and 2.57 Å, respectively, forming an infi-
nitely extended one-dimensional (1D) chain (Fig. 4). The adjacent
chains are further self-assembled into 2D planes via dipole–dipole
interactions between the O atoms of the nitro group (NO2) and N
atoms of the triazo group (N3) with a bond length of 2.781 Å
(Fig. 4). As is known, the NO2 group possesses a partially negative
charge due to its strong electron-withdrawing characteristic. Previ-
Fig. 4. (a) Crystal structure and ultraflat molecular configuration of NAPTO;
(b) intermolecular interactions in the layers of the NAPTO crystal; (c) three-
dimensional (3D) structure of NAPTO based on p–p interaction.
ous studies have demonstrated that the N3 group possesses a par-
tially positive charge [11], which enables the N3 group to strongly
attract the negatively charged NO2 group, forming a strong dipole–
dipole interaction. Subsequently, the 2D planes are p-stacked layer
by layer along the [010] direction into a graphite-like supramolec-
ular structure (Fig. 4). As a result, NAPTO exhibits layer-by-layer p–
p stacking—that is, an ultraflat 2D layered structure—possessing a
possible ‘‘energy converter” advantage over those of reported tra-
ditional EM (HMX, octanitrocubane (ONC), hexanitrohexaaza-
isowurtzitane (CL-20), hexanitrobenzene (HNB)) and fused EMs
(DNDTT, TNDPT, DNPPDA). The layer spacing of NAPTO was mea-
sured to be 2.855 Å, indicating a tighter p–p stacking. In addition,
NAPTO had a high crystal density (1.852 g�cm�3), which is consis-
tent with the predicted density (> 1.80 g�cm�3, Section S1 in
Appendix A), satisfying the requirement of high explosives
(� 1.78 g�cm�3) [40,41].
2.3. Energy

Energy level is the most critical property for EMs because it
determines their efficiency. The energy properties of EMs are usu-
ally represented by two important detonation parameters, detona-
tion velocity (D) and detonation pressure (P), both of which,
according to the classical C-J equation, are mainly determined by
the density and heat of formation [46–48]. The heat of formation
can be obtained by using the Gaussian09 (revision D.01) suite of
programs based on high-precision theoretical methods (Section S4
in Appendix A). As shown in Table 1, the solid-phase heat of forma-
tion of NAPTO is positive and was calculated to be 3.47 kJ�g�1,
which is significantly higher than those of traditional EMs such
as TNT (0.24 kJ�g�1), cyclotrimethylene trinitramine (RDX)
(0.34 kJ�g�1), and HMX (0.35 kJ�g�1). Furthermore, NAPTO shows
a high density of 1.85 g�cm�3 at 296 K, which is higher than that
of the most widely used RDX (1.82 g�cm�3) and close to that of
HMX (1.89 g�cm�3).

With the density and heat of formation values, the detonation
performance of NAPTO was assessed using the EXPLO5 (Version
6.02, OZM Research, Czech Republic) program. As expected, NAPTO
exhibited a high detonation performance, and the calculated D and
Pwere 9.12 km�s�1 and 35.1 GPa, respectively (Table 1), which sur-
pass two of the most widely used EMs, TNT (7.45 km�s�1, 23.5 GPa)
and RDX (8.75 km�s�1, 34.7 GPa). In particular, the D of NAPTO is
comparable to that of HMX (9.10 km�s�1), indicating that NAPTO
possesses a high energy comparable to that of HMX. In other
words, NAPTO is an excellent candidate for use as a high-
performance EM, and its energy is on par with the most powerful
EMs in use today.



Table 1
Physicochemical and energetic properties of several typical EMs and NAPTO.

Items TNT RDX HMX NAPTO

M (g�mol�1) 227.13 222.12 296.16 223.02
N (%) 18.50 37.84 37.84 56.50
XCO2

(%) �73.97 �21.61 �21.61 �39.44
q (g�cm�3) 1.65 1.82 1.89 1.85
DfHm (kJ�g�1) 0.24 0.34 0.35 3.47
D (km�s�1) 7.45 8.75 9.10 9.12
P (GPa) 23.5 34.7 39.0 35.1
IS (J) 15.0 7.5 7.0 18.0
FS (N) 353 120 112 325
EDS (mJ) 0.37 0.15 0.10 0.32
Tdec (�C) 240.0 204.5 275.0 203.2

M: formula weight; N: nitrogen content; XCO2
: oxygen balance; q: crystal density;

DfHm: heat of formation; D: calculated detonation velocities; P: calculated deto-
nation pressure; IS: impact sensitivity; FS: friction sensitivity; EDS: electrostatic
discharge sensitivity; Tdec: decomposition temperature.

Fig. 5. Comparison of the impact and friction sensitivities of NAPTO and eight high-
performance EMs (D � 9.0 km�s�1).
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2.4. Thermal stability

In addition to its high energy, the stability properties of NAPTO,
including its thermal stability and mechanical sensitivity, are of
particularly interest due to its 2D layered structure. Thermal stabil-
ity is crucial to the safety of EMs because it reflects the difficulty of
accidental combustion or explosion of EMs under an external ther-
mal load. In general, a heat resistance above 180 �C is highly desir-
able for practical application [49]. However, in most cases, EMs
with huge amounts of energy are thermodynamically unstable.
Given that NAPTO showed a high energy density comparable to
that of HMX, while isomer ICM-103 has a relatively low decompo-
sition temperature, we were slightly concerned about the ther-
mosensitive properties of NAPTO. Here, differential scanning
calorimetry (DSC) and thermogravimetric (TG) analysis were used
to assess the thermal stability of NAPTO (Section S6 in Appendix
A). As shown in Fig. S9 in Appendix A, the thermal decomposition
of NAPTO occurred at an onset temperature of 203.2 �C and a peak
temperature of 214.2 �C, which is significantly higher than that of
its isomer ICM-103 (160.3 �C), and is almost comparable to those of
the two most powerful explosives, namely, RDX (204.5 �C) and CL-
20 (195.0 �C) [30]. This demonstrates the good thermal stability of
NAPTO for practical use. Compared with ICM-103, the 2D structure
of NAPTO may play a critical role in its good thermal stability due
to the strong hydrogen bonding and dipole–dipole interactions
within the layers.

2.5. Sensitivities toward mechanical stimuli

Stability toward external stimuli, such as impact, friction, and
electrostatic spark, is also crucial for EMs. Here, using Bunde-
sanstalt für Materialforschung und -prüfung (BAM) methods, the
mechanical sensitivities of NAPTO were tested (Section S7 in
Appendix A); the results are summarized in Table 1. The measured
impact, friction, and electrostatic spark sensitivities of NAPTO were
18.0 J, 325 N, and 0.32 J, respectively. As shown in Fig. 5, the sen-
sitivities of NAPTO are much superior to those of reported EMs
with a D higher than 9.0 km�s�1, including traditional explosives
(e.g., CL-20, ONC, 4,4-dinitroazoxyfurazan (DNOAF)) and new
fused-ring explosives (e.g., DNDTT, 1,3,4,6-tetranitro-1,4-dihydro
pyrazolo [4,3-c]pyrazole (TNDPP), 6-amino-tetrazolo[1,5-b]
1,2,4,5-tetrazine-4,7-N-dioxide (ATTDO), and TNDPT). It is clear
that the mechanical sensitivities of NAPTO are better than those
of HMX (7.0 J, 112 N, and 0.10 J), and are almost equivalent to those
of TNT (15.0 J, 353 N, and 0.37 J). In other words, NAPTO not only
exhibits an outstanding detonation energy comparable to that of
HMX, but also has excellent mechanical-stimuli stability close to
that of TNT. Considering that the energy of NAPTO (a secondary
explosive) and ICM-103 (a primary explosive) are almost equal,
but their mechanical sensitivities are significantly different
(IS = 18.0 J and FS = 325 N vs IS = 4.0 J and FS = 60 N), we believe
that this 2D structure has a significant role in improving the safety
of explosives.
2.6. Stabilization mechanism

To gain insight into the stabilization mechanism of NAPTO, we
investigated the nature of its ultraflat 2D layered structure in
response to external mechanical stimuli using molecular simula-
tions (Section S8 in Appendix A) [39].

As seen in Fig. 6, the following observations can be made:
① Sliding and compression of the layers occur in the NAPTO crystal
when under a simulated external mechanical force; this causes a
change in the interaction energy between adjacent layers (Figs.
6(a)–(c), (g), and (h)) without causing a chemical change, showing
that the NAPTO crystal can absorb a certain amount of mechanical
energy and thus prevent decomposition to a certain extent. Among
the deformations, the sliding action can absorb a mechanical
energy of 155.5 kJ�mol�1 (Fig. 6(c)), while the compression can
absorb 60.7 kJ�mol�1 (Fig. 6(h)). This suggests that the desensitiz-
ing mechanism of an ultraflat 2D structure can be explained by
energy dissipation due to the sliding and compression of the layers,
in which layer sliding contributes approximately 72% of the energy
dissipation capability. ② In layer sliding, the van der Waals (vdW)
interactions have a variation magnitude of only 30.3 kJ�mol�1,
which is much less than that of the electrostatic interactions
(144.0 kJ�mol�1), implying that the electrostatic interactions have
a greater influence on the total interaction energy. ③ As shown
in Figs. 6(c) and (f), the total interlayer interaction energy of
NAPTO varies from �38.0 to 117.5 kJ�mol�1 (a variation magnitude
of 155.5 kJ�mol�1). In comparison, the total interaction energy of
TATB (an insensitive layered explosive with an energy of only
65% of HMX’s energy) varies from �1.4 to 32.5 kJ�mol�1 (a varia-
tion magnitude of 33.9 kJ�mol�1), indicating that NAPTO can absorb
much more mechanical energy than TATB when under an external
stimulus. That is, ultraflat structures have great potential to allow
EMs to maintain good mechanical sensitivities at very high energy
levels. This is consistent with the experimental results (Table 1)
and has been further confirmed by the calculated sliding barrier
(ESb, Fig. 6(g)), where the region of the ESb of NAPTO below
300 MJ�m�3 is smaller than that of TATB, but much larger than that
of HMX [39].



Fig. 6. (a), (b), and (c) show the electrostatic interaction energy (EEIe-NAPTO), vdW interaction energy (EvdW-NAPTO), and total interaction energy of NAPTO
(ETotal-NAPTO), respectively (in kJ � mol�1); (d), (e), and (f) show the electrostatic interaction energy (EEIe-TATB), vdW interaction energy (EvdW-TATB), and total interaction
energy of TATB (ETotal-TATB), respectively (in kJ � mol�1); (g) shows the sliding barrier of NAPTO (ESb-NAPTO, in MJ�m�3)); (h) show the compression energy of NAPTO
(ECompression-NAPTO, in kJ � mol�1).
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In order to gain further insight into the desensitizing mecha-
nism, the Hirschfeld surface and the 2D fingerprint were used to
study the intralayer interactions and interlayer interactions
(Fig. 7). The shapes of the Hirschfeld surfaces and the distribution
of the red dots on the surfaces are usually used to indicate the slid-
ing and compression characteristics of 2D materials. A plate-like
shape with red dots located along the surface edges is preferred,
since it represents planar conjugated molecular structures, rela-
tively strong intralayer intermolecular interactions, and weak
interlayer intermolecular interactions. The structures with these
characteristics are more favorable for sliding and compression, in
theory.

Fig. 7(a) indicates that only EMs with an extensive amount of
strong HBs have the above characteristics (e.g., TATB, 3,3ʹ-
diamino-4,4ʹ-azofurazan (DAAzF), 1,1-diamino-2,2-dinitroethene
(FOX-7), and 3,5-dinitropyrazine-2,6-diamine-1-oxide (LLM-
105)), while the other EMs without HBs or containing only a
few HBs do not have these characteristics (e.g., TNT, HMX, and
CL-20). Therefore, we are surprised that NAPTO has a Hirschfeld
surface similar to that of TATB, since it has only one hydrogen
atom in its structure. With the help of the 2D-fingerprint plot
(Fig. 7(b)), it can be seen that, although there are very few HBs,
relatively strong interactions still exist within the crystal layers
of NAPTO and rather weak interlayer intermolecular interactions
exist between the layers. Here, among neighboring intralayer
molecules, O���H, N���H, and N���O are the dominant intermolecular
interactions. Their distances are 1.93, 2.57, and 2.78 Å, respec-
tively; these are much shorter than the sums of the van der
Waals radii for O + H (2.65 Å), N + H (2.70 Å), and N + O
(3.17 Å), indicating strong intralayer intermolecular interactions.
In addition, these interactions represent 45.4% of the total inter-
molecular interactions (Fig. 7(c)). Between layers, the dominant
forces are the relatively weak p–p interactions of O���O, O���C
(and C���O), and N���C (and N���C). These represent 24.2% of the
total intermolecular interactions, which is significantly lower
than that of the intralayer interactions (Fig. 7(c)). Based on the
above interaction systems, rigid layers are formed via relatively
strong intralayer interactions, which—along with the rather weak
interlayer interactions—makes sliding and compression between
layers possible.



Fig. 7. (a) Hirschfeld surfaces of NAPTO, five low-energy explosives (TATB, DAAzF, FOX-7, LLM-105, and TNT) and three high-performance explosives (HMX, CL-20, and ONC);
(b) 2D fingerprint plots in crystal stacking for NAPTO; (c) individual atomic contact percentage contributions to the Hirschfeld surface.
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3. Conclusions

In conclusion, we demonstrate that the design and construction
of the fused-ring 2D structure is a very powerful way to balance
the contradicting energy and safety properties of EMs. By rearrang-
ing the energetic groups of an existing high-performance EM, we
used HBs and dipole–dipole induction to create a promising
graphite-like fused EM: NAPTO. Single-crystal X-ray diffraction
showed that NAPTO exhibits an ultraflat 2D layered structure
(tight p–p stacking between layers with a considerably short layer
spacing of 2.883 Å), which is exceedingly rare in the field of EMs.
NAPTO has a high detonation performance (D: 9.12 km�s�1 and
P: 35.1 GPa), good thermal stability (203.3 �C), and desirable low
mechanical sensitivity to external stimuli (IS: 18.0 J, FS: 325 N,
and EDS: 0.32 J), as demonstrated by characterization with the
EXPLO5 (v6.02) program, DSC-TG analysis, and the BAM method.
A detailed computational study on the possible stabilization mech-
anism demonstrated that the 2D layered structure of NAPTO can
effectively buffer against external stimuli, and thus balances the
high energy and good mechanical sensitivities of NAPTO. In short,
by making minor adjustments to the arrangement of the energetic
groups (e.g., NO2 and NH), the crystal packing of the energetic
material has undergone significant changes (from mixing p–p
stacking to 2D ultraflat stacking), which in turn has caused a
huge difference in the macroscopic properties of the material
(e.g., mechanical sensitivities and thermal stability). Our study
demonstrates that the presented strategy of constructing a 2D
fused-ring structure shows great promise for discovering new
advanced EMs with a better balance between high energy and good
stability.
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