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With the growth of intermittent renewable energy generation in power grids, there is an increasing
demand for controllable resources to be deployed to guarantee power quality and frequency stability.
The flexibility of demand response (DR) resources has become a valuable solution to this problem.
However, existing research indicates that problems on flexibility prediction of DR resources have not
been investigated. This study applied the temporal convolution network (TCN)-combined transformer,
a deep learning technique to predict the aggregated flexibility of two types of DR resources, that is, elec-
tric vehicles (EVs) and domestic hot water system (DHWS). The prediction uses historical power con-
sumption data of these DR resources and DR signals (DSs) to facilitate prediction. The prediction can
generate the size and maintenance time of the aggregated flexibility. The accuracy of the flexibility pre-
diction results was verified through simulations of case studies. The simulation results show that under
different maintenance times, the size of the flexibility changed. The proposed DR resource flexibility pre-
diction method demonstrates its application in unlocking the demand-side flexibility to provide a reserve
to grids.

� 2021 THE AUTHORS. Published by Elsevier LTD on behalf of Chinese Academy of Engineering and
Higher Education Press Limited Company. This is an open access article under the CC BY-NC-ND license

(http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction tional Energy Agency (IEA), flexibility in the power system is the
Environmental concerns have largely promoted the use of
renewable energy in recent decades [1]. This transition brings chal-
lenges to power system operation owing to the intrinsic uncer-
tainty of renewable generation and distributed energy resources.
The main challenge is the increasing power imbalance between
demand and supply, which leads to an increasing demand for con-
trollable resources to be deployed in the system, while the magni-
tudes of conventional ancillary service resources are decreasing
[2]. In addition, the increasing number of connected distributed
energy resources at medium and low voltage levels may cause con-
gestion issues [3].

With the development of smart grids and electricity markets,
demand response (DR) resources can be an integral part of the sys-
tem operation. Thus, a promising solution to preserve the ancillary
service provision resource is to aggregate the flexibility of DR
resources [4]. Note that, according to the definition of the Interna-
ability to maintain reliability by adjusting the generation or load
during large disturbances [5]. Therefore, this study defined flexibil-
ity as the ability of DR resources to increase and decrease electric-
ity demand. The flexibility of DR resources can be employed by the
aggregator through price compensation or economic incentives,
which allows the DR resources to modify their own electricity con-
sumption behavior according to the needs of the system operation
[6,7]. The aggregator can then trade the flexibility of DR resources
in the ancillary service market to provide controllable resources for
power system operation.

To date, many studies have been conducted on how to make full
use of the flexibility of DR resources in providing ancillary services
to grids. To achieve the peak load shifting effect, Li et al. [8] estab-
lished a model for aggregated electric vehicles (EVs) to participate
in price-based DR. Sanandaji et al. [9] employed the electricity con-
sumption flexibility of aggregated residential heating, ventilation,
and air conditioning loads to regulate reserve services with a cer-
tain ramping rate. Hu et al. [10] proposed the idea of using DR
resources to achieve a power balance between supply and demand
for a multi-area power system. The approach presented in Ref. [11]
established reward rules for DR participants who provide flexibility
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Fig. 1. The flexibility of DR resources.
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and use the DR flexibility to realize load shifting as well as voltage
improvement in supply feeder.

As can be seen in Refs. [8–11], the flexibility of aggregated dis-
tributed energy resources determines the effect of the implemen-
tation of the DR program [12]. However, considering the
stochastic feature of end-user behaviors and the complex physical
characteristics of DR resources, the aggregated flexibility of DR
resources is usually uncertain before the implementation of the
DR program. Therefore, several risk control strategies are widely
adopted in DR programs to handle the uncertainties of the flexibil-
ity of DR resources. Ref. [13] introduced a conditional value-at-risk
into EVs problems, thereby providing reserve in the ancillary ser-
vice market to deal with the uncertainty of EV flexibility. Ref.
[14] established a robust optimization problem for the optimal
scheduling problem of aggregated EVs to obtain a conservative fre-
quency regulation market participation strategy. To deal with the
deviation between the actual and pre-scheduled flexibility of
grid-connected EVs in the DR grogram, Ref. [15] formulated an
optimization model based on the predictive control-based rolling
horizon method. Han et al. [16] used a multiple-scenario-based
stochastic programming method to handle the uncertainties of
EV flexibility in the DR program. Although the risk control method
used in Refs. [13–16] can help the aggregator consider the uncer-
tainties in the day-ahead DR planning, the results may be highly
conservative, which may lead to loss of economic benefits of the
DR users and even prevent the full flexibility of DR resources in
grid operations.

An accurate flexibility prediction model for aggregators is
essential for dealing with uncertainty when participating in grid
operations. However, only a few studies have been conducted on
the flexibility prediction problem. Many studies have mainly
focused on electricity demand prediction rather than directly pre-
dicting flexibility. Wang et al. [17] and Chen et al. [18] proposed a
probabilistic load forecast method that is used in system planning
and dispatch. The authors in Ref. [19] reviewed the current energy
forecast method and provided future directions. However, they
failed to discuss the direct representation and forecast of the flex-
ibility method. At present, most of the research on flexibility is lim-
ited to the definition and evaluation of flexibility. Ref. [20]
provided a representation method for EV flexibility, considering
the participation of EVs in frequency regulation, and evaluated
the flexibility of EVs in frequency regulation using three-year data.
For residential DR load, the authors in Ref. [21] established a bino-
mial probability distribution model of demand change and used
maximum likelihood estimation to evaluate the flexibility of
demand increase, demand decrease, or demand immobility.

In Ref. [22], a recurrent neural network (RNN) based flexibility
prediction method was proposed to acquire the flexibility of aggre-
gated domestic hot water system (DHWS). Using the flexibility
prediction results of DHWS, the load shift scheduling problem in
day-ahead and real-time can be carried out with certain accuracy.
However, the proposed RNN-based flexibility prediction method
can only predict the size of the aggregated flexibility, but cannot
present the maintenance time of flexibility. Furthermore, normal
RNN-based methods may show poor performance in complex
problems. For example, they may suffer from gradient exploration,
and the gradient vanishes when the input sequence is sufficiently
long; thus, they cannot be applied to general cases [23,24].

Building on the previously developed RNN-based flexibility pre-
diction method in Ref. [22], an advanced deep learning network,
the temporal convolution network (TCN)-combined transformer,
was adopted in this study to predict the real-time aggregated flex-
ibility of two typical DR resources, EV and DHWS multi-step-
ahead. This method considers the physical characteristics as well
as the different power consumption strategies. The main contribu-
tions of this study are twofold. First, the study provided a general
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multi-step-ahead flexibility prediction method for DR resources.
Through the proposed flexibility prediction method, the size of
the aggregation flexibility and the maintenance time of flexibility
can be obtained. Second, we applied the TCN-combined trans-
former model to address the flexibility prediction of aggregated
EVs and DHWSs. The TCN-combined transformer-based prediction
model is one of the most advanced models for modeling long-time-
dependency problems. The accuracy of the flexibility prediction
with a long predicted slot was verified through simulation of a case
study. The DR planning and operation problem in, for example,
offering reserve service to power grids, can be supported by the
proposed flexibility prediction method.

The remainder of this paper is organized as follows: Section 2
provides the preliminaries of our work, including the description
of the problem, system framework, and some important defini-
tions. Subsequently, the TCN-combined transformer-based predic-
tion method is described in detail in Section 3. Section 4 presents
the simulation results and discussion. Finally, the conclusions are
presented in Section 5.

2. Preliminaries

2.1. Definition of DR resources flexibility

In a broad sense, flexibility refers to the ability of the system to
respond to internal and external uncertainties, that is, the response
ability of the system when internal or external variables change
[25]. However, in power systems, there is no uniform definition
of flexibility. Currently, a widely accepted definition comes from
IEA. It defines power system flexibility as the ability to maintain
reliability by adjusting the generation or load during large distur-
bances [5]. According to IEA’s definition of flexibility, for the DR
resources on the load side, flexibility is reflected in the ability to
increase or decrease electricity demand.

Fig. 1 illustrates the flexibility of DR resources. In terms of the
base power demand (Pbase) of DR resources, that is, the power con-
sumption in normal use, the power demand can be increased to
Pmax or reduced to Pmin, where Pmin < 0 indicates that the DR
resources can provide power to the grid. The values of Pmax and
Pmin are constrained to the physical characteristics and user
requirements of the DR resource, which are discussed in detail in
Section 2.3. The distance between Pbase and Pmin/Pmax is the capac-
ity to reduce or increase the electricity demand, that is, flexibility.

This flexibility can be used as a reserve for power systems. In
the traditional sense, reserves have an additional generation capac-
ity above the expected load [16]. The reserve capacity setting pro-
tects the power system against the uncertain occurrence of future
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operating events, including loss of energy or load forecasting
errors. When such operating events occur, the DR resources can
also cover the imbalance between the supply and demand by
increasing or decreasing its electricity demand. Accordingly, the
capacity of DR to reduce/increase electricity demand can be called
the up/down reserve capacity, as shown in Fig. 1.

A reasonable way for DR resources to provide reserves is to
allow them to declare the capacity of up and down reserves asym-
metrically. However, the uncertainties and coupling in energy and
power make the description of DR flexibility a complex problem.
To better use the flexibility of DR resources in power systems,
the flexibility prediction method needs to be explored.

2.2. Problem formulation and DR system framework

The main aim of our study was to predict the flexibility of two
typical DR resources, that is, EV and DHWS, in multi-step-ahead by
processing realistic electricity consumption data using the
recorded historical end-users’ behavior database.

In our prediction, we studied the DR flexibility in the form of
aggregation as it can offset the uncertainty of internally distributed
DR resources, and the existing electricity market rules do not allow
the participation of individual customers. Considering the different
electricity consumption characteristics of EVs and DHWSs, an EV
aggregator (EVA) and a DHWS aggregator (DHWSA) were used to
aggregate EVs and DHWSs, respectively.

FEVAðtÞ ¼ P̂EVAðtÞ � PEVAðtÞ
FDHWSAðtÞ ¼ P̂DHWSAðtÞ � PDHWSAðtÞ

(
ð1Þ

The flexibility of EVA and DHWSA at time step t can be denoted
as FEVAðtÞ and FDHWSAðtÞ, respectively, which can be derived from
Eq. (1). PEVAðtÞ and PDHWSAðtÞ represent the base power demand of
EVs and DHWSs at time step t, respectively, which are equivalent

to Pbase in Section 2.1. P̂EVAðtÞ and P̂DHWSAðtÞ represent the aggre-
gated power of EVs and DHWSs at time step t when engaging in
the DR program, respectively, which are further discussed in detail
in the following section.

Fig. 2 shows the DR system framework. Note that we defined
the power direction from the grid to the demand side as the
positive direction. The EVA and DHWSA can participate in the
electricity energy market and ancillary services market for reserve
bidding. To assist the prediction and application of flexibility, the
Fig. 2. System framework. Pb: the power consumption of the boiler in the DHWS; Pdis: di
power; Pslow: slow-charging with rated slow-charging power.
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EVA and DHWSA can coordinate and schedule the power of all
the distributed EVs and DHWSs, respectively, by sending a DR
signal (DS, discussed in detail in Section 2.4) as an instruction. They
can offer attractive discounts in the DR users’ electricity bill when
they change the electricity consumption behavior according to the
DR signal instructions. To carry out the flexibility prediction of
distributed EVs and DHWSs, both EVA and DHWSA use
TCN-combined transformer-based technology. The TCN-combined
transformer model is described in detail in Section 3.

2.3. Base power demand of EV and DHWS

As mentioned in Section 2.1, the flexibility of aggregated DR
resources is closely related to the base power demand, and the
base power demand of aggregated DR resources is influenced by
the physical characteristics of DR resources and end-users’ electric-
ity consumption strategies.

2.3.1. Physical characteristics of each DR resource
Our study considered three operational modes of each EV, that

is, fast-charging with rated fast-charging power Pfast, slow-
charging with rated slow-charging power Pslow, and discharging
with rated discharging power Pdis. We formulated the following
constraints to represent the characteristics of a single EV, as shown
in Eqs. (2)–(8):

Pdis � PEVðtÞ � Pfast; ð2Þ

Eðt þ 1Þ ¼ EðtÞ þ gPEVðtÞDt; if t 2 ½tstart; tdepÞ; ð3Þ

EðtÞ ¼ 0; if t R ½tstart; tdep�; ð4Þ

EðtÞ ¼ Estart; if t ¼ tstart; ð5Þ

EðtÞ � Eexp; if t ¼ tdep; ð6Þ

EðtÞ � Emax; ð7Þ

PEVðtÞ � Pslow; if EðtÞ < Ems; ð8Þ
where PEVðtÞ represents the power of EV at time step t.
PEVAðtÞ ¼

P
EV2EVAPEVAðtÞ represents the relationship between PEVðtÞ

and PEVAðtÞ. The state of charge (SOC) of EV at time step t is denoted
as EðtÞ. The energy transfer efficiency between the charging pile
scharging with rated discharging power; Pfast: fast-charging with rated fast-charging



Table 1
DS value and the corresponding reaction of single EV and DHWS.

DS
value

Demand EV response DHWS response

1 Reserve
down

Increase charging power or
decrease discharging
power

Increase the power
consumption of the
boiler

�1 Reserve up Decrease charging power or
increase discharging power

Decrease the power
consumption of the
boiler

0 Not engage
in DR
program

No need for state switching No need for state
switching
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(grid) and the EV battery is indicated as g. We used Dt to represent
the sampling timescale. The initial SOC of a single EV when EV is
plugged in at the charging start time tstart is represented as Estart.
The expected SOC at the time of departure tdep is denoted as Eexp.
The maximum limitation of SOC is represented as Emax. The EV must
be charged to a certain SOC to meet the driving demand, which is
described in Eq. (6). The EV charging demand can be ensured when
Ems is set, which means that the EV must be in charging state when
its SOC is lower than Ems.

The DHWS user’s requirement is to keep the water tank
temperature T tank close to a predefined temperature Tref , with a
maximum allowed deviation equal to the deadband Tdb, as
described in Eq. (9). The power consumption of the boiler in the
DHWS is represented as Pb in this study, and the DHWS operation
model is formulated as follows:

Tref � Tdb � TtankðtÞ � Tref þ Tdb; ð9Þ

Ttankðt þ 1Þ ¼ T tankðtÞ þ QheatðtÞ � QdrainðtÞ � Q lossðtÞ
CpV tank

; ð10Þ

QheatðtÞ ¼ PbDt; ð11Þ

0 � PDHWSðtÞ � Pb; ð12Þ

QdrainðtÞ ¼ V flowðtÞCpðToutlet � T inletÞ; ð13Þ

Q lossðtÞ ¼ KtankðTtankðtÞ � TambðtÞÞ; ð14Þ
where TtankðtÞ is the temperature of the tank in the DHWS at time
step t. The DHWS keeps the TtankðtÞ close to the set value Tref by
controlling the heat emitted QheatðtÞ from the thermostatically
controlled boiler. QdrainðtÞ and Q lossðtÞ are the heat losses from the
hot water usage of the end users and the insulated tank to the
surroundings at time step t, respectively. Cp and V tank are the
specific heat capacity of water and volume of the water tank,
respectively. Pb refers to the power consumption of the boiler in
the DHWS, and Dt represents the sampling time scale. The power
of DHWS at time step t can be denoted as PDHWSðtÞ, and
PDHWSAðtÞ ¼

P
DHWS2DHWSAPDHWSðtÞ. T inlet and Toutlet are the tempera-

tures of the inlet and outlet water, respectively. V flowðtÞ is the total
hot water flow used to serve the current DHWS activity of the
household member. Ktank is the insulation coefficient of the water
tank, and TambðtÞ is the ambient air temperature at time step t.

2.3.2. Power consumption strategies for DR resources
In addition to the characteristics of DR resources, the user’s pre-

ferred power consumption strategies also have a significant impact
on the base power demand. In this study, two typical power con-
sumption strategies are considered to investigate the impact on
flexibility: Strategy 1 is the most primitive electricity consumption
method, which is completely dependent on the users’ electricity
demand and strategy 2 is the most economical way to consume
electricity. The user in this way would fully take the electricity
tariff into consideration, and tend to consume more electricity
when the tariff is low. In the period when the time of use (ToU)
tariff is not favorable, strategy 1 is the main power consumption
strategy of DR users. However, with the common use of ToU tariffs,
strategy 2 becomes increasingly common among DR users.

In strategy 1, the EV starts charging as soon as it parks, and the
water heater is only heated when the tank temperature reaches the
lower limit.

However, as ToU tariff has been widely used in EV parking lots
as well as in residential areas, the power consumption of EVs and
DHWSs may be guided by the ToU tariff. Thus, in strategy 2, we
consider an optimization power-consumption mode under the
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ToU tariff. The optimization objectives in strategy 2 for aggregated
EVs and DHWSs are shown in Eq. (15).

mincToUðtÞ � PEVAðtÞ � Dt
mincToUðtÞ � PDHWSAðtÞ � Dt

�
ð15Þ

where cToUðtÞ represents the ToU tariff.
Compared with strategy 1, some DR flexibility is activated by

ToU at some time steps under strategy 2; however, the DR
resources still have additional flexibility based on strategy 2. If
the power grid has emergency reserve demand, predicting the
DR flexibility in advance using strategy 2 would be helpful for
DR resources to provide reserve for the power grid. This type of
demand responds process can be motivated by additional
subsidies.

Both power consumption strategies are constrained by the
physical characteristics of each EV (Eqs. (2)–(8)) and DHWS (Eqs.
(9)–(14)), and we assume that the fast-charging mode of the EV
is only enabled when engaging in the DR program.

2.4. Demand response signal

In this section, we used the DS to predict DR flexibility and help
in the implementation of DR management. As per the instructions
in DR management, the DS is sent from the EVA or DHWSA to the
distributed EVs or DHWSs. The different values of DS represent the
different DR requirements, and the distributed EVs and DHWSs
need to switch their electricity consumption according to the dif-
ferent values of DS they received. We defined three DS values to
represent the corresponding responses of the EV and DHWS, as
listed in Table 1. To better clarify the electric power and state
changes of a single EV and DHWS corresponding to different DS
values, a schematic diagram is shown in Fig. 3. Note that the same
DS was sent from the EVA or DHWSA to all the distributed EVs and
DHWSs in this study.

2.5. DS-based flexibility formulation

As we already set the DS in Section 2.4, it can be inferred that

P̂EVAðtÞ and P̂DHWSAðtÞ under DS = 0 in Eq. (1) is equal to PEVAðtÞ
and PDHWSAðtÞ, respectively. Therefore, Eq. (1) can be rewritten as

FEVAðtÞ ¼ P̂EVAðtÞ
���
DS–0

� P̂EVAðtÞ
���
DS¼0

FDHWSAðtÞ ¼ P̂DHWSAðtÞ
���
DS–0

� P̂DHWSAðtÞ
���
DS¼0

8><
>: ; ð16Þ

where P̂EVAðtÞ
���
DS–0

and P̂DHWSAðtÞ
���
DS–0

represent the aggregated EV

and DHWS power under DS – 0, respectively. P̂EVAðtÞ
���
DS¼0

and

P̂DHWSAðtÞ
���
DS¼0

represent the aggregated power of the EVs and DHWS

under DS = 0, respectively.



Fig. 3. The power consumption and state of a single EV and DHWS under different values of DS for two time steps: (a) DS = 1; (b) DS = �1; and (c) DS = 0.

Table 2
Flexibility calculation results corresponding to Fig. 3.

DS value and
maintaining time

EV flexibility and
maintaining time

DHWS flexibility and
maintaining time

DS = 1, 2 time steps Pfast�Pslow, 2 time steps Pb, 2 time steps
DS = �1, 2 time steps 0 0
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DR programs usually require the flexibility of DR resources to
provide a certain value that can be maintained for a period. Thus,
a DS-based flexibility calculation method was proposed to derive
flexibility under different maintenance times. First, we should fully
activate the flexibility value of all the distributed EVs and DHWS
for k time steps. Thus, the EVA and DHSWA can send DSðtÞ ¼ 1,
DSðt þ 1Þ ¼ 1, . . ., DSðt þ kÞ ¼ 1 (or DSðtÞ ¼ �1, DSðt þ 1Þ ¼ �1,
. . ., DSðt þ kÞ ¼ �1) to all the distributed EVs and DHWS, which
means increasing (or decreasing) electricity consumption at mini-
mum remain k time steps. Then, the flexibility
FðtÞ; Fðt þ 1Þ; :::; Fðt þ kÞ can be derived based on the DS signal.
Based on the value of FðtÞ; Fðt þ 1Þ; :::; Fðt þ kÞ, the flexibility

remaining at minimum k time steps Fk can be obtained by finding
the minimum value of FðtÞj j; Fðt þ 1Þj j; :::; Fðt þ kÞj j as illustrated in
Eq. (17), where the subscript indicates whether it is applied to EVA
or DHWSA. Note that the physical meaning of finding the mini-
mum value is to ensure that the flexibility can be presented in a
block form with a constant value over several consecutive time
steps. From Eq. (17), we can infer that, in addition to the base
schedule, the maintenance time is also causes variation in flexibil-
ity as the energy of the DR resources is constrained. If the power
causes the SOC reach the boundary of the EV battery capacity or
the tank temperature of the DHWS to reach the boundary of the
reference temperature, the DR resources cannot flow power to
and from the grid. Thus, the flexibility decreases accordingly.

Fk
EVA

��� ��� ¼ min½ FEVAðtÞj j; FEVAðt þ 1Þj j; :::; FEVAðt þ kÞj j�

Fk
DHWSA

��� ��� ¼ min½ FDHWSAðtÞj j; FDHWSAðt þ 1Þj j; :::; FDHWSAðt þ kÞj j�

8><
>:

ð17Þ
Thus, the corresponding flexibility of the aggregated EVs and

DHWSs can be obtained based on the above analysis and modeling
method. To explain the proposed DS-based flexibility calculation
process more intuitively, we draw an illustration in Fig. 3, which
gives an example of a single EV and DHWS under different values
of DS lasting for two time steps. The flexibility calculation results
for the example shown in Fig. 3 can be found in Table 2.
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As defined in Eq. (16), when DS = 1, the flexibility of the exam-
ple EV in Fig. 3 is Pfast�Pslow, and the flexibility can maintain two
time steps. When DS = �1, the scheduling flexibility is Pdis�Pslow;
however, considering the energy demand of EV users, the flexibil-
ity can only maintain one time step. Thus, if we calculate the flex-
ibility of the example EV for two time steps, then its flexibility is 0
according to Eq. (16).

As for the example DHWS in Fig. 3, when DS = 1, it can provide a
scheduling flexibility of Pb and maintenance time of two time
steps. Owing to the tank temperature constraint, the DHWS cannot
provide any flexibility when DS = �1. Considering that both EV and
DHWS have time-coupling constraints, as shown in Eqs. (3) and
(10), the flexibility of the next time step is affected by the flexibil-
ity of the previous time steps. Thus, if the state of the tank is heat-
ing water rather than losing heat when DS = �1, the DHWS can
interrupt the heating to provide scheduling flexibility.

3. Flexibility prediction method and algorithm

3.1. Sequence to sequence (Seq2Seq)-based flexibility prediction
method

To predict the flexibility of EVs and DHWSs multi-step-ahead,

we first predict P̂EVAðtÞ and P̂DHWSAðtÞ under DS = 0 and DS – 0
according to Eqs. (16) and (17). Here, we illustrate the prediction
process. The analyses of PEVAðtÞ and PDHWSAðtÞ were similar. There-
fore, to simplify, PEVAðtÞ is analyzed only in the later paragraphs in
Section 3.

We denote t as the first time step of the predicted slot. We
denote PEVAðtÞ as the base power for EVA (this would be different
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in different strategies). As the first DS (DSðtÞ) changes PEVAðtÞ to

P̂EVAðtÞ, we use Fð�Þ to denote this transformation, and thus we have
Eq. (18).

P̂EVAðtÞ ¼ F½PEVAðtÞ;DSðtÞ; eEVAðtÞ�: ð18Þ
In Eq. (18), eEVAðtÞ represents other external conditions that may

contribute to the value of P̂EVAðtÞ, which depends on the problem
strategies. Note that the prediction of PEVAðtÞ can be formulated
as a time-series prediction model as in Refs. [26,27], which can also
ensure the time coupling constraints of EV and DHWS. We use f(�)
to denote the time-series predictor and the prediction of PEVA(t)
can be formulated as Eq. (19).

PEVAðtÞ ¼ f ½PEVAðt � 1Þ; PEVAðt � 2Þ; :::; PEVAðt � NÞ;
uEVAðtÞ;uEVAðt � 1Þ; :::;uEVAðt � NÞ� ð19Þ

Similarly, uEVAðtÞ is the external factor that may affect PEVAðtÞ,
and N is the time dependency. Substituting Eq. (19) to Eq. (18),
and applying the definition in Eqs. (20)–(22):

Encoder½ _PEVA; _uEVA� ¼ f ½PEVAðt�1Þ;PEVAðt�2Þ; :::;PEVAðt�NÞ;
uEVAðtÞ;uEVAðt�1Þ; :::;uEVAðt�NÞ� ð20Þ

_uEVA ¼ ½uEVAðtÞ;uEVAðt � 1Þ; :::;uEVAðt � NÞ� ð21Þ

_PEVA ¼ ½PEVAðt � 1Þ; PEVAðt � 2Þ; :::; PEVAðt � NÞ� ð22Þ
We have the one time-step-ahead prediction as shown in Eq.

(23).

P̂EVAðtÞ ¼ FfDSðtÞ; eEVAðtÞ; Encoder½ _PEVA; _uEVA�g ð23Þ
Considering that we need to predict multi-step-ahead

P̂EVAðt þ kÞ, we could repeatedly use one-step-ahead prediction as
the next input, which takes the form of a multi-step prediction
problem as in Refs. [26,27]. Therefore, we have Eq. (24).

P̂EVAðtþkÞ¼ FfP̂EVAðtþk�1Þ; :::; P̂EVAðtÞ;DSðtþkÞ; :::;DSðtÞ;
eEVAðtþkÞ; :::;eEVAðtÞ;Encoder½ _PEVA; _uEVA�g

ð24Þ

Denoting Fð�Þ as Decoder½��, we finally have Eq. (25).

P̂EVAðtþkÞ¼DecoderfP̂EVAðtþk�1Þ; :::; P̂EVAðtÞ; DSðtþkÞ; :::;DSðtÞ;
eEVAðtþkÞ; :::;eEVAðtÞ; Encoder½ _PEVA; _uEVA�g

ð25Þ
The same procedures could be applied to P̂DHWSAðtÞ, thus we

have Eq. (26)

P̂DHWSAðt þ kÞ ¼ DecoderfP̂DHWSAðt þ k� 1Þ; :::; P̂DHWSAðtÞ;
DSðt þ kÞ; :::;DSðtÞ; eDHWSAðt þ kÞ; :::; eDHWSAðtÞ;
Encoder½ _PDHWSA; _uDHWSAðtÞ�g

ð26Þ
This form is similar to the form of Seq2Seq model in the field of

natural language process (NLP) [28]; thus, we could use the most
advanced model, called ‘‘Transformer” in NLP to achieve such
prediction.

3.2. Transformer

‘‘Transformer” was first introduced in 2017 [29]. Prior to that, to
achieve a Seq2Seq model, various types of RNNs and convolutional
neural networks (CNNs) were the major choices. However, these
RNN/CNN-based models are associated with many problems, par-
ticularly RNN-based models. One of the most severe problems in
RNN-based models is the long-time dependency. When proceeding
with long-sequence input, RNN-based models could suffer gradient
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exploration and gradient vanish [23,24], which results in poor per-
formance. Although some updated RNN structures such as long
short-term memory (LSTM) [30] and gate recurrent unit [31] have
been proposed, these updated RNNs also fail as the sequence
becomes longer.

The transformer shows its great ability in proceeding with long-
time dependency due to its multi-head attention and self-attention
mechanisms, which are the core of the model. These mechanisms
enable the model to determine the inputs that are more important
and those that are less dynamic. It is easy for the transformer to
learn the time-coupling relationship through the training dataset.
In our study, one day was divided into 96 time steps, which made
the input sequence longer; thus, there is no doubt that the trans-
former would be a suitable model to solve this problem. In addi-
tion, the multi-head attention and self-attention mechanisms
also make the transformer applicable to more general cases. As
we need to predict the flexibility of two DR resources, we used this
stronger tool.

The structure of the transformer is relatively complex; there-
fore, we will not explain the detailed mechanism. More details
about the transformer model can be found in Ref. [29].

3.3. TCN-based input embedding module

In ordinary transformer, the input needs to pass through an ‘‘in-
put embedding layer” before it is sent to the internal structure. In
NLP, the function of the input embedding layer is to use a much
lower-dimensional vector to represent the relatively high-
dimensional one-hot encoding of words. More generally, this can
be regarded as a type of feature extraction method. Based on this,
we found a way to achieve feature extraction of the input in our
study.

CNN may be a good choice for our study, as the convolution
operation is a strong tool for extracting information from the
original input. Considering that the inputs in this study are
time-series, it is natural that a structure that can capture
sequence information may work. Among different kinds of CNN-
based models, the model called ‘‘TCN” proposed in 2018 [32] is
one of the most advanced CNN-based models to handle temporal
sequence. In the later section of this paper, we show how to use a
type of TCN that could achieve such feature extractions in the
original transformer model.

The core structures of TCN are shown in Fig. 4. The left figure,
which is called ‘‘dilated causal conv,” represents the integration of
causal convolution and dilated convolution, which enables a
shorter sequence to represent a longer sequence. The number of
blue lines connected to a square is ‘‘kernel size” (in this figure,
the kernel size = 3). ‘‘d” refers to dilation factors, representing
the distance between two adjacent blue lines connected to a
square. As we can see, when the kernel size is 3, a network of
depth 4 (the number of layers) makes the final output (the blue
square on the top layer) contains all the information of the input.
The right figure, which is called ‘‘residual block in TCN,” repre-
sents a designed structure to make the network deeper without
suffering degradation [33]. This structure is called ‘‘residual con-
nection,” which is proposed in Ref. [33]. Weight norm [34] scales
the layer parameters, and thus improves the model’s
performance.

Finally, by connecting several residual blocks in series, we got
the overall model of TCN, namely ‘‘TCN-based input embedding
module.”

It should be noted that in the TCN model, the lengths of the
input and output are identical; however, we could only choose
the outputs of the last 96 time steps on the top of the TCN structure
as the input of the transformer. There are two reasons for this. On
the one hand, the last 96 outputs contained all the information of



Fig. 4. The core structures of TCN. ReLU: rectified linear unit.
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the input sequence by reasonable design; on the other hand, a
shorter sequence could decrease the computational burden of the
transformer. We call the overall structure the TCN-combined
transformer model, which is plotted in Fig. 5. It can be seen that
this model structure exactly achieves the form of Eqs. (25) and
(26).

3.4. Training details

3.4.1. Model inputs and outputs
In Eqs. (25) and (26), we set up a general form for prediction. In

this section, we make the form in Eqs. (25) and (26) more detailed.

As mentioned earlier, the outputs of the model are P̂EVAðtÞ and

P̂DHWSAðtÞ under different DS values. As for the input, in addition

to P̂EVAðt þ k� 1Þ; :::; P̂EVAðtÞ, DSðt þ kÞ; :::;DSðtÞ, and _PEVA, we need
to specify variables including N, _uEVA, _uDHWSA, eEVA, and eDHWSA based
on the characteristics of the problems. First, we set N ¼ 192 for all
scenarios. As one day was divided into 96 time steps in this study,
N ¼ 192, which indicates that the inputs over the past two days
were considered. Other variables depend on different cases, includ-
ing EVA/DHWSA and strategies 1 and 2. They are introduced
individually.

3.4.2. Model inputs and outputs for the EVA

For strategy 1, we set _uEVA ¼ _0 and ½eEVAðt þ kÞ; :::; eEVAðtÞ� ¼ _0,
which means there were no external factors in the encoder and
decoder. In this scenario, Eq. (25) can be rewritten as Eqs. (27)
and (28).

P̂EVAðtþkÞ¼DecoderfP̂EVAðtþk�1Þ; :::; P̂EVAðtÞ; DSðtþkÞ; :::;DSðtÞ;
Encoder½ _PEVA�g

ð27Þ
_PEVA ¼ ½PEVAðt � 1Þ; PEVAðt � 2Þ; :::; PEVAðt � 192Þ�: ð28Þ

For strategy 2, considering that the base power is set according
to the ToU tariff, we took ToU Tariff as the external factor, both in
_uEVA and eEVA. We have Eqs. (29)–(31):

P̂EVAðt þ kÞ ¼ DecoderfP̂EVAðt þ k� 1Þ; :::; P̂EVAðtÞ;
DSðt þ kÞ; :::;DSðtÞ; eEVAðt þ kÞ; :::; eEVAðtÞ;
Encoder½ _PEVA; _uEVA�g

ð29Þ
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_uEVA ¼ ½uEVAðtÞ;uEVAðt � 1Þ; :::;uEVAðt � 192Þ�
¼ ½cToUðtÞ; :::; cToUðt � 192Þ� ð30Þ

½eEVAðt þ kÞ; :::; eEVAðtÞ� ¼ ½cToUðt þ kÞ; :::; cToUðtÞ�: ð31Þ
3.4.3. Model inputs and outputs for DHWSA
The characteristics of DHWSA were similar to those of EVA;

thus, for strategy 1, the input and output were the same as those
of EVA, as shown in Eqs. (32) and (33).

P̂DHWSAðt þ kÞ ¼ DecoderfP̂DHWSAðt þ k� 1Þ; :::; P̂DHWSAðtÞ;
DSðt þ kÞ; :::;DSðtÞ; Encoder½ _PDHWSA�g

ð32Þ

_PDHWSA ¼ ½PDHWSAðt � 1Þ; PDHWSAðt � 2Þ; :::; PDHWSAðt � 192Þ� ð33Þ

For strategy 2, similarly we have Eqs. (34)–(36)

P̂DHWSAðt þ kÞ ¼ DecoderfP̂DHWSAðt þ k� 1Þ; :::; P̂DHWSAðtÞ;
DSðt þ kÞ; :::;DSðtÞ; eDHWSAðt þ kÞ; :::; eDHWSAðtÞ;
Encoder½ _PDHWSA; _uDHWSA�g

ð34Þ

_uDHWSA ¼ ½uDHWSAðtÞ;uDHWSAðt � 1Þ; :::;uDHWSAðt � 192Þ�
¼ ½cToUðtÞ; :::; cToUðt � 192Þ� ð35Þ

½eDHWSAðt þ kÞ; :::; eDHWSAðtÞ� ¼ ½cToUðt þ kÞ; :::; cToUðtÞ� ð36Þ
7

3.4.4. Hyperparameter settings
To train the model, the hyperparameters must be specified. The

hyperparameters used in this study are listed in Table 3. The Adam
algorithm performs well in network training, and can be easily
applied to many machine learning tasks [35]. We chose the Adam
optimizer to train the proposed network.

3.4.5. Training dataset
We needed to specify the training dataset. We created the train-

ing dataset according to the required variables, namely, the inputs
and outputs in Eqs. (27)–(36). The training dataset for the flexibil-
ity prediction of EVA and DHWSA is introduced as follows. Please



Table 3
Hyperparameter for our TCN-combined transformer model.

Model structure Hyperparameter Value

TCN-based input embedding block Number of residual blocks 4
Number of channels 64
Kernel size 4
Dropout rate 0.1

Transformer Encoder layers 3
Encoder heads 8
Encoder feedforward layer dims 256
Decoder layers 3
Decoder heads 8
Decoder feedforward layer dims 256
Dropout rate 0.1

Fig. 5. TCN-combined transformer.
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note that we needed to train several different models as the char-
acteristics are different for different scenarios (EVA or DHWSA
under different strategies).
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3.4.6. Training dataset for EVA
To train the TCN-combined transformer model, we assumed

that the historical information of all the distributed EVs, including
the arrival time, departure time, battery capacity, and state of
charge, can be collected by EVA. Then, based on Eqs. (2)–(8), we
generated the base electricity consumption power under strategy
1. Based on Eqs. (2)–(8) and (15), we obtained the base electricity
consumption power under strategy 2. Thus, we obtained the base
schedule power PEVA with no DS in strategies 1 and 2. Based on
the base power, according to Table 1, EVA can derive the EV charg-

ing/discharging power P̂EVA under DS = 1 and �1 on each day.
3.4.7. Training dataset for DHWSA
The basic information of DHWS, including physical parameters,

water temperature, and switching information, was needed for the
training of the DHWSA network. After collecting the historical data
of the DHWS, based on Eqs. (9)–(14), we produced the base



Table 4
Some Parameters of EVs and DHWSs.
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electricity consumption power under strategy 1. Based on Eqs. (9)–
(15), we produced the base electricity consumption power under
strategy 2. Thus, we can obtain the base schedule power PDHWSA

with no DS in strategies 1 and 2. Based on the base power, accord-
ing to Table 1, EVA can derive the EV charging/discharging power

P̂DHWSA under DS = 1 and �1 on each day.
Please note that for strategy 2, the ToU tariff on each day

needed to be collected for both EVA and DHWSA.

3.5. Application

After training, our TCN-combined transformer model could pro-
vide accurate predictions. In real time, once we want to predict the
flexibility multi-step-ahead, a new set of EV/DHWS data is used as
input to the training process of EVA/DHWSA under different elec-
tricity consumption strategies. The corresponding power of EVA/
DHWSA activated by different values of DS (including DS = 0 and
DS – 0) can be generated for one-step-ahead. For example, if we
need to predict the up-regulation flexibility at time step t + k, we
can make DS(t + k) = �1 as the decoder inputs, and obtain the net-
work output of the prediction power at t + k under DS(t + k) = �1.
Next, we make DS(t + k) = 0 as the decoder inputs, and obtain the
network output of the prediction power at t + k under DS(t + k) = 0.
Using Eq. (16), we obtain the up-regulation flexibility using the
prediction power under DS(t + k) = �1 and by subtracting the pre-
diction power under DS(t + k) = 0. Then, using the output as the
next input, the corresponding power multi-step-ahead can be
derived. The multi-step-ahead flexibility can be easily obtained
using Eqs. (16) and (17).

3.6. Summary of proposed algorithm

In this section, we introduce Algorithm 1 as a summary of the
overall procedure of the proposed TCN-combined transformer-
based flexibility prediction. Note that in application, the EVA/
DHWSA only needs to repeat step 6 after the models are trained.

Algorithm 1. Algorithm for the TCN-combined transformer-
based DR flexibility prediction.

1. Prepare 4 TCN-combined transformer models to predict
the flexibility of EVA and DHWS under strategies 1 and 2,
respectively.

2. Get historical dataset of EVA and DHWSA considering their
characteristics for strategy 2; ToU tariff should also be
collected.

3. Specify the inputs and outputs of the model for EVA and
DHWSA under different strategies based on Eqs. (27)–(36).

4. Set the model hyperparameters for EVA and DHWSA under
different strategies.

5. Train the 4 models.
6. Input the real-time data of EV/DHWS to the network and

achieve a one-step-ahead prediction. Then, repeatedly
use the output as the next input to achieve the multi-
step-ahead prediction; thus, the multi-step-ahead flexibil-
ity can be predicted using Eqs. (16) and (17).

4. Case study

To demonstrate the effectiveness of the proposed TCN-
combined transformer-based method in the flexibility prediction
of EVs and DHWs, simulations of case studies were carried out,
and results are presented in this section. We used a computer with
an Intel� CoreTM i7-7500U CPU @ 2.70–2.90 GHz, 8 GB of RAM, and

RTX2060, as well as a cloud server with 6 � Intel� Xeon
�

CPU E5-
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2678 v3 @ 2.50 GHz, 11 GB of RAM, and RTX2080 Ti to run all the
simulations.

4.1. Basic data

The simulation was based on a residential area with 2000
DHWSs and 1000 EVs. The data and parameters of the parking
behavior of the EVs were obtained from Ref. [36]. The data and
parameters of the usage behavior of the DHWSs were obtained
from Ref. [37]. The key parameters mentioned above are listed in
Table 4. The two strategies data came from 256 weekdays per year.
We selected the first 196 days to form the training dataset of the
transformer network. To avoid over-fitting of the network, the
remaining 197–226 days were selected as the validation data set.
Finally, the 30 days from 227th to 256th days were randomly
selected to test the performance of the proposed algorithm. The
ToU tariffs for EV charging stations and residential areas are shown
in Fig. 6.

Owing to the differences between EVs and DHWSs in power
consumption time, the studied horizon for DHWSs in one day
was from 00:00 to 24:00, while the studied horizon for EVs was
from 12:00 to 12:00 on the next day. In this study, one time step
was 15 min; thus, one day can be divided into 96 time steps.

4.2. Convergence performance of the transformer network

In this study, the mean square error between the target values
and the network outputs in the training dataset was used as the
loss function. Fig. 7 illustrates the network learning performances
under the two strategies of the two loads. As shown in Fig. 7, all
loss functions experienced a steep drop over the previous period
of epochs, and as epochs increased, they decreased marginally
and steadily at approximately 10�5. Despite the slight fluctuations,
the validation loss functions maintained a downward trend with-
out any abnormal surge, which indicates that the learning pro-
cesses avoided overfitting. Overall, considering the total training
time of 4 h (600 epochs) and 6 h (1000 epochs) as well as a
high-grade convergence performance, it was proven that the pro-
posed network structure achieved a balance between complexity
and performance.

4.3. Flexibility prediction results analysis

To evaluate the prediction performance of EVA and DHWSA
flexibility under different maintenance times, we compared the
results under strategy 1 (without considering optimization power
consumption) and strategy 2 (considering optimization power con-
sumption) in six scenarios: ① DS = �1 maintained for 15 min; ②
DS = �1 maintained for 30 min; ③ DS = �1 maintained for
60 min; ④ DS = 1 maintained for 15 min; ⑤ DS = 1 maintained
for 30 min; ⑥ DS = 1 maintained for 60 min. Moreover, to validate
if our proposed multi-step-ahead flexibility prediction method can
predict a long-range slot, we selected a 1-day predicted slot, which
means we needed to test the accuracy of the 96-time-step-ahead
prediction; hence, k = 96. Thus, our multi-step-ahead prediction
was achieved by repeatedly making a one-step-ahead prediction.



Fig. 6. ToU tariff for EV charging station and residential area.
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In real time, it can be used to predict any-step-ahead flexibility at
any time, depending on the situation.

To illustrate the superiority of the proposed TCN-combined
transformer-based algorithm, we also used the LSTM method (a
type of updated RNN structure, as introduced in Section 3.2) to pre-
dict the flexibility described in this section. The trained LSTM con-
tained one input layer, two hidden layers, and 128 nodes in each
hidden layer.

4.3.1. Flexibility prediction results in one day
Figs. 8–11 demonstrate the flexibility prediction results of a

randomly selected day in the test dataset. It can be seen from the
figures that the peak values of flexibility are slightly more difficult
to predict than with other values by both the TCN-combined trans-
former and LSTM. However, in general, compared with the real
value, the predictions of the TCN-combined transformer were more
accurate than those of the LSTM. Note that the real value was
derived by sending DS to EVs and DHWSs in real time, as discussed
in Sections 2.4 and 2.5.
Fig. 7. Loss function of EVA and D
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As shown in Figs. 8–11, different maintenance times had differ-
ent flexibility values. Flexibility size decreased with an increase in
maintenance time. As the DR resources are decentralized, and with
large uncertainty, it is difficult for them to provide aggregated
stable flexibility over a long period of time. Thus, the maintenance
time of DR resources in the DR program should be set at a smaller
value, which is conducive to activate more potential DR flexibility.

In addition, the flexibilities using strategies 1 and 2 were differ-
ent between periods. For EVA, the flexibility mainly appeared
between 16:00 and 8:00. The positive flexibility (absorbing power
from the grid) under strategy 2 was greater than that under strat-
egy 1, while the negative flexibility (releasing power to the grid)
under strategy 2 was less than that under strategy 1. For DHWSA,
the flexibility appeared all day. The period between 8:00 and 24:00
for strategy 2 provided more positive flexibility and less negative
flexibility, while the period between 0:00 and 8:00 for strategy 2
provided less positive flexibility and more negative flexibility. Fur-
thermore, the lower the maintenance time, the more significant is
the difference.

Moreover, under the same strategy, DR resources exhibited
different characteristics in different scenarios. For EVA, an EV
has the potential to discharge once it is charged higher than the
minimum SOC. However, when it is close to the departure time,
discharging would hardly exist to meet the EV energy demand.
Thus, when DS = �1, there was a negative flexibility between
16:00 and 8:00, with a maximum of �4.5 MW/15 min. When
DS = 1, the EV SOC increased rapidly in the fast-charging mode;
however, the EV did not continue to provide flexibility owing to
the limitation of the maximum battery capacity. Therefore, the
EVA provided a maximum flexibility of approximately
3 MW/15 min from 16:00 to 24:00 when DS = 1. For DHWSA,
the positive and negative flexibilities were distributed relatively
uniformly during the predicted slot. Due to the changes in the
use of the DHWS (e.g., bathing in the evening, showering in the
HWSA under two scenarios.



Fig. 8. The flexibility prediction results of EVA under strategy 1.

Fig. 9. The flexibility prediction results of EVA under strategy 2.

Fig. 10. The flexibility prediction results of DHWSA under strategy 1.
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morning, barely no usage between 13:00 and 16:00, and delay of
temperature after usage), which were described in Ref. [37], the
negative flexibility reached low points of approximately �4.5 to
�4.8 MW/15 min at around 17:00, while the positive flexibility
reached a peak point of approximately �5 MW/15 min between
00:00 and 8:00.
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4.3.2. Prediction accuracy for 30 consecutive days
Tables 5–8 provide information on the mean absolute error

(MAE, the average absolute value of the error between the pre-
dicted and real values) of the 30-day prediction under different
strategies and scenarios. In Figs. 8–11 and Tables 5–8, it can be
seen that the predicted flexibility of the proposed TCN-combined



Fig. 11. The flexibility prediction results of DHWSA under strategy 2.
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transformer was closer to the real value than that of the LSTM. In
the simpler scenario, that is, EVA prediction under strategy 1, the
TCN-combined transformer performed slightly better than the
LSTM. As the scenario became more complex, such as EVA predic-
tion under strategy 2 and DHWSA prediction under both strategies
1 and 2 (the DHWSA experienced greater complexity owing to the
large number of DHWS users), the prediction accuracy of the TCN-
combined transformer was relatively better than that of the LSTM.
As described in Section 3.2, LSTM is an updated RNN structure,
which can significantly improve the long-time dependency prob-
lem of the RNN. With the increase in influencing factors, such as
the ToU tariff, number of users, and randomness of user behavior,
the LSTM still experienced difficulty of fully capturing the informa-
tion in the input sequence. In general cases, with the multi-head
attention and self-attention mechanisms, the TCN-combined trans-
former can easily learn time-series information through the input
sequence. It was found that the predicted flexibility of the TCN-
combined transformer was close to the real value with high accu-
racy, and that the TCN-combined transformer is more suitable for
flexibility prediction of DR resources in different electricity con-
sumption scenarios.
4.4. Future application prospect for the proposed flexibility prediction
method

As discussed in Section 2.1, the negative flexibility could pro-
vide up reserve, and the positive flexibility could provide down
reserve. From the prediction, the flexibility of aggregated DR
resources is obtained through multi-step-ahead, and the schedula-
ble flexibility of the aggregator’s owned resources can be predicted
at the day-ahead and real-time levels. The obtained prediction
results can provide a reference for the decision-making of aggrega-
tor or superior scheduling organizations, thus achieving further
cooperation between the aggregator and operators of different
levels of electric power systems, such as transmission system oper-
ators (TSOs) and distribution system operators (DSOs).
Table 5
MAE for 30 d of the EVA prediction results under strategy 1.

DS Prediction method 15 m

1 (down) LSTM 0.055
TCN-combined transformer 0.028

�1 (up) LSTM 0.105
TCN-combined transformer 0.085
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At the day-ahead level, by inputting different DS signals, the
amount and maintenance time of the flexibility can be obtained
and used to grasp the overall distribution of flexibility and make
a general assessment of resource flexibility. The aggregator can
trade the flexibility of DR resources in the electrical energy and
ancillary service markets based on the day-ahead forecast results.
For DR users, electricity cost savings can be achieved. For the
power system operator, the power consumption of DR resources
and the reserve capacity of the power system can be ensured in
advance, which is conducive for reducing the impact of random
electricity consumption behavior of DR resources and uncertain
renewable energy production on the power system, thereby pro-
moting load balance and ensuring part of the emergency reserve.
For example, according to Fig. 11, under strategy 2, there was ade-
quate downward reserve flexibility of EVs in the period of 20:00
and 24:00. The upward reserve flexibility was adequate between
4:00 and 8:00 in short maintenance time (15–30 min), distributing
uniformly and decreasing between 24:00 and 8:00 when the main-
tenance time reached 60 min. Thus, in the day ahead, based on this
projected result, aggregators are inclined to offer downward
reserve between 20:00 and 24:00 and upward reserve between
4:00 and 8:00 in the reserve market, as a more robust decision.
Thus, the reserve capacity can be used for system operation, such
as frequency regulation at the TSO level or congestion alleviation
at the DSO level.

At the real-time level, the flexibility and maintenance time of
DR resources defined in the day ahead can be updated by continu-
ously rolling the prediction. As real-time prediction is an ultra-
short-term prediction, it can achieve a more accurate prediction
than that at the day-ahead stage. The updated flexibility is
reported to the system operator accordingly; thus, the system
operator is aware of the available reserve in a timely manner. In
addition, the aggregator may need to participate in intra-day mar-
ket, balancing market, and real-time operation; thus, the updated
flexibility is necessary in the aggregator optimization problem,
which defines the upper and lower boundaries of power of dis-
tributed energy resources.
in (MW) 30 min (MW) 60 min (MW)

0.056 0.042
0.027 0.015
0.102 0.106
0.083 0.088



Table 6
MAE for 30 d of the EVA prediction results under strategy 2.

DS Prediction method 15 min (MW) 30 min (MW) 60 min (MW)

1 (down) LSTM 0.230 0.180 0.158
TCN-combined transformer 0.177 0.155 0.148

�1 (up) LSTM 0.147 0.116 0.092
TCN-combined transformer 0.094 0.073 0.052

Table 7
MAE for 30 d of DHWSA prediction results under strategy 1.

DS Prediction method 15 min (MW) 30 min (MW) 60 min (MW)

1 (down) LSTM 0.273 0.2519 0.274
TCN-combined transformer 0.147 0.1480 0.121

�1 (up) LSTM 0.282 0.1987 0.178
TCN-combined transformer 0.185 0.1930 0.175

Table 8
MAE for 30 d of DHWSA prediction results under strategy 2.

DS Prediction method 15 min (MW) 30 min (MW) 60 min (MW)

1 (down) LSTM 0.234 0.191 0.169
TCN-combined transformer 0.139 0.141 0.138

�1 (up) LSTM 0.221 0.217 0.179
TCN-combined transformer 0.140 0.163 0.143
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5. Conclusions

A TCN-combined transformer-based algorithm was developed
in this study to predict both the size and maintenance time of EV
and DHWS flexibility in the DR program. The prediction is based
on the network training of historical power consumption behaviors
of EVs and DHWS, as well as the DSs. The accuracy of the flexibility
prediction was verified through the case study of a group of resi-
dential EV and DHWS end-users under different power consump-
tion strategies. We can infer that the flexibility size would
decrease with an increase in maintenance time. In general, the pro-
posed TCN-combined transformer-based flexibility prediction
method can support DR scheduling in the daily grid operation.

The main challenge in the application of deep learning technol-
ogy in the field of power grids is the lack of sufficient data as there
is usually not enough data in engineering for such a learning-based
method. Most of the measured data were of low quality. To further
apply our proposed flexibility method, we should take advantage
of the rapid development of smart meters and actively consider
and carry out beneficial attempts to obtain real-world data. In
addition, a further development in data generation technology is
highly important to supplement a large amount of data when
obtaining accurate data is difficult. As some real-world data can
be lost in the transmission process, corresponding data repair tech-
nology can also be helpful in improving the quality of data.
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