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Combined heat and electricity operation with variable mass flow rates promotes flexibility, economy, and
sustainability through synergies between electric power systems (EPSs) and district heating systems
(DHSs). Such combined operation presents a highly nonlinear and nonconvex optimization problem,
mainly due to the bilinear terms in the heat flow model—that is, the product of the mass flow rate and
the nodal temperature. Existing methods, such as nonlinear optimization, generalized Benders decompo-
sition, and convex relaxation, still present challenges in achieving a satisfactory performance in terms of
solution quality and computational efficiency. To resolve this problem, we herein first reformulate the
district heating network model through an equivalent transformation and variable substitution.
The reformulated model has only one set of nonconvex constraints with reduced bilinear terms, and
the remaining constraints are linear. Such a reformulation not only ensures optimality, but also acceler-
ates the solving process. To relax the remaining bilinear constraints, we then apply McCormick envelopes
and obtain an objective lower bound of the reformulated model. To improve the quality of the McCormick
relaxation, we employ a piecewise McCormick technique that partitions the domain of one of the vari-
ables of the bilinear terms into several disjoint regions in order to derive strengthened lower and upper
bounds of the partitioned variables. We propose a heuristic tightening method to further constrict the
strengthened bounds derived from the piecewise McCormick technique and recover a nearby feasible
solution. Case studies show that, compared with the interior point method and the method implemented
in a global bilinear solver, the proposed tightening McCormick method quickly solves the heat–electricity
operation problem with an acceptable feasibility check and optimality.

� 2021 THE AUTHORS. Published by Elsevier LTD on behalf of Chinese Academy of Engineering and
Higher Education Press Limited Company. This is an open access article under the CC BY-NC-ND license

(http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction often applied in low-density areas. Although different countries
1.1. Background and motivation

The electric power system (EPS) is a crucial part of the national
energy supply, and policymakers are gradually realizing that heat
supply also plays a key role in the energy system. The International
Energy Agency reports that over half of global energy use is for
heating [1]. A large proportion of the heat supply in high-density
areas comes from district heating systems (DHSs), in comparison
with the other heat alternatives—such as individual heat pumps,
gas boilers, solar thermal heating, and electrical heating—that are
and areas use these heat supply methods in different proportions,
the district heating approach has been proven to be extremely
energy efficient [2].

Electricity and heat can be produced simultaneously with cen-
tralized energy generation and district heating infrastructures. In
general, those two large energy systems—EPS and DHS—are tightly
connected by combined heat and power (CHP, also known as co-
generation) plants and power-to-heat facilities. By 2050, CHP will
provide 26% of electricity in the European Union. In Denmark,
the government aims to achieve 100% renewable heat and electric-
ity production by 2035 [3]. It is expected that EPSs and DHSs will
impact each other to a greater extent in the energy production
and consumption process in the near future. Therefore, the idea
of the integrated heat and electricity system has attracted interest
from practitioners and researchers.
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Studies on different aspects of integrated heat and electricity
systems are emerging, including modeling [4], state estimation
[5], unit commitment [6], economic dispatch [7–9], market mech-
anisms [10,11], and planning [12,13]. Among them, modeling plays
a fundamental and substantial role in the commercialization of
integrated heat and electricity systems. Although EPS modeling
has been studied thoroughly during the past decades, a great deal
of research on DHS modeling is still ongoing. In general, DHS has
three regulation modes, as shown in Table 1. Quality regulation
employs a constant mass flow rate and variable temperature strat-
egy [7]. Hence, the constraints in related optimization problems
become linear and are thus easy to handle. However, a situation
in which hydraulic conditions are predetermined may not lead to
an economical solution. In contrast, quantity regulation maintains
a constant supply temperature but regulates the quantity of mass
flow rates. It has the advantages of flexibility and cost reduction
because the mass flow rates will change according to the heat load,
which will reduce the power consumption of the circulating water
pumps. Apparently, greater economic efficiency and flexibility can
be achieved by regulating both the temperature and the mass flow
rates, which is referred to as quality–quantity regulation. So far,
only a few works have explored the operation of integrated energy
systems with a variable mass flow strategy [14–18]. Furthermore,
efficient and scalable algorithms to solve the nonconvex and non-
linear network flow constraints are still under investigation. To this
end, this paper proposes a convex model and an efficient algorithm
for integrated heat and electricity systems under the quality–
quantity regulation, in which the algorithm is expected to find
the global optimum or a near-global-optimal feasible solution with
a relatively small computational burden.

1.2. Literature review

The modeling of quality–quantity-regulated DHS is a type of
pooling problem [19]. The pooling problem is a network flow prob-
lem that aims to find the minimum-cost way to mix several inputs
in intermediate pools such that the output meets the demand or
certain requirements. Mixing inputs involves mixing the product
of the flow quantity and the feature. As a result, the pooling prob-
lem becomes a bilinear program. In DHS modeling, the nonconvex
and nonlinear network flow hinders the problem from being solved
efficiently. Among the nonconvex terms, the bilinear term, which
comes from the product of the mass flow rate and the nodal tem-
perature, is one of the most difficult to deal with.

Current achievements in dealing with the bilinearity of DHS
optimization can be divided into four categories: nonlinear pro-
gramming methods, generalized Benders decomposition, relax-
ation methods, and relaxation tightening methods. Nonlinear
programming methods, such as the interior point method, sequen-
tial linear programming, and successive quadratic programming
[14], are generally able to solve nonlinear programing with contin-
uous variables, and are easy to implement with off-the-shelf sol-
vers. However, they are only able to find local solutions and may
have slow convergence or even convergence failure when the net-
work becomes large.

Generalized Benders decomposition can solve certain types of
nonlinear programming and mixed-integer nonlinear program-
Table 1
Different regulation modes in DHS.

Regulation modes Mass flow rate Supply nodal temperature

Quality regulation Constant Variable
Quantity regulation Variable Constant
Quality–quantity regulation Variable Variable
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ming. To deal with the bilinearity from the product of the mass
flow rate and the nodal temperature, Ref. [15] presents an iterative
algorithm: By fixing one set of variables and solving the other set,
and then vice versa, the two subproblems are iteratively solved
until convergence is reached. However, the resulting solution can-
not be ensured to be a global optimum or local optimum, and the
convergence property requires further investigation.

In general, relaxation methods, such as conic relaxation [16,17]
and polyhedral relaxation [18], enlarge the original nonconvex fea-
sible set until it is convex. The relaxed problem becomes convex at
the expense of sacrificing the feasibility of the solution to the orig-
inal problem. The performance of relaxation methods largely
depends on the relaxed boundaries, with tighter bounds leading
to stronger relaxations. This gives rise to relaxation tightening
methods, such as those shown in Refs. [18–20]. The core principle
of such methods is to provide tighter bounds to enhance the relax-
ation. Among the relaxation tightening methods, branch and
bound has been successfully implemented in the latest version of
Gurobi—that is, Gurobi 9.0 [21]—to deal with bilinear program-
ming. The bilinear solver in Gurobi 9.0 ensures a global optimum
and can be used as a benchmark to evaluate the optimality of other
methods. However, when dealing with large-scale problems, it
may converge slowly.

1.3. Contributions and the organization of this paper

In this paper, we first reformulate the classic quality–quantity-
regulated DHS optimization model through an equivalent trans-
formation and the first-order Taylor expansion. Compared with
the original model, which has two bilinear terms in each noncon-
vex constraint, the reformulated model has fewer bilinear equali-
ties; more specifically, it reduces the bilinear terms by
approximately half. The reformulation not only ensures optimal-
ity, but also may have advantages in reducing the computational
complexities of the original problem. Next, we perform
McCormick envelopes to convexify the bilinear constraints and
obtain an objective lower bound of the reformulated model. To
improve the quality of the McCormick relaxation, we employ a
piecewise McCormick technique to reduce the McCormick volume
by deriving stronger lower and upper bounds of the bilinear terms.
The piecewise McCormick technique involves partitioning the
domain of one of the variables in the bilinear term into several dis-
joint regions and determining the optimal region such that the
bounds of the selected variable have been tightened. Thus, a
strengthened lower-bound solution of the original problem is
obtained. Since the strengthened lower bound may not be feasible,
a heuristic bound contraction algorithm is further established to
constrict the strengthened bounds of the piecewise McCormick
technique and obtain a nearby feasible solution in an iterative
way. Compared with nonlinear optimization [14] and generalized
Benders decomposition [15], the proposed method is based on
relaxation and piecewise techniques, which are more scalable,
and thus avoids being trapped into local infeasibility. In contrast
to current relaxation tightening methods, such as the one imple-
mented in the Gurobi bilinear solver [21], the proposed tightening
McCormick algorithm can achieve a comparable solution quality
with better computational efficiency.

In summary, this paper makes three main contributions:
(1) A classic integrated heat and electricity operation problem

with a quality–quantity-regulated DHS model is reformulated
through a variable substitution and equivalent transformation,
which largely reduces the bilinear complexity of the classic model.

(2) Based on the reformulated model, McCormick envelopes are
applied to relax the remaining bilinear terms. To reduce the relax-
ation errors and strengthen the bounds used by the McCormick
envelopes, a piecewise McCormick technique is proposed.
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(3) To improve the feasibility of the solution, a bound contrac-
tion algorithm is designed to constrict the upper and lower bounds
of the piecewise McCormick envelopes through a perturbation of
the latest optimal results. Case studies show that the tightening
McCormick method, which combines the piecewise McCormick
technique with a bound contraction algorithm, quickly solves the
problem with an acceptable feasibility check and optimality. Given
its convex property, the tightening McCormick method is promis-
ing for large-scale integrated heat and electricity optimization
and can allow economic analysis using shadow prices.

The remainder of this paper is organized as follows. Section 2
introduces the integrated operation problem with a DHS base
model and a reformulated model. Section 3 details the convex
relaxation and the tightening McCormick algorithm used to solve
the integrated problem. Section 4 presents case studies, and Sec-
tion 5 draws conclusions.

2. Problem formulation

An integrated heat and electricity system consists of DHSs and
local EPSs. A local EPS is part of the whole multi-area power sys-
tem, which has one or more interfaces to exchange power with
other parts of the whole power system. For DHS modeling, we pre-
sent a base model first, which is a nonlinear optimization model
without any relaxation of the constraints. Then, we derive an
equivalent reformulated model of the DHS through the first-
order Taylor expansion and variable substitution. The reformulated
model turns out to reduce the nonlinearity of the base model; that
is, the bilinear terms in the base model are reduced by nearly half.
For EPS formulation, we adopt a state-independent linear power
flow model that considers the reactive power and voltage magni-
tude. The coupling elements connecting the two systems are CHP
units. The operation problem determines optimal solutions with
multiple objectives such as the minimization of fuel costs, power
transaction costs with other interconnected power systems, and
network losses. For notational simplicity, we build single-time
horizon models for the DHS and EPS, respectively. Then, we extend
the whole operation optimization to the multi-time horizon case
and add the notation of time index t to all the decision variables.

2.1. District heating system modeling

In the quality–quantity-regulated radial district heating net-
work, we regulate the mass flow rates through the circulating
pump. Mass flow rate has a magnitude and direction. In this paper,
we assume the magnitude of the mass flow rate to be variable,
while the direction is fixed. This assumption is reasonable because
frequent changes of direction will result in supply instability.

Base model:

HGi � HLi þ c
X
j2In ið Þ

mjisji ¼ c
X

k2Out ið Þ
miksi;8i 2 Inode ð1aÞ

X
j2In ið Þ

mji ¼
X

k2Out ið Þ
mik;8i 2 Inode ð1bÞ

sji ¼ sj � sa
� �

exp � vLji
cmji

� �
þ sa;8ji 2 Ipipe ð1cÞ

smin
i � si � smax

i ; smin
ji � sji � smax

ji ;8i 2 Inode ð1dÞ

mmin
ji � mji � mmax

ji ;8ji 2 Ipipe ð1eÞ

whereHGi is theheat generationat node i,HLi is theheat load atnode i,
c is the specific heat capacity of water, mji is the mass flow rate of
water transferred from node j to node i in the pipeline of the heating
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network, si is the outlet temperature of node i,sji is theoutlet temper-
ature of the pipeline from node j to node i, sa is the ambient temper-
ature, v is the heat transfer coefficient per unit length, Lji is the length
of the pipeline fromnode j to node i, smin

ji /smax
ji is the lower/upper limit

of sji, andmmin
ji /mmax

ji is the lower/upper limit ofmji. In ið Þ is the set of
indices of nodesflowing intonode i in theheatingnetwork, andOut ið Þ
is the set of indices of nodes flowing out of node i in the heating net-
work.Inode andIpipe are the set of indices of nodesandpipelines in the
heating network, respectively. Eq. (1a) defines the nodal heat bal-
ance, while Eq. (1b) defines the nodal flow balance. Eq. (1c) describes
theprocess bywhich thewater temperature drops along thepipeline,
considering the heat-loss factors [22]. To be specific, the outlet tem-
perature of the pipeline sji relies on the outlet temperature at the
starting point of the pipeline, sj. If the pipeline length is longer, the
heat transfer coefficient is larger, or the mass flow rate is smaller,
the temperature drop (aswell as the heat loss) will becomemore sig-
nificant. Eq. (1d) are the minimum- and maximum-operating limits
of the nodal outlet temperature and the pipeline outlet temperature.
Eq. (1e) gives the minimum- and maximum-operating limits of the
mass flowrates. Note that additional constraints that keep the supply
nodal temperatures constant canbe added into the basemodel; these
would constitute the quantity-regulated model, whose computa-
tional complexity remains the same as the quality–quantity-regula
ted model.

2.2. DHS reformulation

Nonconvexities of the DHS base model arise due to Eqs. (1a) and
(1c). Eq. (1a) has the bilinear term ms, and Eq. (1c) has the expo-
nential function exp(–vL/(cm)).
� To deal with the bilinear term, we introduce an auxiliary vari-

able H = ms. With this variable substitution, it turns out that the
bilinear terms are reduced.
� To deal with the exponential function term, we use the first-

order Taylor expansion to approximate the constraints in Eq. (1c).
By introducing auxiliary variables

Hin
ji :¼ cmjisji ð2Þ

Hout
ik :¼ cmiksi ð3Þ

Eqs. (1a) and (1c) are equivalent to

HGi � HLi þ
X
j2In ið Þ

Hin
ji ¼

X
k2Out ið Þ

Hout
ik ;8i 2 Inode ð4Þ

Hin
ji ¼ Hout

ji � cmjisa
� �

� exp � vLji
cmji

� �
þ cmjisa;8ji 2 Ipipe ð5Þ

In practice, the total heat transfer coefficient of pipeline v is
very small. According to the Chinese design code for a city heating
network [23], the heat transfer coefficient of the thermal insulation
material should be less than 0.08 W�(m�K)�1. Thus, we assume that
vLji � cmji—an assumption that has been broadly studied and jus-
tified for heating networks [16,17,20]. Under this assumption, we
can use the first-order Taylor expansion to approximate Eq. (5).

Hin
ji ¼ Hout

ji � cmjisa
� �

� exp � vLji
cmji

� �
þ cmjisa

� Hout
ji � cmjisa

� �
� 1� vLji

cmji

� �
þ cmjisa

¼ Hout
ji � vLji sj � sa

� �
;8ji 2 Ipipe

ð6Þ

To transform the upper and lower limit constraints associated
with temperature (i.e., Eq. (1d)) into constraints related to the heat
power H, the following constraints are used:
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cmjismin
ji � Hin

ji � cmjismax
ji ;8ji 2 Ipipe ð7Þ

cmiksmin
i � Hout

ik � cmiksmax
i ;8ik 2 Ipipe ð8Þ

Therefore, the district heating network formulation under qual-
ity–quantity regulation (the base model) can be reformulated as
Eqs. (9a)–(9g), which represent the reformulated model.

Reformulated model:

HGi � HLi þ
X
j2In ið Þ

Hin
ji ¼

X
k2Out ið Þ

Hout
ik ;8i 2 Inode ð9aÞ

Hin
ji ¼ Hout

ji � vLji sj � sa
� �

;8ji 2 Ipipe ð9bÞ

cmjismin
ji � Hin

ji � cmjismax
ji ;8ji 2 Ipipe ð9cÞ

cmiksmin
i � Hout

ik � cmiksmax
i ;8ik 2 Ipipe ð9dÞ

smin
i � si � smax

i ;8i 2 Inode ð9eÞ

Hout
ik ¼ cmiksi;8ik 2 Ipipe ð9fÞ

Eqs: 1bð Þ; 1eð Þ ð9gÞ

It should be noted that Eq. (2) does not appear in the reformu-

lated model. It has been eliminated because Hin
ji completely repre-

sents sji. Introducing Hin
ji and eliminating variables sji (Eq. (2)) will

not influence the feasible region of the original problem. However,
Eq. (9f) does not fall under the same case because si is not only pre-
sented in Eq. (9f), but also appears in Eq. (9b). In the reformulated
model (Eqs. (9a)–(9g)), the nonconvex quadratic constraints (Eq.
(1a)) are converted into linear constraints (Eq. (9a)) and indepen-
dent bilinear constraints (Eq. (9f)); thus, all constraints are linear
except for Eq. (9f). It can be argued that the reformulated model
is equivalent to the base model, with negligible errors from the
first-order Taylor approximation.
2.3. Electric power system modeling

A linear power flow [24] with accurate estimation of voltage
magnitude is adopted to characterize the electric power network;
this improves the direct current (DC) power flow results, since it
accounts for the reactive power and voltage magnitude.
PGi � PLi ¼ Vi

X
j2Ibus

gij þ
X

j2Ibus ;j–i

�gij

� �
Vj

0
@

1
A

�
X

j2Ibus ;j–i

bij hi � hj
� �

;8i 2 Ibus ð10aÞ

QGi � Q Li ¼ � hi
X
j2Ibus

gij þ
X

j2Ibus ;j–i

�gij

� �
hj

0
@

1
A

�
X

j2Ibus ;j–i

bij Vi � Vj
� �

;8i 2 Ibus ð10bÞ

Pij ¼ gij V i � Vj
� �

� bij hi � hj
� �

;8ij 2 I line ð10cÞ

Qij ¼ �gij hi � hj
� �

� bij V i � Vj
� �

;8ij 2 I line ð10dÞ

�Pij � Pij � Pij;8ij 2 I line ð10eÞ

Vi � Vi � Vi;8i 2 Ibus ð10fÞ
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where PGi/QGi is the active/reactive power generation at bus i,
PLi/Q Li is the active/reactive power load at bus i, Pij/Qij is the
active/reactive power flow across line ij, Vi and hi are the voltage
magnitude and phase angle of bus i, respectively. gij is the conduc-
tance; bij is the susceptance. gij þ jbij is the admittance of line ij, and
gii þ jbii is the shunt admittance at bus i. Vi/Vi is the lower/upper
limit of Vi, Pij is the upper bound of Pij, and Ibus and I line are the
set of indices of the buses and lines in the power network, respec-
tively. Eqs. (10a) and (10b) define the nodal active and reactive
power balance equations, respectively. Eqs. (10c) and (10d) present
the branch active and reactive power, respectively. Eqs. (10e) and
(10f) impose the active power limits of the transmission lines and
the bus voltage magnitudes, respectively.

2.4. Energy sources modeling

There are three typical types of energy sources in the integrated
system: heating boilers (HBs), CHP units, and non-CHP thermal
units (TUs). The variable cost of an HB is typically expressed as a
linear function with respect to the heat output, whereas the vari-
able cost may include fuel prices and taxes [25]. The generation
cost of a CHP unit is usually formulated as a convex quadratic cost
function of the power and heat output, including the product of the
power and heat output [26]. The cost of each non-CHP thermal unit
is modeled as either a quadratic or piecewise linear function in
MATPOWER [27], and the quadratic form has been selected in this
paper. The objectives of the above energy sources are described as
follows:

fHBi ¼ CHB
i � H

HB
i ; 8i 2 IHB ð11aÞ

f CHPi ¼ CCHP;0
i þ CCHP;1

i � PCHP
i þ CCHP;2

i � PCHP
i

� �2

þ CCHP;3
i � HCHP

i þ CCHP;4
i � HCHP

i

� �2

þ CCHP;5
i � PCHP

i � HCHP
i ;8i 2 ICHP

ð11bÞ

f TUi ¼ CTU;2
i � PTU

i

� �2
þ CTU;1

i � PTU
i ; 8i 2 ITU ð11cÞ

where fHB
i , f CHP

i , and f TUi are the cost functions of HB i, CHP i, and TU i,

respectively. CHB
i , CiCHP,0–CiCHP,5, and CiTU,1–CiTU,2 are the generation

cost coefficients of HB i, CHP i, and TU i, respectively. HHB
i is the heat

output of heating boiler i, PCHP
i /QCHP

i is the active/reactive power

output of CHP i, HCHP
i is the heat output of CHP i, PTU

i /QTU
i is the

active/reactive power output of TU i, and ITU is the set of indices
of TU.

The following constraints impose operational bounds for those
energy sources, respectively. For CHP units, the bounds usually
refer to the boundaries of the feasible region, whose shape may
be either a line or a polygon [9], representing the relations between
the heat output and the electricity output as well as their upper/
lower limits.

HHB
i � HHB

i � HHB
i ; 8i 2 IHB ð12aÞ

ACHP
i;b � P

CHP
i þ BCHP

i;b � H
CHP
i � DCHP

i;b ; 8i 2 ICHP; b 2 Bi ð12bÞ

PTU
i � PTU

i � PTU
i ; 8i 2 ITU ð12cÞ

where HHB
i /HHB

i is the lower/upper limit of HHB
i , and ACHP

i;b , BCHP
i;b , and

DCHP
i;b are the parameters of boundary b of the feasible region at

CHP unit i. Bi is the set of indices of boundary pairs in CHP unit i,

and PTU
i /PTU

i is the lower/upper limit of PTU
i .
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2.5. The operation problem

The optimal operation problem in the integrated heat and elec-
tricity system is to minimize the fuel costs, the power exchange
costs with other interconnected power systems, the network
losses, and some other appropriate objective functions. The con-
straints include Eqs. (1a)–(1e) for the base model or Eqs. (9a)–
(9g) for the reformulated model, in addition to Eq. (10), Eq. (12),
and three other constraints regarding the nodal electricity/heat
production equalities:

min
x

F ¼
X
t2T

X
j2ITU

f TUj;t þ
X
j2ICHP

f CHP
j;t þ

X
j2IHB

fHB
j;t

0
@

þ a
X
j2IEX

f EXj;t þ bPLOSS
t þ cHLOSS

t

! ð13aÞ

s:t:;Eqs: ð1aÞ—ð1eÞor Eqs: ð9aÞ—ð9gÞ; 10ð Þ; 12ð Þ; 8t 2 T ð13bÞ

PGi;t ¼
X
j2ICHP

i

PCHP
j;t þ

X
j2ITU

i

PTU
j;t þ

X
j2IEX

i

PBUY
j;t � PSELL

j;t

� �
;8i 2 Ibus; t 2 T

ð13cÞ

QGi;t ¼
X
j2ICHP

i

QCHP
j;t þ

X
j2ITU

i

QTU
j;t ;8i 2 Ibus; t 2 T ð13dÞ

HGi;t ¼
X
j2IHB

i

HHB
j;t þ

X
j2ICHP

i

HCHP
j;t ;8i 2 Inode; t 2 T ð13eÞ

where T is the operation period, IEX is the set of indices of inter-
faces for power exchange, PBUY

j is the power bought from the outer

grid at interface j, PSELL
j is the power sold to the outer grid at inter-

face j, and x represents decision variables. In the base model,

x :¼ PTU
j;t ; P

CHP
j;t ; PBUY

j;t ; PSELL
j;t ; PGi;t ;Q

TU
j;t ;Q

CHP
j;t ;QGi;t;H

CHP
j;t ;HHB

j;t ;
n

HGi;t;Vi;t ; hi;t;

mij;t; si;t; sji;tg; in the reformulated model, x :¼ PTU
j;t ;

n
PCHP
j;t ; PBUY

j;t ;

PSELL
j;t ; PGi;t;Q

TU
j;t ;Q

CHP
j;t ;QGi;t ;H

CHP
j;t ; :HHB

j;t ;HGi;t ;H
in
ji ;H

out
ik ;Vi;t ; hi;t;mij;t ; si;tg.

a, b, and c are weight coefficients to adjust the weights of different

objectives, which are set according to the operator’s preference. f EXj;t
refers to the power exchange cost at interface j, which is the differ-
ence between the costs of purchasing power from the grid and the
revenues from selling power to the grid:

f EXj;t ¼ CBUY
j;t PBUY

j;t � CSELL
j;t PSELL

j;t ð14Þ

where CBUY
j;t /CSELL

j;t is the price of buying/selling power from/to the

outer grid at interface j at time t, and PLOSS
t and HLOSS

t represent
the total network losses at time t in the EPS and DHS, respectively.
PLOSS
t is defined as follows:

PLOSS
t ¼

X
ij2I line

1
gij

P2
ij;t þ Q2

ij;t

V2
i;t

ð15Þ

The literature contains several loss formulations and their vari-
ants; interested readers can refer to Ref. [28] for a thorough review.
In this paper, we will adopt a common variant for Eq. (15), which
assumes that all voltage amplitudes are equal to 1 per unit (p.u.)
[29,30]. In general, voltage amplitudes are around 0.9–1.1 p.u., so
the assumption is acceptable. It should be noted that so long as
the loss formulation is convex, it can be applied to this problem.
HLOSS

t is calculated as the difference between the total production
and demand:

HLOSS
t ¼

X
i2Inode

HGi;t � HLi;t
� �

ð16Þ
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The problem (Eqs. (13a)–(13e)), whether with the DHS base
model (Eqs. (1a)–(1e)) or the reformulated model (Eqs. (9a)–
(9g)), is a nonconvex program with quadratic constraints. It is
non-deterministic polynomial hard.

3. Convex relaxation and the solution algorithm

In the DHS reformulated model, the bilinear term is the only dif-
ficulty. An intuitive idea is to remove it—that is, remove Eq. (9f)—
directly in order to check whether the bilinear constraints have a
great impact on the quality of the solution. However, simulations
show that removing bilinear terms leads to solutions with large
violation errors to the constraints Eq. (9f). A classic way to relax
the bilinear terms is to use McCormick envelopes. To improve
the relaxation and reduce the McCormick volume, a piecewise
McCormick technique is presented, since the sum of the smaller
volumes is smaller than the big volume in the standard McCormick
approach. The optimal results from the piecewise McCormick tech-
nique can be regarded as the relaxed global optimum, but may not
be feasible for the reformulated model. Hence, a bound contraction
algorithm is further proposed in order to strengthen the bound-
aries of the McCormick envelopes and find a feasible result near
the relaxed global optimum.

3.1. McCormick convex relaxation

We replace Eq. (9f) with the McCormick relaxation [31].
McCormick Model:

Eqs: 13að Þ; 13bð Þwith ð9aÞ�ð9eÞ; ð9gÞ; ð13cÞ�ð13eÞ ð17aÞ

Hout
ik � c mmin

ik si þ smin
i mik �mmin

ik smin
i

� �
;8ik 2 Ipipe ð17bÞ

Hout
ik � c mmax

ik si þ smax
i mik �mmax

ik smax
i

� �
;8ik 2 Ipipe ð17cÞ

Hout
ik � c mmax

ik si þ smin
i mik �mmax

ik smin
i

� �
;8ik 2 Ipipe ð17dÞ

Hout
ik � c mmin

ik si þ smax
i mik �mmin

ik smax
i

� �
;8ik 2 Ipipe ð17eÞ

Under the McCormick relaxation, the reformulated model
becomes a convex optimization problem, where the Karush–Kuh
n–Tucker conditions are sufficient and necessary (under e.g., Sla-
ter’s conditions). Therefore, a global minimum can be achieved in
the relaxed McCormick model. This global minimum can be
regarded as a lower bound to the reformulated model. However,
the McCormick relaxation still induces relatively large errors in
the bilinear constraints.

3.2. The tightening McCormick algorithm

We have obtained a solution through the convex McCormick
model. Since the relaxed feasible region is not tight in the
McCormick model, the solution may not be feasible due to viola-
tion of the bilinear constraints. To improve the quality of the relax-
ation, tighter lower and upper bounds are expected to help
construct the McCormick envelopes. As such, we employ a piece-
wise McCormick technique and a bound contraction algorithm to
improve the McCormick method.

3.2.1. The piecewise McCormick technique
In the piecewise McCormick technique, the domain of one of the

variables in the bilinear term is partitioned into several disjoint
regions and the optimal region is determined such that the bounds
of the selected variable have been tightened. A typical partition
pattern is the uniform partition [32], where the problem size
increases linearly with the number of partitions. Other partition
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schemes with adaptive segment lengths or partition-dependent
bounds can also be applied to improve the performance [20].

The selected variables to be partitioned will influence the qual-
ity of the relaxation. In the district heating network flow optimiza-
tion problem, the variable choice could be mass flow rates, nodal
temperatures, or a combination of both. Finding an optimal set of
variables for the best relaxation is beyond the scope of this paper.
We will choose the nodal temperatures to partition. Let smin

i;s and
smax
i;s represent the lower and upper bounds of variable si in parti-

tion s. A binary variable yi;s is assigned to each disjunction s. yi;s ¼ 1
if the value of si does belong to this disjunction; otherwise, yi;s ¼ 0.
The other variable of the bilinear term, mik, is also disaggregated as
mik;s;8s 2 S, where S is the set of indices of s.

Piecewise McCormick:

Eqs: 13að Þ; 13bð Þwith ð9aÞ—ð9eÞ; ð9gÞ; ð13cÞ—ð13eÞ ð18aÞ

Hout
ik � c

P Sj j
s¼1 mmin

ik si;s þ smin
i;s mik;s �mmin

ik smin
i;s yi;s

� �
Hout

ik � c
P Sj j

s¼1 mmax
ik si;s þ smax

i;s mik;s �mmax
ik smax

i;s yi;s
� �

Hout
ik � c

P Sj j
s¼1 mmax

ik si;s þ smin
i;n mik;s �mmax

ik smin
i;s yi;s

� �
Hout

ik � c
P Sj j

s¼1 mmin
ik si;s þ smax

i;s mik;s �mmin
ik smax

i;s yi;s
� �

9>>>>>>>>=
>>>>>>>>;
8ik 2 Ipipe

ð18bÞ

si ¼
XSj j

s¼1
si;s;8i 2 Inode ð18cÞ

mik ¼
XSj j

s¼1
mik;s;8ik 2 Ipipe ð18dÞ

XSj j

s¼1
yi;s ¼ 1;8i 2 Inode ð18eÞ

smin
i;s ¼ smin

i þ smax
i � smin

i

� �
s� 1ð Þ= Sj j

smax
i;s ¼ smin

i þ smax
i � smin

i

� �
s= Sj j

)
8i 2 Inode;8s 2 S ð18fÞ

smin
i;s yi;s � si;s � smax

i;s yi;s;8i 2 Inode;8s 2 S ð18gÞ

mmin
ik yi;s � mik;s � mmax

ik yi;s;8ik 2 Ipipe;8s 2 S ð18hÞ

yi;s 2 0;1f g;8i 2 Inode;8s 2 S ð18iÞ

In the above formulation, if the binary variable yi;s is equal to 1,
then all the variables in the sth partition—that is, si;s andmik;s—play
dominant roles in deciding the values of si and mik. In comparison,
the variables in all the other partitions are enforced to zero. Simi-
larly, if yi;s ¼ 1, then all the constraints in the sth partition are
enforced, while the constraints in all the other partitions are
neglected. The increasing number of binaries will lead to stronger
relaxations, but at the cost of increased computational effort to
solve the resulting mixed-integer problem. In general, the algo-
rithm performs well with three partitions [32].

3.2.2. The bound contraction algorithm
The piecewise McCormick technique presents tighter upper

bounds and lower bounds of the nodal temperatures, resulting in a
stronger lower-bound solution of the reformulated model. To fur-
ther reduce errors of the bilinear constraints, a feasible solution near
the lower-bound solution is expected. Hence, we propose a bound
contraction algorithm to iteratively strengthen the variable bounds
and approach near-optimal results that violate the bilinear con-
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straints less. The main idea of the bound contraction algorithm is
that at each iteration n, the upper and lower bounds of the decision
variables—that is, the mass flow rates and nodal temperatures—are
updated according to the results from the last iteration n – 1 and a
sequence of hyperparameters e, where 0 < e < 1. The principle in
choosing the sequence is to gradually reduce the value of e by j in
order to tighten the bounds [33]. To ensure the feasibility of the orig-
inal problem, the updated bounds should be the intersection of the
result-orientated bounds and the original bounds. Once the average
relative error of the bilinear constraints (Eq. (9f)) is reached to an
acceptable level d, the algorithm can be terminated.

The abovementioned procedure is to search for a tighter lower
bound. However, there is a need to obtain a feasible solution that
can be regarded as an upper bound in order to assess the optimality
gapx, and that can act as another algorithm termination. The feasi-
ble solution can be recovered by fixing either the mass flow rates or
the nodal temperatures obtained from the McCormick solution and
re-optimizing the operation problem with the fixed value.
Algorithm 1. Bound contraction.
1:
 inputs: d, x, e1, j, UB = 109, LB = 0a
2:
 n 1; mmin;ini
ik  mmin

ik , mmax;ini
ik  mmax

ik , 8ik 2 Ipipe;
smin;ini
i  smin

i , smax;ini
i  smax

i , 8i 2 Inode

3:
 while UB� LBð Þ=UB	 100 % > x do

4:
 if n = 1 then

5:
 Solve Eq. (18) and get Hout

ik , mik, si, obj; LB  obj

6:
 else

7:
 Solve Eq. (17) and get Hout

ik , mik, si, obj; LB  obj

8:
 end

9:
 Fix mik, reoptimize Eq. (13) with Eq. (9), and obtain a

feasible solution and obj; UB obj� �

10:
 if 1

Ipipej j
P

ik2Ipipe Hout
ik � cmiksi� �=Hout

ik � d then
11:
 break;

12:
 end n o

13:
 mmin

ik  max 1� enð Þmik;m
min;ini
ik , 8ik 2 Ipipen o
14:
 mmax
ik  min 1 þ enð Þmik;m

max;ini
ik , 8ik 2 Ipipen o
15:
 smin
i  max 1� enð Þsi; smin;ini

i , 8i 2 Inoden o

16:
 smax

i  min 1þ enð Þsi; smax;ini
i , 8i 2 Inode
17:
 enþ1  en � j

18:
 n n þ 1

19:
 end while
a UB: upper bound; LB: lower bound.
3.3. Overview of the proposed method and algorithm

Fig. 1 presents an intuitive illustration of the tightening McCor-
mick algorithm, including the piecewise McCormick technique and
the bound contraction algorithm. Fig. 2 illustrates the main proce-
dure of the proposed method and algorithm. After model reformu-
lation and convex relaxation, a convex McCormick model is
formulated and provides an objective lower bound. To tighten
the McCormick relaxation, stronger upper and lower bounds of
the nodal temperatures are derived by partitioning the variable
domain and are solved by means of the piecewise McCormick tech-
nique. Meanwhile, a feasible solution is expected to provide an
upper bound and to form the stopping criterion together with
the lower bound. The feasible solution can be recovered by fixing
the mass flow rates and solving the resulting convex reformulation
model, Eqs. (13a)–(13e), with Eqs. (9a)–(9g). The upper and lower



Fig. 1. Illustration of the tightening McCormick algorithm. (a) The piecewise McCormick technique; (b) the bound contraction algorithm.

Fig. 2. The implementation flowchart for the proposed method and algorithm.
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bounds of the mass flow rates and the temperatures are succes-
sively tightened based on the bound contraction algorithm. Finally,
the algorithm converges to a local optimum near the objective
lower bound.
4. Case studies

In this section, we compare the performance of several models,
as shown in Table 2.

We test these models in two integrated heat and electricity sys-
tems. One is a small-scale system with a 6-bus EPS and an 8-node
DHS, as shown in Fig. 3. The 6-bus EPS is connected to the outer
grid at bus 1. The 8-node DHS is modified based on a real DHS in
Jilin Province, China [7]. There are two TUs, three electric loads, a
CHP unit that connects the EPS and DHS, an HB, and three heat
loads. The total heat load and electric load are shown in Fig. 4.
The parameters are set to e1 ¼ 0:02, j ¼ 0:01, and d ¼ 0:0001.
The other is a large-scale system consisting of a modified 118-
bus EPS and a 33-node DHS in Barry Island [4]. The 118-bus EPS
exchanges power with an outer grid at bus 69. The 33-node DHS
disconnects branch number 25–28 to form a radial network. There
are two CHP units and an HB in the DHS. Detailed data for the two
integrated heat and electricity systems can be found in Ref. [34].

4.1. Optimality

Table 3 and Table 4 show the optimal dispatch comparison in
two cases, respectively. The base and reformulated models solved
by the bilinear solver in Gurobi 9.0 provide the global optimal
results. It is notable that there is almost no gap between those
two models, which demonstrates that the reformulation pre-
serves the same solution structure. As expected, the bilinear-
removed model gives the lowest bound of the optimal solution,
while the McCormick model provides a tighter lower bound.
The base model solved by the local solver IPOPT presents an
upper bound of the optimal solution. The tightening McCormick
model has a small value gap and a fast solution time. When the
network becomes large, the base model with the bilinear solver
in Gurobi is time-consuming to solve. Since the problem is highly
nonconvex, IPOPT even fails to converge in the large-scale case.
Table 2
Model settings for comparison.

Model Formulation

Base Eqs. (13a)–(13e) with the base model (Eqs. (1a)–(1e))

Reformulated Eqs. (13a)–(13e) with the reformulated model (Eqs. (9a
Bilinear-removed Eqs. (13a)–(13e) with the reformulated model (Eqs. (9a
McCormick Eqs. (17a)–(17e)
Tightening McCormick Piecewise McCormick technique (Eqs. (18a)–(18i)) & A

Fig. 3. An integrated heat and electricity system with a 6-bus (i1–i6) EPS and an 8-
node (n1–n8) DHS. Pd1–Pd3 refer to the electric demand 1–3; Hd1–Hd3 refer to the
heating demand 1–3.
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However, with the convexified model, the tightening McCormick
algorithm can be applied to the large-scale integrated system
optimization with relatively small errors and is efficiently solved
by off-the-shelf solvers. It is worth noting that, except for the pre-
processed bound-strengthening process conducted by the piece-
wise McCormick technique, the remaining procedure in the
tightening McCormick algorithm is actually applied on a convex
model. In all, the tightening McCormick model performs well in
terms of both solution accuracy and computational efficiency.
Moreover, compared with using a global search, like branch and
bound in Gurobi 9.0, the tightening McCormick model is a convex
model, and it is easy to derive shadow prices for further economic
analysis.

From the perspective of the regulation methods, it can be
observed that the regulation with variable mass flow rates has
lower costs than that with constant mass flow rates, as shown in
Table 3 and Table 4, since the variable mass flow rate case results
in more flexibility in both the mass flow rates and the nodal tem-
peratures. A detailed day-ahead operation is demonstrated in
Fig. 5, including the power output of each production unit, power
selling to the grid, and the mass flow rates of typical pipelines.

4.2. Feasibility

Fig. 6 shows violations of the constraints (Eq. (9f)) in two cases.
Violations are represented by the errors of the bilinear constraints;
that is, Hout

ik � cmiksi
�� ��=Hout

ik . Although Table 3 and Table 4 show that
the bilinear-removed and McCormick models provide lower costs,
it can be observed that their violations, as presented in Fig. 6, are
huge. This is unacceptable when applied to real-world operations.
However, the tightening McCormick model gives relatively small
violation errors. The maximum errors are no more than 0.358%,
and the average errors are less than 0.133% in both cases. Detailed
error data is provided in Table 5 and Table 6.

4.3. Sensitivity analysis

From Fig. 7(a), it is obvious that a larger partition number pre-
sents tighter upper and lower bounds at the starting points for
bound contraction iterations; thus, the error with case S = 3 at
Feature Solver Optimum

Nonconvex Bilinear solver in Gurobi Global
IPOPT Local

)–(9g)) Nonconvex Bilinear solver in Gurobi Global
)–(9e), (9g)) Convex Convex solver in Gurobi Global

Convex Convex solver in Gurobi Global
lgorithm 1 Convex Convex solver in Gurobi Global

Fig. 4. The daily total heat and electricity profile.



Table 4
Optimal dispatch comparison in the large-scale case.

Regulation Model Value Gapa Solver time (s)

Variable mass flow rates Base (global) 1 993 994.94 — 573.41
Base (local) — — >9999
Reformulated 1 993 995.64 0 398.87
Bilinear-removed 1 984 432.11 0.480% 0.40
McCormick 1 984 432.18 0.480% 0.48
Tightening McCormick 1 993 806.97 0.009% 39.89

Constant mass flow rates — 1 998 774.91 — —

a Gap is defined as the relative difference value with respect to the value from the base (global) model.

Table 3
Optimal dispatch comparison in the small-scale case.

Regulation Model Value Gapa Solver time (s)

Variable mass flow rates Base (global) 131 362.85 — 25.53
Base (local) 131 362.97 0 35.43
Reformulated 131 362.85 0 13.15
Bilinear-removed 130 350.07 0.771% 0.05
McCormick 131 211.97 0.115% 0.09
Tightening McCormick 131 359.59 0.002% 5.11

Constant mass flow rates — 132 329.46 — —

a Gap is defined as the relative difference value with respect to the value from the base (global) model.

L. Deng, H. Sun, B. Li et al. Engineering 7 (2021) 1076–1086
iteration 1 is the smallest among all partition number cases. In
the case S = 1, the McCormick model is used directly without
the piecewise process. The larger the partition number is, the
more the binaries are required, and the more expensive the com-
putation time will be. Choosing a partition number of 3 or 2 can
Fig. 5. The day-ahead operation of the small-scale case with different regulat
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present a satisfactory performance. Fig. 7(b) demonstrates that a
smaller initial value and a larger step size result in faster conver-
gence. However, the initial value should not be too small and the
step size should not be too large in case there is no feasible
region.
ion methods. (a) Variable mass flow rates; (b) constant mass flow rates.



Table 5
Errors of the bilinear constraints (Eq. (9f)) during 24 h in the small-scale case.

Errors Bilinear-removed McCormick Tightening McCormick

Average errors 23.145% 2.278% 0.017%
Maximum errors 67.873% 15.813% 0.040%

Table 6
Errors of the bilinear constraints (Eq. (9f)) during 24 h in the large-scale case.

Errors Bilinear-removed McCormick Tightening McCormick

Average errors 66.732% 5.893% 0.133%
Maximum errors 125.628% 21.572% 0.358%

Fig. 6. Violations of constraints (Eq. (9f)) at hour 1. (a) The small-scale case; (b) the large-scale case.
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5. Conclusions

In this paper, we proposed a convex operation model of inte-
grated heat and electricity systems. To reduce the bilinear terms
coming from the quality–quantity-regulated heat flow, we first
reformulated the model through a variable substitution and equiv-
Fig. 7. The convergence performance in the small-scale case. (a) Partition number; (b)
number in the piecewise McCormick technique, and e1 and j are the initial point and step
the violation of the bilinear constraints in Eq. (9f).
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alent transformation. Next, we relaxed the remaining bilinear
terms by means of McCormack envelopes. To further reduce the
McCormick volume, a piecewise McCormick technique was pre-
sented to strengthen the bounds of the decision variables in bilin-
ear terms. To ensure the feasibility of the results, a bound
contraction algorithm was presented to improve the bounds of
the McCormick model and obtain a nearby feasible solution. Case
studies showed that the tightening McCormick method quickly
solves the problem with an acceptable feasibility check and opti-
mality. Meanwhile, with convexity, the tightening McCormick
method is promising for large-scale integrated heat and electricity
system optimization and can allow economic analysis using sha-
dow prices. It is notable that the performance of the tightening
McCormick algorithm greatly depends on the hyperparameter
sequence chosen in the bound contraction algorithm. Further stud-
ies could focus on finding an efficient sequence and performing
parameter analysis.

In this paper, we applied the proposed model and algorithm to
the energy production operation model at daily or weekly time
scales with steady-state DHS. However, the proposed methods
can also be extended to the intra-day or real-time economic dis-
patch of integrated systems, if the newly added thermal dynamics
initial point and step size of the tightening ratio sequence. S refers to the partition
size of the tightening ratio sequence, respectively. Errors denote the mean value of
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with transmission delay can be formulated as convex or bilinear
constraints. The bilinear form of thermal dynamics has been real-
ized in the so-called water mass method [15,17]. Future work
could consider the thermal dynamics and conduct real-time eco-
nomic dispatch analysis with the proposed methods.
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