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Fresh fruits are highly valued by consumers worldwide, owing to their delicious flavors, abundant nutri-
ents, and health-promoting characteristics, and as such, fruits make up an important component of a
healthy diet. The postharvest quality and safety of fresh fruit involve complex interactions among the
fruit, environmental factors, and postharvest pathogens. Efficient regulation of fruit senescence and
pathogen resistance, as well as disease-causing abilities of postharvest pathogens, is critical to under-
standing the fundamental mechanisms that underlie fruit quality and safety. This paper provides a com-
prehensive review of recent advances and currently available strategies for maintaining fruit quality and
controlling major postharvest pathogens, mainly Botrytis cinerea and Penicillium expansum, which may
promote sustainable and environmental-friendly development of the fruit industry.

� 2020 THE AUTHORS. Published by Elsevier LTD on behalf of Chinese Academy of Engineering and
Higher Education Press Limited Company. This is an open access article under the CC BY-NC-ND license

(http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Fresh fruits are abundant in organic acids, sugars, vitamins,
minerals, and other health-promoting constituents and, thus, rep-
resent an indispensable component of daily human diets [1,2].
With continuous improvements in living standards and significant
transitions in the consumption concepts of consumers, the contri-
bution of the fruit industry to the world economy has increased
dramatically over the past several decades. According to the latest
statistics from the Ministry of Agriculture of China and Rural
Affairs of the People’s Republic and the Food and Agriculture Orga-
nization of the United Nations, China has continuously ranked first
in the world for the annual production of fresh fruit for more than
two decades [3]. However, serious quality deterioration and
postharvest losses inevitably occur, owing to a variety of reasons
during both pre-harvest and postharvest stages, especially in
developing countries, and about a third of the fresh fruit produced
in developing countries fails to reach the tables of consumers.
Among the various factors that affect such losses, intrinsic physio-
logical senescence and infection by fungal pathogens are the most
important [4]. Even though the application of synthetic chemicals
remains the most convenient and economical method for control-
ling postharvest loss, the persistent application of chemical pesti-
cides has resulted in public concerns over both environmental
contamination and food safety. However, the toxic secondary
metabolites produced by fungal pathogens also threaten consumer
health. Therefore, it is necessary to update the traditional tech-
niques used for pathogen management and to develop precise
methods for efficiently regulating fruit senescence and resistance,
as well as the disease-causing abilities of pathogens. Based on cur-
rently available advances in the studies on controlling the quality
and safety of postharvest fruit, this review mainly focuses on the
strategies to employ molecular basis underlying quality mainte-
nance and antioxidant pathways in fruit, further explore safe sub-
stances synergistically regulating fruit senescence and antioxidant
capacity during the postharvest stage, and dissect potential targets
modulating pathogenicity and toxin production in fungal patho-
gens (Fig. 1).
2. Fruit ripening, senescence, and resistance responses

2.1. Development and maintenance of fruit quality

Fruit ripening and senescence are highly complex and ordered
physiological processes that are directly related to the formation
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Fig. 1. Fundamental aspects involving fruit, fungal pathogens, and exogenous factors during postharvest stage. 1-MCP: 1-methylcyclopropene; SA: salicylic acid; OA: oxalic
acid; NHS: non-heat shock; ROS: reactive oxygen species; WT: wildtype; rin: ripening inhibitor; Ev: empty vector; VIGS: virus-induced gene silencing;
IP: immunoprecipitation; AQP: aquaporin.
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and maintenance of fruit quality [2,5]. These processes involve the
spatiotemporal reprogramming of multiple genes that ultimately
trigger subtle variations in color, flavor, aroma, texture, and other
quality attributes [6]. Ripe fleshy fruits generally exhibit greater
susceptibilities than premature fruits to postharvest disease and
decomposition [7], and greater pathogen susceptibility can lead
to high losses in fruit yield, which is especially significant when
losses occur when fruits possess their highest commodity values,
whereas it also facilitates seed dispersal from ripe fruit at the same
time [8]. Therefore, developing a more comprehensive understand-
ing of ripening-related events that are associated with increases in
pathogen susceptibility could significantly affect future fruit yield
and subsequent commercialization by improving the production
of high-quality fruit at appropriate maturity stages and by improv-
ing fruit pathogen resistance and shelf life.

Many climacteric fruits (e.g., tomatoes, apples, and bananas)
exhibit almost concurrent respiratory bursts and ethylene peaks
upon the initiation of ripening [5]. Such fruits are normally har-
vested at relatively lowmaturity and are later processed to promote
physiological maturation. During these processes, the use of exces-
sive levels of ethylene can lead to rapid softening and quality dete-
rioration. Therefore, the elaborate modulation of ethylene
biosynthesis or signaling has great importance for prolonging
shelf-life and for maintaining quality traits during the postharvest
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stage. As a competitive inhibitor of ethylene receptors,
1-methylcyclopropene (1-MCP） suppresses ethylene-related
responses [9] and, thus, has been used extensively for delaying
the ripening of climactic fleshy fruits [10,11]. In addition to its
effectiveness in fruits with inheritent physiological differences
[10,12] and resistance to fungal pathogens [11,13], 1-MCP can be
used to both maintain fruit flavors, by balancing organic acid
dynamics, and to regulate levels of sugars and flavor volatiles,
thereby determining the organoleptic and intrinsic qualities of fruit
[14]. Tomato is an economically and scientifically important crop
plant, as a well-known vegetable and model plant, and is especially
valuable for investigating fruit ripening and senescence. Among
several well-characterized genes related to fruit ripening [15],
which include rin (ripening-inhibitor) [16], nor (non-ripening)
[17], Cnr (colorless non-ripening) [18], Gr (green-ripe) [19], and
Nr (never ripe) [20], the MADS-box transcription factor
RIPENING-INHIBITOR (RIN) has been extensively investigated in
regard to its role in activating the transcription of ripening-
related genes. In one such study [21], chromatin immunoprecipita-
tion (ChIP) was used to identify 241 potential RIN target genes that
could be involved in the determination of fruit quality. For example,
genes related to specific aroma production (e.g., TomloxC and ADH2)
[22], ubiquitin-proteasome pathways (e.g., SlUBC32 and PSMD2)
[23], and cell wall modeling and carbohydrate modifications [24]
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have all been identified as RIN-binding targets. However, several
recent studies have demonstrated that rin is a gain-of-function
mutation, rather than a null mutation, that produces a protein that
actively represses ripening [25,26]. Thus, the functions of RIN are
still far from clear, and mutations of multiple alleles should be
examined to elucidate the functions of specific genes.

The ripening of fleshy fruits involves simultaneous changes in
fruit biochemistry and physiology [27], especially increases in
sugar contents and decreases in organic acid levels [27,28]. How-
ever, the metabolic changes of non-climacteric fruits during ripen-
ing are much less exaggerated than those observed in climacteric
fruits. Transcriptomic analysis has revealed that carbohydrate
metabolism is down-regulated during the middle and later stages
of citrus fruit ripening and suggests that such changes are due to
the up-regulation of sucrose phosphate synthase (SPS) and citrate
synthase [29,30]. Meanwhile, sugar accumulation is directly regu-
lated by the activities of sucrose synthase and SPS [31], whereas
ratios of individual sugars vary significantly among species and
maturation stage [32]. Previous studies have demonstrated that
sucrose can signal the acceleration of ripening in non-climacteric
fruits, such as strawberry [33], grape [34], and citrus [35]. Interest-
ingly, sugar, acid, and cell turgor may function as early signals that
promote abscisic acid (ABA) accumulation, whereas the FaABAR/
CHLH and FaPYR1 signaling pathways may regulate sugar and
anthocyanin biosynthesis via transcription factors, such as
ABRE-binding factor and sigma factor [36]. Sucrose regulates the
initiation of ABA accumulation in strawberry fruit via
9-cis-epoxycarotenoid dioxygenase 1 [37]. However, levels of
organic acids are usually inversely correlated with those of sugars.
When sugars accumulate as a result of starch degradation, the
organic acids in young fruits decrease dramatically, which are under
coordinated genetic and environmental control [38]. Malate and
citrate are the most abundant organic acids in both climacteric and
non-climacteric fruits. However, some climacteric fruits use malate
as a substrate for respiration, whereas non-climacteric fruits con-
tinue to accumulate malate throughout the ripening process [39].

Fruit ripening also involves the adjustment of secondary
metabolite levels. Flavonoids (e.g., phenolics and anthocyanins),
which are mainly biosynthesized via phenylpropanoid pathway,
are major secondary metabolites that directly affect the quality
and economic value of fruits. Flavonoid biosynthesis is closely
linked to key enzymes that are transcriptionally controlled by
MYB transcription factors, MYC-like basic helix-loop-helix (bHLH)
transcription factors, and WD40-repeat proteins [40,41]. The
expression patterns and the DNA-binding specificity of MYB and
bHLH transcription factors determine the gene subsets that are
activated, whereas WD40 protein functions as a common tran-
scription factor in the regulatory MYB-bHLH-WD40 (MBW) com-
plex [40]. Some fruits accumulate anthocyanins in both their
flesh and skin, whereas others only accumulate anthocyanins in
their skin, and anthocyanin synthesis is predominantly controlled
by developmental cues. In contrast, other fruits accumulate antho-
cyanins in their skin in response to environmental stimuli, such as
light, temperature, drought, and mechanical injury, and thus the
composition and quantities of anthocyanins may vary significantly
under different environmental conditions [42,43]. The mechanisms
underlying the environment-specific accumulation of antho-
cyanins in fruits have attracted serious interest [39,41]. However,
studies have yet to examine key players in flavonoid production
or to decipher the functions of flavonoids in fruit-pathogen
interactions.

2.2. Oxidative stress and induced anti-oxidative capacity

Even though reactive oxygen species (ROS) play important roles
in a variety of crucial signaling pathways, in response to develop-
1179
mental cues and environmental stimuli, they are also produced as
harmful by-products of oxygen consumption [2,44]. Indeed, ROS
are fundamentally beneficial molecules that modulate a variety
of cellular processes, but in fruit, the oxidative stress caused by
excessive ROS accumulation can trigger physiological deterioration
pathways [45–47]. Because mitochondria are a major source of
intracellular ROS generation, specific mitochondrial proteins in
fresh fruit, such as voltage-dependent anion-selective channel
(VDAC) proteins, aconitase, and certain antioxidant proteins (e.g.,
manganese superoxide dismutase), are prone to oxidative dam-
ages, especially under the unfavorable conditions that occur during
fruit storage and transport, and such damage can disturb mito-
chondrial functions and eventually cause the deterioration of fruit
quality [48]. Under oxidative stress conditions, protein carbonyla-
tion occurs concurrently with the interference of VDAC function
and impairments in the catalytic activities of antioxidant enzymes,
which further promotes the generation of superoxide anion radi-
cals in mitochondria [2,48]. Importantly, the reduction of ROS
levels by lowering environmental temperature has been reported
to alleviate mitochondrial carbonylation levels and, thus, the pro-
cess of fruit senescence [49]. The reduction of ROS contents by
storage under low oxygen levels (2%–5%) can effectively postpone
fruit senescence, whereas exposure to high H2O2 levels have been
reported to have the opposite effect [50]. Collectively, cellular ROS
homeostasis mediates the responses of fruits to adverse environ-
mental factors, mainly by mediating antioxidant capacity, mobiliz-
ing phytohormones (for example, salicylic acid (SA), jasmonic acid,
and nitric oxide), priming phospholipid signaling and other
defense responses, and enhancing the remodeling of cell walls
and other physical barriers [51].

The induction of intrinsic anti-oxidative capacity and disease
resistance in fruit is also an efficient strategy for maintaining fruit
quality and for alleviating postharvest deterioration. The mecha-
nisms that underlie such strategies include① inducing the produc-
tion of proteins or metabolites related to disease resistance in fruit,
such as pathogenesis-related proteins and certain phenol metabo-
lism enzymes, including phytoalexins, chitinases, phenylalanine
ammonia lyase, b-1,3-glucanase, and phenolics; ② alleviating
oxidative injuries on proteins; and ③ reinforcing cell wall barriers.
As a crucial signaling molecule for the activation of defense
responses, SA activates systemic acquired resistance and further
protects plants, including harvested fruit at postharvest stage, from
both biotic and abiotic stresses [52]. Levels of antioxidant enzymes
are significantly induced in peach and sweet cherry fruit upon
exogenous SA application, which suggests that antioxidant pro-
teins (e.g., catalase and glutathione transferase) make up at least
a part of fruit defense responses [52,53]. Similarly, oxalic acid
has been reported to suppress ethanol production and ethylene
metabolism in jujube fruits, while simultaneously inducing the
expression of defense response proteins, ultimately postponing
fruit senescence and improving disease resistance [54].

2.3. Current gaps in studying postharvest fruit quality maintenance

Many studies of tomato fruit ripening have demonstrated that
mutations can be more complex than initially expected, such as
in the case of dominant-negative or gain-of-function mutations.
Hence, it is tractable and reasonable to use multiple alleles when
investigating ripening-related phenotypes with clustered regularly
interspaced short palindromic repeats (CRISPR)/CRISPR-associated
endonuclease 9 (CRISPR/Cas9) technology. Moreover, because
ripening genes may function through either up- or down-
regulation, as reported by Lü et al. [6], different fruits can be
expected to improve rapidly through the addition or deletion of
relevant transcription factor-binding motifs from promoter
regions. Therefore, a holistic analysis of epigenetic modification
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sites that are relevant to gene expression profiles and fruit quality
traits could reveal novel candidates for future breeding studies. In
summary, a more comprehensive experimental design that
involves multiple regulatory levels (e.g., transcriptional networks,
posttranscriptional regulation, and epigenetics) which requires
data mining and high-throughput approaches, may improve the
current understanding of fruit quality maintenance.

3. Mechanisms and control of postharvest pathogenesis

Infection by fungal pathogens is another major threat to the glo-
bal food chain supply, and great efforts have been made to explore
economical, effective, and safe measures for controlling posthar-
vest diseases [4]. The application of synthetic fungicides remains
the most efficient method, owing to its convenience and low cost.
However, the frequent and long-term application of fungicides has
resulted in extensive public concerns over food safety and environ-
mental risks. Moreover, the appearance of fungicide-resistant
strains and the fungicide residues in environment are always
resulted from unreasonable fungicide application, whereas this sit-
uation further prompt researchers to make efforts in exploring safe
alternatives from natural sources.

3.1. Identifying potential targets of pathogenicity

The majority of postharvest pathogens are necrotrophic fungi,
which were originally viewed as unsophisticated pathogens that
lack effectors and kill host cells using cell wall-degrading enzymes
(CWDEs) or mycotoxins [7]. However, new experimental evidence
has demonstrated that this is not necessarily the case. For example,
Zhang et al. [55] reported that a receptor-like protein RESPONSIVE-
NESS TO BOTRYTIS POLYGALACTURONASES1 in Arabidopsis could
recognize an endopolygalacturonase secreted by Botrytis cinerea
(B. cinerea), which suggested that receptors and receptor-like pro-
teins on the plasma membranes of host cells recognize secretory
proteins as microbe-associated molecular patterns and, thereby,
modulate the innate immunity of hosts. In addition, recent studies
of small RNAs (sRNAs) [56] have revealed the occurrence of active
communication between plant cells and B. cinerea and have
endowed sRNAs with novel functions as effectors, suggesting that
sRNAs may also function as virulence factors during the interac-
tion. Furthermore, Weiberg et al. [56] reported that certain
B. cinerea sRNAs could migrate into plant cells and use RNA inter-
ference system in hoststo silence specific genes involved in host
cell immunity. However, plants are also able to employ extracellu-
lar vesicles to introduce sRNAs into B. cinerea and subsequently
suppress the expression of genes related to pathogenicity [57].
These new findings further broaden the current understanding of
the pathogenicity of postharvest pathogens, which indicates the
importance of directing future research efforts toward understand-
ing the interactions of fruit pathogens and host cells. Although
some state-of-art techniques (e.g., surface plasmon resonance–tan-
dem mass spectrometry, split-ubiquitin yeast two-hybrid assay,
and single molecular tracking of membrane proteins) can be used
to dissect the infection machinery of fungal pathogens and have
been reportedly used to identify membrane protein interactions,
the mechanisms underlying pathogenicity of major postharvest
pathogens are still far from clear.

Many studies have demonstrated that ROS-generating systems
and related components are involved in the vegetative growth
and virulence of B. cinerea [58,59]. Among themultiple components
of such systems, BcNoxA and BcNoxB are homologs of human cat-
alytic subunit gp91phox and possess both transmembrane and cat-
alytic domains [60,61]. More specifically, BcNoxD interacts
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directly with BcNoxA as a homolog of mammalian adaptor protein
p22phox, whereas another transmembrane protein, BcPls1, functions
as a p22phox homolog in the BcNoxB complex [62]. Importantly,
BcNoxR functions as a core regulator by regulating the catalytic
functions of BcNoxA and BcNoxB [61,62]. However, phenotypic
analyses have shown that deletion mutants of known different
Nox subunits exhibit defects in sclerotia formation, hyphae growth
and morphology, and appressorium-mediated penetration [61,63–
65], thereby reducing pathogenicity. These results suggest that
Nox subunits, in addition to their role in themaintenance of cellular
ROS production and distribution, also contribute to the differentia-
tion and developmental processes of B. cinerea [61,62]. Thus, it is
both feasible and promising to modulate cellular ROS homeostasis
in postharvest pathogens, ultimately suppressing fungal growth
and pathogenicity [2].

Furthermore, the host specificity of Penicillium expansum
(P. expansum) and Penicillium digitatum (P. digitatum) has been
reported to involve genomic variation [66]. For example, the rela-
tively lower genetic variability of P. digitatum, when compared to
that of P. expansum, may explain the specificity of P. digitatum for
citrus fruits [66,67]. However, specific environmental context can
alsoaffectP. expansumvirulence. For example, a pH-responsive tran-
scription factor, PePacC, was reported to regulate virulence and the
synthesis of patulin (PAT), which plays an important role in
responses to environmental pH [68]. In addition, screening of a
transferDNA (T-DNA) insertion library revealed that a secretorypro-
tein, Blistering1, also modulated the virulence of P. expansum [69].

3.2. Biological control of postharvest pathogens

Antagonistic microorganisms are safe and effective for the bio-
logical control of postharvest diseases in fruit [70], and research
over the past two decades has made significant progress in screen-
ing antagonistic microorganisms, elucidating antimicrobial mecha-
nisms, and improving biocontrol efficacy. As a result, many yeast
strains have been documented as effective biocontrol agents
against postharvest diseases [71–73], and such strains are gener-
ally considered superior to other agents as a result of their high
efficacy toward multiple pathogens, Wide applicability in practice,
low nutrient requirements, excellent compatibility with other
measures, and high survival rates under unfavorable conditions
[1]. The modes of action for these organisms include competition
for habitat and nutrition, biofilm formation, and the metabolism
of antifungal substance and volatiles [74]. Among the currently
available isolates, several representative species (e.g., Rhodotorula
glutinis, Cryptococcus laurentii, and Pichia caribbica), have demon-
strated effectiveness against postharvest pathogens [75–80]. How-
ever, future research efforts should focus on improving the
biocontrol efficacy of currently available strains, and the potential
for biocontrol organisms to act synergistically with other effective
measures should be explored.

3.3. Screening for biologically active substances from safe natural
sources

Generally regarded as safe substances and natural substances
(e.g., flavonoids, phenolics, terpenes, and their derivatives) from
natural sources (e.g., plants or microorganisms) have also attrac-
tive extensive research interest. Owing to their natural steric struc-
tures, such substances have the potential to be developed into safe
fresh-keeping agents. Indeed, a variety of exogenous substances
(e.g., cinnamic acid [81], trisodium phosphate [82], methyl thujate
[83], chitosan [84], and natamycin [85]) have been reported to be
capable of improving resistance to fungal pathogens. The efficacies
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of these substances in harvested fruit can partly be attributed to
increases in antioxidant capacity, induced phospholipid signaling,
and cell wall-related defenses. However, impairments to mem-
brane integrity, ROS-induced oxidative stress, and the induction
of autophagic activities in fungal cells also play important roles
[86]. Further studies are needed to elucidate the mechanisms that
underlie the activities of these substances and to determine
whether substances with different targets can be combined to
achieve synergistic action.

3.4. Challenges of studying postharvest fruit virulence factors

The current literature suggests that the pathogenesis strategies
used by most fungal pathogens rely on their capacity to modulate
environmental pH conditions, thereby achieving host cell wall
degradation and relieving oxidative bursts [56,68,69]. Therefore,
currently feasible measures combating the fungal pathogenesis of
postharvest fruit include the investigation of spatiotemporal
changes in the secretome profiles of pathogens when they interact
with their hosts, T-DNA insertion library screening, phenotypic
analysis of deletion mutants, and protein interaction analysis,
among other endeavors. The analysis of either in planta or in vivo
samples during early infection may also provide novel information
about potential virulence factors. In addition to secretory proteins,
small RNAs and mycotoxins are also emerging as potential effec-
tors or virulence factors, and understanding of the specific roles
for these virulence factors may provide new possibilities for unrav-
eling the mechanisms that underlie fruit-pathogen interactions.
Under natural conditions, the capacity of pathogens to infect fruits
is largely dependent on specific environmental conditions, includ-
ing ambient pH, light, temperature, and nutrient availability.
Therefore, such factors could be manipulated to both promote fruit
resistance and suppress pathogenesis.
4. Toxin production and efforts for toxin reduction

4.1. Toxin biosynthesis routes as targets for suppression

Filamentous fungi are well known for their production of sec-
ondary metabolites [87], which are valuable to the pharmaceutical
industry but detrimental to the food industry and to agricultural
production [88,89]. In addition to postharvest fruit decay, fungal
pathogens also produce natural mycotoxins that are frequent con-
taminants in the food chain that threaten human health. PAT,
which is a mycotoxin produced primarily by filamentous fungi, is
a common toxic contaminant of fresh vegetables and fruits, includ-
ing apples, pears, and peaches [90–92].

Given the high cost of eliminating or reducing PAT contamina-
tion in the food chain, it would be both practical and economically
beneficial to elucidate PAT biosynthesis pathways, which could
then be used to directly prevent PAT contamination by blocking
the contaminant at its source. Gene clusters involved in PAT
synthesis have been reported in several filamentous fungi, such
as Aspergillus clavatus [93], Penicillium griseofulvum [94], and
P. expansum [95–97], and the analysis of corresponding
P. expansum knock-out mutants suggests that all 15 genes
(PePatA–PePatO) in a PAT-related gene cluster were necessary for
PAT biosynthesis, whereas the deletion of various genes in the afla-
toxin gene cluster had no significant effect [98,99]. Notably, the
production of PAT by P. expansum was completely inhibited by
knocking out eight genes that encode catalyzing enzymes [99],
thereby indicating that the genes were indispensable for normal
PAT production. After the determination that PePatL, a putative
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C6 transcription factor, was specific to the PAT biosynthesis
pathway [97], further analyses successfully elucidated the PAT
biosynthesis pathway in full. In addition to pathway-specific tran-
scription factors, some global transcriptional factors (e.g., VeA,
VelB, and VelC) are also involved in the regulation of mycotoxin
production, and such proteins represent potential targets for
mycotoxin suppression [99].
4.2. Efforts for reducing toxin production

Progress in the reduction or elimination of PAT from the food
chain is relatively slow, and either persistent cleaning or the
removal of decayed tissues remain the most efficient and econom-
ical measures of PAT reduction [100]. Fermentation with yeast
strains can also reduce PAT content dramatically, usually by
>90%, likely owing to the metabolism or degradation of PAT by
yeast cells [101,102]. However, fermentation could affect the orig-
inal flavor of fruit products, and the situation is made even more
complex by sophisticated storage conditions, pre- and postharvest
treatments, and physical injuries to fruit surfaces. Some natural
substances (e.g., plant-derived phenolic acids) can also reduce
mycotoxin production markedly [103]. For example, p-coumaric
acid has been reported to significantly reduce the accumulation
of the type-A trichothecene mycotoxins T-2 and HT-2 by about
90% and to reduce the accumulation of zearalenone by 48%–77%
[103]. Thus, such substances can clearly be used as both pre- and
postharvest measures for controlling the accumulation of toxins
by Fusarium spp. and other fungal pathogens. Extensive screening
for new sources (e.g., wood and bamboo waste or traditional
Chinese medicinal plants) of natural flavonoids are still required,
and the utilization of such resources might also be useful for reduc-
ing resource waste and environmental pollution.
5. Perspectives

Recent studies have made significant advances in the control of
postharvest fruit quality and food safety (Fig. 2). However, natural
environments are quite different from experimental postharvest
conditions, particularly during transport and storage. Moreover,
most laboratory experiments examine antimicrobial efficacies by
producing wounds on fresh fruit, whereas the efficacies should
be manifested both on the surface and interior of fruits during
commercial applications. Therefore, future studies should empha-
size ① additional screening for substances and microorganisms
with broad anti-microbial spectra and high efficacies, ② the com-
prehensive study of mechanisms and modes of interactions
between fruit, pathogens, and environmental factors, and ③ the
combination of strategies or substances with differing modes of
action in order to achieve synergistic effects.
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Fig. 2. Strategies for dissecting the mechanisms that underlie the quality maintenance and food safety of postharvest fruit.
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