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Modeling and simulation have emerged as an indispensable approach to create numerical experiment
platforms and study engineering systems. However, the increasingly complicated systems that engineers
face today dramatically challenge state-of-the-art modeling and simulation approaches. Such compli-
cated systems, which are composed of not only continuous states but also discrete events, and which con-
tain complex dynamics across multiple timescales, are defined as generalized hybrid systems (GHSs) in
this paper. As a representative GHS, megawatt power electronics (MPE) systems have been largely inte-
grated into the modern power grid, but MPE simulation remains a bottleneck due to its unacceptable
time cost and poor convergence. To address this challenge, this paper proposes the numerical convex lens
approach to achieve state-discretized modeling and simulation of GHSs. This approach transforms
conventional time-discretized passive simulations designed for pure-continuous systems into
state-discretized selective simulations designed for GHSs. When this approach was applied to a largescale
MPE-based renewable energy system, a 1000-fold increase in simulation speed was achieved, in
comparison with existing software. Furthermore, the proposed approach uniquely enables the switching
transient simulation of a largescale megawatt system with high accuracy, compared with experimental
results, and with no convergence concerns. The numerical convex lens approach leads to the highly effi-
cient simulation of intricate GHSs across multiple timescales, and thus significantly extends engineers’
capability to study systems with numerical experiments.

� 2021 THE AUTHORS. Published by Elsevier LTD on behalf of Chinese Academy of Engineering and
Higher Education Press Limited Company. This is an open access article under the CC BY-NC-ND license

(http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

With the rapid development of computational technologies in
recent decades, numerical modeling and simulation have emerged
as an indispensable approach to recreate, explore, decode, and pre-
dict complex dynamics of interest across a wide range of scientific
disciplines and engineering applications [1,2]. However, with the
rapid development of science, technology, and modern society,
the dynamic behavior of the physical systems of interest to
humanity is becoming increasingly complicated, such that these
systems can no longer be simply regarded as pure-continuous sys-
tems [3,4]. The emergence of such complicated systems dramati-
cally challenges state-of-the-art modeling and simulation
approaches.
Fig. 1 provides some examples. In ecosystems (Fig. 1(a)), events
such as crustal movement, volcanic eruption, and glacial melting
fundamentally change the evolution mode of the system, particu-
larly when taking into account climate change due to recent
human activities [5,6]. Another example is the spread and control
of coronavirus disease 2019 (COVID-19) as shown in Fig. 1(b), in
which control measures such as travel bans and city shutdowns
changed from time to time according to the spread of infection,
and in turn governed the spread pattern of the disease [7,8]. Engi-
neering examples include chemical processing plants, in which
continuous states such as temperature interact with discrete
events such as phase transition [9]. In robot control, foot impacting
and knee locking lead to mode transitions [10]. Clearly, the above
systems cannot simply be modeled as pure-continuous systems.
They show a hybrid nature involving the coexistence of both con-
tinuous states and discrete events.

Another engineering example that we focus on in this paper is
that of power electronics systems (Fig. 1(c)). Power electronics
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Fig. 1. Typical examples of generalized hybrid systems (GHSs) and their multi-timescale nature. (a) Discrete events in an ecosystem fundamentally change the evolution
mode (e.g., biodiversity). The timescale of these events is relatively very small. (b) Control measures for COVID-19 as discrete events change the infection modes of the virus
as continuous states. Peak mobility may occur during the short period of the discrete event (e.g., after the announcement and before its execution). ‘‘Week/div” refers to the
unit of the x-axis is one week per grid. (c) In power converters, switching events of the semiconductor switches control the transfer of energy flow as desired. The
nanosecond-level switching transient causes an abrupt change of electromagnetic energy and, sometimes, system failure, especially in megawatt power electronics (MPE)
systems.
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have been widely used in nearly all electric energy conversion
fields [11]. In particular, given the increasing concerns about cli-
mate change and the energy crisis, megawatt power electronics
(MPE) systems act as indispensable interfaces to connect renew-
able sources with the utility grid and end users [12]. In power elec-
tronics converters, the originally continuous voltage and current
are ‘‘discretized” through the introduction of power semiconductor
switches [13]. Hence, the system demonstrates the coexistence of
both continuous states and discrete events, and can thus be
defined as a hybrid system.

The term ‘‘hybrid system” originated from a special workshop
that was held in 1986 [14], and soon became an emerging topic
[4,15,16]. The early defined hybrid system mainly involved contin-
uous states controlled by discrete signals [17]. Thus far, the
1767
concept has been enormously expanded to include the mixing of
and interaction between continuous states and discrete events
[15]. However, the abovementioned definitions and discussions
still cannot depict the full complexity of the hybrid nature of engi-
neering systems today. On many occasions, discrete events cannot
occur instantaneously. It is known that time is the measurement of
existence; therefore, there must be a time interval during the
‘‘event,” although it is often too fast to be perceived. From a phys-
ical perspective, a discrete event still has a continuous transient
with a small timescale; this results in a prominent multi-
timescale feature in generalized hybrid systems (GHSs) (Fig. 1).
The transients of discrete events can have great significance, espe-
cially when the physical energy during the short transient of an
event is large [18]. A typical example is the switching transient
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in MPE (Fig. 1(c)). Because the power level is high, the ‘‘sudden
change” and ‘‘imbalance” in large electromagnetic energy is highly
likely to cause system faults [19–21].

These switching transients cannot be described within the con-
ventional concept of a hybrid system and the ideal concept of a dis-
crete event without any physical process. Therefore, in this paper,
we introduce and define the concept of a GHS in order to describe a
more general and complete context of the hybrid nature of physi-
cal systems. We define a GHS as follows: A GHS is a multi-
timescale dynamic system composed of both time-driven continu-
ous dynamics and event-driven discrete dynamics, where large-
timescale continuous dynamics embody discrete processes, and
discrete processes embody small-timescale continuous transients.

In GHSs, continuous states and discrete events as two distinct
types of variables co-exist and interact with each other, collabora-
tively determining the system behavior. Meanwhile, two types of
continuous states of different timescales simultaneously exist within
the system, resulting in a prominent multi-timescale feature that
must be considered in high-power applications. Such GHS are not
only commonly found in the physical world, but also regarded as a
more general form of the dynamic system. Subsequently, a challenge
of such a complicated dynamic behavior—which is of equal signifi-
cance to many engineers in various applications—is the effective
and efficient modeling and simulation of GHSs.

The remainder of this paper is organized as follows: The chal-
lenges of modeling and simulating GHSs using conventional
approaches are summarized in Section 2. A so-called ‘‘numerical
convex lens” designed based on the features of a GHS in order to
achieve state-discretized modeling and simulation is then pro-
posed in Section 3 to address these challenges. The proposed
approach has general value for different GHSs in various engineer-
ing applications. More specifically, we examine how to model and
simulate an MPE system as a representative GHS. Applications of
the proposed approach in MPE systems are demonstrated in Sec-
tion 4. Finally, conclusions are drawn in Section 5.
2. Challenges of modeling and simulating GHSs

2.1. Modeling and simulation challenges for general GHSs

In current modeling and simulation approaches [22], time is
taken as the independent variable to build the system model and
determine the corresponding solver; this is called the time-
discretized approach. This approach is a natural idea: Since time
is the measurement of existence, to study a dynamic system is to
explore the pattern of the system dynamics based on time. How-
ever, time flows continuously and uniformly without qualitative
change. In contrast, the variables of state in GHSs can not only
accumulate, but also change qualitatively. In other words, when
a certain condition is fulfilled, the system will switch to another
mode and continue its accumulation under a totally different pat-
tern. In this situation, numerical experiments based on time-
discretization encounter a significant challenge: The discretized
timepoints may not be the exact time when an event occurs.
Therefore, such experiments are incapable of evaluating the event’s
impact on the system dynamics accurately. As a consequence, an
extremely small timestep must be adopted in order to accurately
locate the discrete event and solve the corresponding small-
timescale transient during the event, which results in dramatically
low efficiency, or even computational failure.
2.2. Challenges of modeling and simulation for MPE systems

The subsection above provided a general discussion of the chal-
lenges encountered when modeling and simulating GHSs. We now
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discuss MPE systems in detail in order to demonstrate more concrete
examples. The modeling of MPE systems can be basically categorized
into three types according to different levels of semiconductormodels:
average models [23,24], ideal models [25–27], and physical models
[28–30]. The average model eliminates (averages) the switching
actions within one or several switching cycles and therefore trans-
forms the GHS into a pure-continuous system. Thus, the analyses
and designs of the system—especially those of the closed-loop con-
trols—can be well-supported with available mathematical tools such
as the transfer function and the bode plot [31]. Within the context
of GHSs, the averagemodel only focuses on the large-timescale contin-
uous dynamics. The impact of discrete events is ignored, let alone
switching transients within the events. When considering the switch-
ing events, the ideal switch model is widely used in many system-
level simulation tools [26]. This model considers the ‘‘large-
timescale continuous–discrete” process, but still ignores the switching
transients of switching events.

Existing models of switching transients are complicated equiv-
alent circuits based on semiconductor physics, as shown in Fig. 2
[28]. Such physical models abandon the assumption of discrete
events and describe the semiconductor switches as small-
timescale continuous systems instead. The GHS is then trans-
formed again into a pure-continuous system, but this time into a
small-timescale system that considers the switching transients.
Theoretically, physical models accurately describe small-
timescale transients. Practically, these physical models have also
been implemented in device-level commercial tools for power
electronics [29,32] and have been used in studies with a small
number of switches. Unfortunately, it is hardly possible to use
them in MPE applications, in which typically hundreds or thou-
sands of semiconductor devices exist and interact with each other
[33,34]. An example is the simulation of a 24-switch 50 kVA solid-
state transformer with physical switch models tested in Ref. [35];
although it is just a medium-scale circuit, the simulation already
takes about 9 h and frequently encounters divergence failures dur-
ing numerical studies. It is scarcely possible to simulate larger con-
verters in MPE simulations with physical models within an
acceptable time period while ensuring a convergent result.

To sum up, it is still challenging to model the integral
‘‘continuous–discrete–continuous” process in MPE. Existing
approaches are still based on time as the variable to develop the
models; therefore, only a certain aspect (i.e., continuous/discrete)
and certain timescales can be focused on.

The solving of MPE systems as GHSs is equally challenging due to
the enormous number of switching events. Existing approaches such
as state-space methods [26,27] and nodal analysis methods [36],
which are equipped with various fixed- or variable-step integration
methods [37], still fall under the category of time-discretized solvers.
Such methods are incapable of automatically matching discretized
points with the occurrence of discrete events and, furthermore, with
the small-timescale transients within the events, which are funda-
mental features introduced by GHSs. Iterations are frequently neces-
sary during the simulation in order to locate the discrete event, and
small timesteps must be adopted to solve the transients and over-
come convergence issues, as shown in Fig. 3. For MPE systems with
hundreds or thousands of semiconductor switches, the switching
events of different switches are typically asynchronous. Even for a
relatively low switching frequency, such as 1 kHz, 1000 switches in
the simulated system can cause events to occur 1 million times per
second. This results in low simulation speed and poor convergence.
3. A numerical convex lens for state-discretized modeling and
simulation

To address the above challenges of modeling and simulation for
GHSs, we propose the concept of state-discretized modeling and



Fig. 2. Existing modeling approaches for MPE systems include the average model, ideal model, and physical model. Each model focuses on one aspect of the ‘‘continuous–
discrete–continuous” process of the GHS, and the models vary from large to small timescales. For the average model, D is the duty cycle, and L, C, and R are the inductance,
capacitance, and resistance in a buck converter, respectively. For the physical model, Cgs, Cgd, and Cdsj are the metal-oxide-semiconductor capacitances, Imult, Icss, and Ibss are
the equivalent current sources in insulate gate bipolar transistor (IGBT), Ccer and Ceb are the equivalent capacitances in IGBT, Rb is the equivalent resistance connected to the
anode, and Imos is the metal-oxide-semiconductor current.
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simulation. The general idea involves role-swapping the variable of
time and the variable of state. In pure-continuous systems, time
can be a sufficient variable to perform modeling and simulation.
However, in GHSs, time is only a passive variable. Due to the intro-
duction of discrete events and the corresponding small-timescale
transients within the events, system states become a more domi-
nating variable, which not only embodies the system dynamics,
but also triggers the occurrence of events. By swapping the roles
of time and state, a state-discretized solver can potentially merge
the discretization of the simulation with the quantitative change
of the GHS (i.e., the occurrence of the events), and is therefore cap-
able of modeling the integral process of multiple timescales while
maximizing the simulation efficiency.

In this section, in order to implement the concept of state-
discretized modeling and simulation, we receive inspiration from
optics and propose a novel method called the ‘‘numerical convex
lens.” Although they are considered to be two separate fields,
optics and computational science share the same target: to per-
form observation, either with light or with computations. In optical
experiments, if a certain part of an object cannot be clearly seen, a
convex lens can be used to magnify it in detail. The degree to which
the convex lens magnifies the observed object depends not only on
Fig. 3. Existing time-discretized solvers for MPE systems. Discretized points in a
time-discretized solver can be mismatched with the occurrence of the discrete
events. Iterative calculations are necessary to locate the events, and small timesteps
must be adopted to simulate switching transients without convergence problems.
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the lens itself, but also on the incident rays from the object, such as
their light frequency and intensity. This analogy inspired us to
compare the system variables in numerical experiments (including
continuous states and discrete events) to light rays and endow
them with different ‘‘frequency” and ‘‘intensity,” so that they will
have different refractive indexes through the numerical convex
lens (i.e., the solver) and, therefore, different levels of magnifica-
tion. In this way, we can pick out variables that have undergone
qualitative changes (which means that their magnified images
are clear enough to be observed) and let the clear imaging trigger
the numerical experiment. This leads to a ‘‘selective” numerical
observation, where we swap the roles of state and time. To be
specific, with the help of the convex lens, the discretization of
states (i.e., the imaging process) triggers the solving of the system,
and the discretization of time is determined accordingly. In this
way, we can efficiently match the discretized solving points with
the qualitative changes of system states without unnecessary cal-
culations, which enables accurate and fast numerical experiments.
3.1. A fractal model of the GHS with the numerical convex lens

To perform numerical observation, the first task is numerical
modeling. With the assistance of the numerical convex lens, we
can establish a ‘‘fractal model” for GHSs (Fig. 4). In the fractal
model, system dynamics are decoupled into different groups
according to their differences in timescale, which are defined as
different dynamic planes. The dynamics in the fast planes are the
transient processes of discrete events in slow planes. In each plane,
system dynamics can be modeled with the hybrid automaton
model [25,38]. When observing the fractal model using the
numerical convex lens, the system variables will be imaged
through the lens. This process is called ‘‘state discretization.” The
clear image triggers the numerical solving. In particular, when a
discrete event occurs, the numerical convex lens will magnify it
into a new dynamic plane and switch the numerical experiment
into this plane, where the small-timescale behavior of the system
is described as a new ‘‘small hybrid system.” When this discrete
event ends, the numerical experiment will be switched back to



Fig. 5. The hybrid automaton model for a single dynamic plane. The model
comprises four elements: variable, mode, guard, and event. A dynamic plane
contains a set of all possible dynamic modes and guard conditions.
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the previous plane. In this way, the dynamics of different time-
scales can be decoupled, so that the solving speed and convergence
of the numerical experiment can be simultaneously improved with
high accuracy. The above idea is very similar to the idea of fractals
in geometry: Research on fractal geometry has revealed that when
observing the geometric features of a system on different space-
scales, it is usually found that parts exhibit an amazing similarity
to the whole; likewise, in numerical experiments, with the help
of the numerical convex lens, we can observe the system dynamics
in different timescales on different dynamic planes, and the
dynamics on different planes can be similarly modeled as hybrid
systems. Therefore, we call this numerical model of multi-
timescale GHSs the ‘‘fractal model.”

In the fractal model, system dynamics are decoupled into differ-
ent groups according to their differences in timescale and defined
as different dynamic planes. For example, as shown in Fig. 4, the
system dynamics are divided into three groups and defined as
three different dynamic planes: ① the slow dynamic plane con-
taining second- to millisecond-scale dynamics;② the fast dynamic
plane containing microsecond- to nanosecond-scale dynamics; and
③ the ultra-fast dynamic plane containing picosecond- to
femtosecond-scale dynamics. To observe the details in a discrete
event in the slower plane, the numerical convex lens can be used
to magnify the discrete event into a faster plane, which represents
a small hybrid system. In other words, the dynamics in the fast
planes are the switching transient of discrete events in the slow
planes. If necessary, we can also magnify the switching transients
in this small hybrid system into a dynamic plane with a ‘‘smaller
timescale.” By repeating the above process, we can use the numeri-
cal convex lens to observe the dynamic behavior of the generalized
dynamic system in different timescales on different dynamic
planes. In this way, dynamics with different timescales can be dis-
tinguished, thus avoiding the need to consider unnecessary
dynamic behaviors.

In each plane, the hybrid system can be modeled as a hybrid
automaton [38], as illustrated in Fig. 5. The hybrid automaton
model comprises the following elements:

(1) Variables
① Time variable t.
② State variables: A set of variables inside the system that

can describe the dynamic behavior of the system completely and
without redundancy.
Fig. 4. Establishing the fractal model of GHSs based on the numerical convex lens.
GHSs exhibit prominent multi-timescale features. Based on the numerical convex
lens, we can decouple the system dynamics into different groups and define them
as different dynamic planes. Discrete events in each plane can be magnified and
modeled as a new dynamic plane by the numerical convex lens.
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� Continuous state variables x: State variables that vary
continuously with time.

� Discrete state variables d: State variables that vary dis-
continuously with time.

③ Input variables u: Variables that are outside the system but
can influence the dynamic behavior inside the system. Input vari-
ables can be continuous or discrete.

(2) Mode: The operating pattern of systems dynamics. A combi-
nation D of discrete variables dictates a mode. In different modes,
the dynamic patterns are different, which means that the corre-
sponding mathematical models are different. For example, in
Fig. 5, for the kth mode mk, we can describe the system mode as
the following ordinary differential equation (ODE):

_x ¼ f mk
x; u; tð Þ ð1Þ

(3) Guard: A condition that determines whether a transition
from one mode to another will happen. Usually, the guard condi-
tion is a combinational logic of several inequalities. Each inequality
has the following form:

c > v th ð2Þ
where c is called the characteristic variable and can be expressed by
state variables, and vth is the corresponding threshold value. When
Eq. (2) holds true, system states will remain in the present mode.
When the characteristic variable crosses the threshold, it will cause
a change of the inequality’s Boolean value, and thus may trigger a
mode transition of the hybrid system.

(4) Event: The mode transition of the hybrid system. An event
happens when the guard condition of the present mode changes
its Boolean value.

A dynamic plane contains a set of all possible dynamic modes
and guard conditions. When a discrete event occurs and its transi-
tion details are of concern, the numerical convex lens can be uti-
lized to magnify it and transfer the numerical experiment to the
faster plane. When the transition process ends, an ending event
will be triggered, and the numerical experiment can be transferred
back to the slower plane.

3.2. State-discretized solving of a GHS with the numerical convex lens

This section introduces how to solve the fractal model of GHSs.
According to the principles of the numerical convex lens (Fig. 6),



Fig. 6. Observing the fractal model of GHSs through the numerical convex lens.
When solving the fractal model, the color (frequency) of the continuous states and
the light intensity of the discrete events reflect the degree of attention that should
be paid in the numerical experiment. They exhibit different refractive indices when
they pass through the numerical convex lens, such that variables with a clear image,
which are the variables that undergo qualitative changes, can be picked out to
spontaneously trigger the numerical experiment. yblue and yred are the image
heights of the blue and red light, respectively, and fblue and fred are the focal lengths
of the blue and red light, respectively.
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the system variables will separate into different light rays; hence,
clearly imaged variables that have undergone qualitative changes
will be picked out and will spontaneously trigger numerical experi-
ments. In general, to solve a GHS composed of continuous states
and discrete events, different imaging principles are used for these
two categories of elements with different properties. Below are
detailed descriptions on how to solve GHSs with the numerical
convex lens.

Let u0 be the object distance, y0 be the object height, and y be
the image height in Fig. 6. Let us assume that, in order to be cap-
tured by human eyes, the height of the image should be more than
the resolution threshold ylim, that is,

y > ylim ð3Þ
According to the principle of image formation, the image height

of a certain color y can be obtained as follows:

y ¼ y0
f

f � u0
ð4Þ

where f is the focal length of the lens for the system variable.
According to the lensmaker’s equation, which describes the rela-
tionship between the focal length f, the refractive index n, and the
equivalent radius of curvature of the lens R, f can be given as
follows:

f ¼ R
n� 1

ð5Þ

Therefore, by rearranging Eqs. (3–5), we know that, in order for
the image of a variable to be clearly seen, the following criterion
must be satisfied:

n > 1þ R
u0

1� y0
ylim

� �
ð6Þ

Here, for simplicity, we define a new parameter b to represent
the constant geometric parameters in the lens system, as follows:

b ¼ 1þ R
u0

1� y0
ylim

� �
ð7Þ

Then the numerical criteria for clear image formation can be
rewritten as
1771
n > b ð8Þ
The remaining question becomes: What is the definition of the

refractive index n for system variables? As was mentioned in the
introduction of this paper, a GHS comprises two types of system vari-
ables: continuous states and discrete events. Since these two ele-
ments have different properties, their imaging principles in the
numerical convex lens system are different. In the numerical system,
we compare them to rays of light and endow continuous states with
different colors (frequencies) and discrete events with different
intensities. According to the refraction principle of the numerical
convex lens, lights with different colors or intensities will have differ-
ent refractive indices and different focal lengths, and their images
will naturally be separated in space and have different sizes.

For continuous states, taking a single-variable case as an exam-
ple, we compare it to a beam of monochromatic light with variable
color, whose color at a certain moment corresponds to a frequency
that is called the ‘‘numerical angular frequency.” Here, we define
the numerical angular frequency as the measurement error in
numerical experiments. At present, there have been many algo-
rithms designed for pure-continuous systems that can provide
the local error estimate at each timestep, such as the widely used
ode45 algorithm [37] and others [39,40]. Similar to the Cauchy dis-
persion formula in optics, the refractive index of the numerical
convex lens for continuous states Dn1 has the following nonlinear
relationship with the numerical angular frequency x:

Dn1ðxÞ ¼ x2

b2 ð9Þ

where b is the ‘‘dispersion coefficient” of the lens. The smaller b is,
the stronger the dispersion effect of the lens will be. Thus, b is a
property of the lens that reflects the error tolerance of continuous
states. The relationship functionDn1 (x) represents the observation
property of the numerical convex lens for continuous states.

For discrete events, once again taking a single-variable case as
an example, we compare it to a beam of light with variable inten-
sity, whose intensity I at a certain moment reflects the weight of
the event characteristic variable. Here, based on Eq. (2), we define
the intensity as

I ¼ cbase
1

c � v thj j ð10Þ

where cbase is the base value for the characteristic variable c. Eq.
(10) shows that the closer the characteristic variable of a discrete
event is to the threshold, the greater the weight of the discrete
event will be, and the higher the priority it should be given in
numerical experiments. Real lens materials can have nonlinearity
and exhibit different refractive indexes for light with different
intensities, in what is called the Kerr effect in optics. Inspired by this
phenomenon, we endow the numerical convex lens with a similar
effect and define the relationship between the refractive index
Dn2 and the light intensity as follows:

Dn2ðIÞ ¼ KI ð11Þ
where K is the Kerr coefficient of the lens. The larger K is, the stron-
ger the Kerr effect of the lens will be. Thus, K reflects another prop-
erty of the lens, which represents the error tolerance of the solving
of discrete events.

Taking the image formation principle of both continuous states
and discrete events into account, we can obtain the complete
expression of the refractive index, as follows:

nðx; IÞ ¼ 1þ Dn1 xð Þ þ Dn2 Ið Þ ¼ 1þx2

b2 þ KI ð12Þ

For continuous states, we consider them to be variable-frequency
and constant-intensity, and let KI << 1; for discrete events, we
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consider them to be variable-intensity and constant-frequency, and

let x2=b2
<< 1. Based on the numerical criteria for clear image for-

mation given by Eq. (8) and the complete expression of the refractive
index given by Eq. (12), the fractal model can be solved according to
the formed image of the system variables in the generalized
hybrid system. Since the numerical convex lens can have both
the dispersion effect and the Kerr effect, it has the ability to effi-
ciently solve continuous states and discrete events at the same
time.

3.3. Modeling and solving MPE systems

To apply the above-described general methods to the simula-
tion of MPE systems, this subsection discusses detailed interpreta-
tions of all the concepts in the numerical convex lens (including
the fractal model and the solving algorithm) based on a power
electronics context. To establish the fractal model shown in Fig. 4
for MPE systems, we divide the system dynamics into two dynamic
planes according to their timescales. The first-level dynamic plane
describes the large-timescale system-level dynamics, where the
switching-on and switching-off of the power switches are consid-
ered as discrete events. When the switch is in its steady state (on-
state or off-state, modeled as small resistance or open-circuit,
respectively), the system can be described with the state equation:

_x tð Þ ¼ f sw x tð Þ;u tð Þ; tð Þ ð13Þ
where x is the state vector, and each element of x is an independent
state variable, namely the voltage of a capacitor and the current of
an inductor; and u is the input vector, and each element of u is an
input of the system, such as a power source. Moreover, it is shown
in Eq. (13) that the state equation fsw is dependent on sw, a switch-
ing function vector where each element is the switching state (on or
off) of a switch.

For mode transition, namely, the switching event, the model
must define the guard for each switching event, as Eq. (2) suggests.
Here, we list the main guard conditions for switching events.

For a diode switch, the guard condition for its turn-on is when
its voltage where vD is greater than zero:

c1 ¼ vD > v th1 ¼ 0 ð14Þ
The guard condition for a diode switch’s turn-off is when its

current iD is less than zero:

c2 ¼ �iD > v th2 ¼ 0 ð15Þ
Fig. 7. PAT model of an IGBT-diode switching pair. The complicated physical mechanism
mechanisms are considered in each stage of the switching transient, as shown in the rig
with colors. BJT refers to the bipolar junction transistor. Ls is the stray inductor and vLs i
across it. VGon, VGoff, RGon, and RGoff are the gate-drive voltages and resistances. RGint is the
IGBT and vcg, vge, and vce are the voltages across them. DS is the diode, vD is the voltage acr
Rload are the inductance and resistance of the load, and IL is the current through the load.
maximum current of the IGBT during the turn-on transient. t0 � t6 are the time instant
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The guard condition for an active switch (e.g., an insulated gate
bipolar transistor, or IGBT) is determined by the controller of the
system. In power electronics, pulse-width modulation (PWM) con-
trol is usually used to determine the switching signals [41], where
switching events are triggered when a reference waveform vref
(which depends on system states) crosses a carrier waveform vcar
(a regular signal). Thus, the guard condition of an active switch is

c3 ¼ v ref � vcar > v th3 ¼ 0 ð16Þ

where vref and vcar are the values of the reference and the carrier,
respectively.

Thus far, the first-level dynamic plane in the fractal model has
been established. To describe the transient of a discrete event in
the first-level dynamic plane—namely, the switching transient of
the semiconductor device—it is necessary to build a hybrid model
of the second-level dynamic plane. Here, in order to model the
switching behavior, we use the piecewise analytical transient
(PAT) modeling method as described in Ref. [20]. In the PAT model,
the switching transient is divided into different stages according to
the physical mechanisms inside the semiconductor device (Fig. 7).
Each stage corresponds to one mode (one circle in Fig. 5) in the
second-level dynamic plane.

Now that we have established the fractal model for MPE sys-
tems, with level-one and level-two dynamic planes, the next target
is to solve the fractal model with the numerical convex lens. Fol-
lowing the principles of the numerical convex lens, our tasks
include: ① to determine the numerical angular frequency for the
continuous state variables; ② to determine the numerical light
intensity for the discrete event variables; and ③ to solve the sys-
tem following the imaging principles. Below are descriptions of
how these concepts are defined in MPE systems.

First, as defined above, the numerical angular frequency is the
numerical measurement error and is dependent on the integration
algorithm. For non-stiff circuits of MPE systems, we can use the
flexible adaptive discrete state (FA-DS) integration algorithm to
calculate the numerical solution of the continuous states [39].
According to the algorithm, the numerical angular frequency is
defined as follows:

xðx; tÞ ¼ 1
xbase

xpþ1

ðpþ 1Þ!Dt
pþ1

����
���� ð17Þ

where x is one of the state variables (the inductor current of the
capacitor voltage), xbase is the base value of x, p is the order of the
s within semiconductors are decoupled, as shown in the left circuit. Only dominant
ht waveform. The relationship between the mechanisms and the stages are marked
s the voltage across it. CDC is the direct current-bus capacitor and VDC is the voltage
inner resistance of the gate node. Cgc, Cge, and Cce are the junction capacitances of the
oss it, irr is the reverse recovery current of it, and iD is the current through it. Lload and
ic is the current through the IGBT. ig is the gate-dive current of the IGBT. Icmax is the
s of each stage.
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integration algorithm, xp+1 denotes the (p + 1)th-order derivatives of
x, and Dt denotes how long the numerical integration lasts since the
last calculation timepoint.

Based on the above definitions, x(x, t) represents the estimated
numerical error of the integration algorithm for state variable x at
timepoint t, thus offering what the numerical convex lens requires
for the imaging of continuous states: namely, the numerical mea-
surement error (which denotes how much this state variable mat-
ters and whether we need to update the system states at this
timepoint).

For the discrete events, the definition of the numerical light
intensity of each discrete event has been given in Eq. (10). We
define the base value for the discrete event solving cbase as the
maximum value of all the threshold values defined in the fractal
model—that is, Eqs. (14–16)—and the absolute tolerance as a set-
ting of the algorithm.

We can now solve the system following the image formation
of the numerical convex lens, according to Eqs. (8–12) and Eq.
(17). There are three parameters to control the simulation accu-
racy—that is, b, K, and b—which control the error tolerances of
the continuous states, the discrete events, and the overall sim-
ulation, respectively. Once a clear imaging triggers a new calcu-
lation, we can use the discrete state algorithm to calculate the
continuous states, or use the secant method [39] to locate the
time of occurrence of discrete events. Furthermore, discrete
events will be magnified into a second-level dynamic plane to
simulate the switching transients.
4. Applications and validations in MPE systems

This section presents applications of the state-discretized
approach in MPE systems. A 2 MW renewable energy system is
taken as an example to test and verify the proposed modeling
and simulation approach. The structure in Fig. 8 illustrates one of
the operational modes of the system, with renewable energy and
storage. The main component is a four-port electric energy router
(EER) [34] that connects the utility grid, the renewables, the energy
storage, and various types of loads.

The topology of the EER is shown in Fig. 9. In the studied sys-
tem, one EER contains 576 switching devices; in theory, this means
that the system has 2576 possible operating modes in total. In
Fig. 8. Structure of the studied MPE system. IT refers to information technology, PV refe
EER: electric energy router.
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addition, each mode transition is accompanied by a nanosecond-
level electromagnetic transient. This makes the system unsolvable
with any time-discretized approaches and tools currently avail-
able, unless the mathematical model is greatly simplified, which
would result in low accuracy. Even with simplifications from ignor-
ing the switching transients of the discrete events, the simulation
still takes much too long (up to hours or days). Consequently,
due to huge challenges in numerical modeling and solving, the
design and analysis of such a system have mainly relied on experi-
ence or simplification in the past.

To better elaborate the concept of the fractal model in the stud-
ied case, we show the mathematical form of the fractal model here,
taking one high-voltage direct current (HVDC) submodule (Fig. 9)
in the EER as an example. For the upper dynamic plane, if we define
mode U1 as (SHD1 = SHD4 = 1, SHD2 = SHD3 = 0), and mode U2 as
(SHD1 = SHD4 = 1, SHD2 = SHD3 = 0), we can derive the upper-level
state equations within the fractal model as follows:

d
dt

x ¼ d
dt

iLHD
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� �
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� 2Ron
LHD

� 1
LHD

1
CHD

0

" #
iLHD
vCHD

� �
þ

1
LHD

0

" #
v in

mode U1

ð18Þ

d
dt
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where SHD is the switching signal of each switch as shown in Fig. 9,
x is the vector of the state variables, iLHD is the current through LHD,
vCHD is the voltage across CHD, Ron is the on-state resistance of the
metal-oxide-semicondutor field-effecct transistor (MOSFET), and
vin is the input voltage at the far left of the HVDC SM.

For the transition from U2 to U1, the small-timescale dynamic
plane is similarly divided into different modes, as illustrated in
Fig. 7. If we define the stage between t0 and t1 as mode L1 and
the stage between t1 and t2 as mode L2, we obtain the fractal model
for the lower level, as follows:

d
dt

x ¼ d
dt
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vCHD
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LHD
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CHD
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þ
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ð20Þ
rs to photovoltaic, DC refers to direct current and AC refers to alternating current.



Fig. 9. Topology of one EER. It contains a 10 kV high-voltage alternating current (HVAC) port, a 10 kV high-voltage direct current (HVDC) port, a ±375 V low-voltage direct
current (LVDC) port and a 380 V low-voltage alternating current (LVAC) port. A 20 kHz high-frequency alternating current (HF-AC) link is used as the AC bus inside the EER.
One EER contains 87 submodules (SMs) and 72 high-frequency transformers (HFTs). SHD1, SHD2, SHD3, and SHD4 are the switching signals of the SiC MOSFETs in a HVDC SM.
LHD and CHD are the inductance and capacitance in a HVDC SM.
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Fig. 10. Numerical experiments on the 2 MW system. (a) Diagram of the prototype and internal structure of the EER, and a comparison between the principles of time-
discretization and state-discretization methods in a numerical experiment of power electronic hybrid systems. Comparisons of (b) simulated results and (c) simulated speed
between the numerical convex lens and commercial simulation software based on time-discretization. (d) Comparison of switching-current simulated results between the
numerical convex lens and commercial simulation software that uses an ideal switch model. ns/div: nanosecond per division; ls/div: microsecond per division;
ms: millisecond per division.
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Fig. 11. Simulated results of high-frequency oscillation with (a) a conventional gate
driver and (b) an active gate driver.
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where Ls is the stray inductance as in Fig. 7, and vSHD2, vSHD3, iSHD1,
and iSHD4 are the equivalent voltage and current sources of the
MOSFETs.

The expressions of vSHD2, vSHD3, vSHD1, and vSHD4 are given by the
PAT model [20]. It can be found that the model for the upper-level
dynamics—that is, Eqs. (18) and (19)—and the model for the lower-
level transients—that is, Eqs. (20) and (21)—share very similar
forms. This finding proves the concept of the fractal model; that
is, when we zoom into the smaller timescale (Fig. 4, the transients
of the discrete events), the model shows similarity to the larger-
timescale model. These different timescales are all described by
hybrid models, with multiple modes and states and algebraic equa-
tions in each mode.

Based on the fractal model above, a numerical platform can be
built for this EER system. A 0.2 s load-change dynamic of one EER is
tested. Compared with the time-discretization approach, the state-
discretization approach enabled by the numerical convex lens can
dramatically improve the calculation efficiency (Fig. 10(a)). A pro-
fessional simulation software in the field of power electronics com-
mercial is chosen as the benchmark. All the tests are performed on
the same personal computer, with a 4.20 GHz Intel Core i7-7700K
CPU and 32 GB of memory. When simulating a 200 ms dynamic
process (where switching transients are ignored because no exist-
ing tools can solve the system otherwise), the numerical convex
lens achieves more than 1000 times acceleration at the same accu-
racy, shortening the simulation time from nearly 4 h to around 10 s
(Figs. 10(b) and (c)). This result is achieved on an ordinary personal
computer and does not involve any acceleration technology by
multi-core computation in parallel. Furthermore, the numerical
convex lens takes advantage of the fractal model to solve the
switching transient of discrete events—that is, the nanosecond-
level electromagnetic transient—thus attaining high consistency
with experimental results (the simulation time with the proposed
approach is then 608 s for a 0.2 s simulation when considering the
switching transients of all the semiconductor switches). To date, no
other commercial simulation software has such capability; other
software can only approximately regard the switching events as
instantaneous (Fig. 10(d)). The accuracy and high speed of the
numerical convex lens enables a groundbreaking revolution in
the design and development of the MPE system: All designers will
be able to verify its design efficiently and accurately, solve multi-
timescale dynamics, and perform virtual control tests at low hard-
ware cost (i.e., an ordinary personal computer) and low time cost
(seconds or minutes). With the numerical convex lens, designers
can conduct the previously unimaginable and time-consuming
simulation of system dynamics, and can even achieve automatic
design and iteration by introducing artificial intelligent algorithms.

Another scenario of the EER is simulated to demonstrate the
capability of the proposed numerical convex lens for addressing
dynamic interactions across multiple timescales. In a real EER pro-
ject, a high-frequency oscillation of 2 MHz is observed across the
AC link [42]. Due to the topology shown in Fig. 10, this 2 MHz oscil-
lation has a large influence on the stable operation of the system. It
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generates significant electromagnetic interference (EMI) and
causes malfunctioning of the control system. Such high-
frequency behavior is highly dependent on the small-timescale
switching transients, while also having a large influence on the
overall performance of the system. Therefore, this scenario pro-
vides typical evidence of the tight connection between multiple
timescales in MPE systems [43]. With the numerical platform, we
study the high-frequency oscillation with both a conventional gate
driver (Fig. 11(a)) and an active gate driver (details of the design of
the active driver can be found in Ref. [43]) (Fig. 11(b)). The simu-
lated results show that with the active gate driver, which actively
controls the voltage slew rate of the switching transient, it is lar-
gely possible to mitigate the high-frequency oscillations and there-
fore the corresponding EMI.
5. Conclusions

Although time-discretized simulation approaches have been
well-developed for pure-continuous systems, the current bottle-
neck in the development of engineering systems lies in how to
address emerging largescale complex systems, defined as GHSs,
which involve both continuous states and discrete events across
multiple time scales. To resolve this bottleneck, this paper demon-
strated the numerical convex lens method to implement state-
discretized modeling and simulation of GHSs. In the proposed
approach, the calculated point is triggered by the imaging of a vir-
tual convex lens, where the imaging process represents the dis-
cretization of the system states. Therefore, the discretized points
can be naturally matched with the discrete events within GHSs.

The proposed approach can be universally used for all GHSs
among various engineering fields. In this work, we applied and
verified the proposed approach in MPE systems, which are increas-
ingly being integrated in modern power grids during the transition
toward a more sustainable energy system. A 1000-fold speedup
was achieved using the proposed approach. Furthermore, this
approach has the unique capability to simulate nanosecond-level
switching transients in such largescale systems without conver-
gence problems. This approach will advance the computing capa-
bility and extend the limitations of numerical prototypes in
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engineering systems, such that simulations of complicated GHSs
are no longer a bottleneck.
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