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a b s t r a c t

The sixth generation (6G) mobile networks will reshape the world by offering instant, efficient, and intel-
ligent hyper-connectivity, as envisioned by the previously proposed Ubiquitous-X 6G networks. Such
hyper-massive and global connectivity will introduce tremendous challenges into the operation and
management of 6G networks, calling for revolutionary theories and technological innovations. To this
end, we propose a new route to boost network capabilities toward a wisdom-evolutionary and
primitive-concise network (WePCN) vision for the Ubiquitous-X 6G network. In particular, we aim to con-
cretize the evolution path toward the WePCN by first conceiving a new semantic representation frame-
work, namely semantic base, and then establishing an intelligent and efficient semantic communication
(IE-SC) network architecture. In the IE-SC architecture, a semantic intelligence plane is employed to inter-
connect the semantic-empowered physical-bearing layer, network protocol layer, and application-intent
layer via semantic information flows. The proposed architecture integrates artificial intelligence and net-
work technologies to enable intelligent interactions among various communication objects in 6G. It fea-
tures a lower bandwidth requirement, less redundancy, and more accurate intent identification. We also
present a brief review of recent advances in semantic communications and highlight potential use cases,
complemented by a range of open challenges for 6G.

� 2021 THE AUTHORS. Published by Elsevier LTD on behalf of Chinese Academy of Engineering and
Higher Education Press Limited Company. This is an open access article under the CC BY-NC-ND license

(http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Human society is undertaking the fourth industrial revolution,
driven mainly by the convergence of the digitalization of every-
thing, information and communication technologies (ICTs), and
artificial intelligence (AI) innovations. ICT plays a vital role in the
evolution of society toward an intelligent and digital era. With
the rolling out of the fifth generation (5G) mobile networks, 5G
is opening up a new paradigm for the Internets of humans,
machines, and things, enabled by the orchestration of ubiquitous
communications, computing, and control (UC3) capabilities [1].
The vision of the sixth generation (6G) mobile networks is to
reshape the world by offering instant, efficient, and intelligent
hyper-connectivity between the physical world and the digital
world. This trend opens up a new era for mobile communications,
in which the scope of communications will span both the physical
and digital worlds.

Research on 6G began recently, with a focus on innovative net-
work architectures and key technologies [2]. It is notable that the
hyper-massive and cross-world connectivity envisioned by 6G pre-
sents tremendous challenges in network operation and manage-
ment, as we mentioned in our proposed Ubiquitous-X 6G
framework [1]. In addition to the conventional human–machine–
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thing architecture, a new type of communication object, the genie,
is introduced in this framework to bridge the physical and digital
worlds. As the AI-empowered super assistant for physical commu-
nication objects, the genie can accurately identify intents and han-
dle complicated information processes beyond the experience and
capacity of physical communication objects. Moreover, it aggre-
gates and extracts valuable information to enable efficient intent-
oriented interactions among communication objects. The features
of communication objects are listed in Table 1.

The extensive spread of the Ubiquitous-X 6G is hindered by
certain critical challenges, including an explosive growth of
connections, a deficiency of rigid layered network protocols, and
the emergence of innovative applications with diversified service
requirements. Consider a scenario in which multiple communica-
tion agents interact and collaborate to complete a particular task.
The interactions among these agents involve real-time sensing
data exchange, information fusion, and collaborative decision-
making. The massive data exchange may scale up the network
complexity in terms of signaling cost and protocol overhead. We
believe that the intelligence of the communication agents can
be fully exploited to identify task-related information, so that
the interactions among agents become concise and efficient. As
illustrated in Fig. 1, the intelligence-oriented interconnection
among four types of communication objects relies on semantic
communications, which improve the efficiency of conventional
data exchange in the 0–1 bit-stream by transmitting key semantic
elements. Communication objects with situation awareness and
background knowledge will extract semantic elements from their
intents in order to improve transmission efficiency.

A considerable amount of literature on semantic communica-
tions has been published. Since Shannon’s masterpiece was pub-
lished in 1948 [3], the Shannon limit has served as guidance in
communication system design for more than seven decades. With
the aid of AI, semantic-aware communication techniques are
emerging. In physical layer processing, recent advances in natural
language processing (NLP) and computer vision enable semantic-
enhanced coding strategies [4] and end-to-end semantic transmis-
sion schemes [5,6] which boost the transmission quality of differ-
ent types of sources. In the media access control/link/network
protocol layers, the semantic-filtering mechanism [7] is initiated
to reduce the redundancy of the layered protocols. In the applica-
tion layer, semantic-based user intent identification [8] is used to
automate network configurations and simplify network manage-
ment. Although we are witnessing tremendous success in imple-
menting AI-empowered and semantic-aware technologies in each
protocol layer, a systematic framework is still missing. Therefore,
it is critical to conceive an initial architecture to embed semantic
intelligence (SI) across multiple layers for 6G.
Table 1
Human–machine–thing–genie architecture: orchestrating the physical and digital worlds.

Communication–
object

Definition/concept Attribute Intelligence
level

Human The main entity of the
physical world

The user of
communication
services

High

Machine A device that can actively
initiate the communication
process

The provider/user
of communication
services

Moderate

Thing An object that is passively
involved in communication
processes

The provider of
communication
services

Low

Genie The main entity of the
digital world

The provider/user
of communication
services

Super

API: application programming interface.
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Based on the discussion above, we introduce an intelligent and
efficient semantic communication (IE-SC) architecture toward a
wisdom-evolutionary and primitive-concise network (WePCN),
which aims to improve the network intelligence level to enable a
more efficient and concise network. Unlike the traditional network
design philosophy, which upgrades network capability mainly by
stacking more spectra, computation modules, denser access points,
and antennas with ever-increasing complexity in multiple
domains, we boost network capabilities with concise signaling
originating from accumulated network wisdom. The core of IE-SC
architecture is a novel SI plane, which implements semantic envi-
ronment representation, background knowledge management,
semantic deduction, and decision-making. Moreover, three new
semantic-empowered abstract protocol layers are designed to
reshape the existing protocol layers—namely, the semantic-
empowered physical-bearing (S-PB) layer, the semantic-
empowered network protocol (S-NP) layer, and the semantic-
empowered application-intent (S-AI) layer. The SI plane coordi-
nates the three layers via the semantic information flow (S-IF),
which carries the application intent and semantic information
across the network. Upon receiving the S-IF, the S-NP layer can
orchestrate the intent-related semantics to generate flexible and
concise protocols. Working coherently with the S-NP layer, the S-
PB layer can adopt appropriate joint semantic-and-syntactic cod-
ing strategies to improve the physical resource utilization toward
high intent-accomplishing efficiency. In this way, the high-
complexity issue confronting the Ubiquitous-X network can be
resolved by the proposed IE-SC architecture. Moreover, the pro-
posed architecture can comprehensively upgrade the network
capability toward the future WePCN vision: to build an ordered,
efficient, and intelligent Ubiquitous-X network for future applica-
tions and services.

This paper is organized as follows. In Section 2, we discuss
related works in semantic information and communication. In Sec-
tion 3, we present the IE-SC framework and the technical content
of the S-PB layer with initial simulation results, and conceive the
concepts and roadmaps for the S-NP and S-AI layers. We further
present three promising application scenarios for the IE-SC in Sec-
tion 4 and identify a range of future work ideas in Section 5. Sec-
tion 6 concludes this paper.
2. Recent advances in semantic information and
communications

Since it was first proposed, the concept of semantic information
has been continuously refined. Early works on semantic communi-
cation follow the Shannon probability measure framework,
Characteristic/role Capability Usage

Play a prime role in the
human–machine–thing–
genie loop

Cognition � Human-centered
communications

� Human-X API
Extend the
physical/mental powers
of humans

Communication � Machine-centered
communications

� Machine-X API
Complement the sensing
power of humans

Sensing � Internet of Things
� Perceptual computing

The fusing of human–
machine–thing

Intelligence � AI-empowered super-
agent of physical com-
munication objects



Fig. 1. Illustration of the intelligence-oriented semantic interconnection among humans, machines, things, and genies.
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complemented with logical and fuzzy transformation. The recent
blooming of AI-based applications offers new opportunities for
the design of semantic communication systems. In this section,
we review the development of the semantic information concept
and recent advances in semantic communication systems.

2.1. Semantic information

The development of semantic information theory can be
roughly divided into two major phases. The classic semantic infor-
mation theory originated from the pre-Shannon era, is featured by
its connection to Shannon-information measure and primitive nat-
ural language (NL). Meanwhile, the modern semantic information
theory is mainly developed in the recent decade with more diverse
views on the essence of semantic information.

2.1.1. Classic semantic information theory
The concept of semantics was initially proposed by Morris [9],

who introduced the triple-definition of syntactics, semantics, and
pragmatics in the theory of signs. Weaver [10] proposed a three-
level communication framework and further characterized the
syntactic, semantic, and pragmatic features of communications.
Carnap and Bar-Hillel [11,12] outlined a theory of semantic infor-
mation with propositional logic in 1953. They also used the prob-
ability measure for semantic information. Barwise and Perry [13]
extended semantic information theory [11,12] to situational logic,
and Floridi [14] solved the problem that contradictions cannot be
measured correctly. D’Alfonso [15] employed the concept of
truth-likeness to quantify semantic information to support a
broader range of use cases.

2.1.2. Modern semantic information theory
Over the last decade, the concept of semantic information the-

ory has gone beyond Carnap’s framework. For example, Zhong [16]
proposed a theory of semantic information by introducing the
information trinity and proved that semantic information is the
unique representative of the trinity. Kolchinsky and Wolpert [17]
defined semantic information as the syntactic information
between a system and its environment that causally contributes
to the continued existence of the system from the physical per-
spective. More recently, Kountouris and Pappas [18] gave a
multi-granularity definition of semantic information at different
levels of a communication system and used Rényi entropy [19]
to measure semantic information. Jiang et al. [4] pointed out some
62
limitations of the current communication systems that are attribu-
ted to the lack of semantics awareness and suggested that AI can
boost semantic information technology. It has been observed that
modern semantic information theories offer a comprehensive view
of semantic information and demonstrate its great potential to
empower communication systems with AI.
2.2. Semantic communications

The core of semantic communication is to ensure the successful
delivery of the meaning of information. Due to the broad nature of
semantics, semantic communication techniques span multiple
protocol layers in communication networks. Some recent works
are briefly reviewed below.
2.2.1. Semantic-based physical-layer transmission
The classical model-based source coding and channel coding in

the Shannon framework aim to recover the syntactic information
accurately at the receiver—that is, ensuring accurate symbol recep-
tion. In contrast, the semantic communication process aims to
accurately recover the semantic information at the destination,
focusing on the information contents beyond the symbols, which
introduces new features in terms of coding purposes and coding
methods. Existing works [4,6,20–22] have proved that physical
layer transmission efficiency can be improved by employing
semantic encoding and decoding in representative application sce-
narios. Since semantic communication still lacks a comprehensive
and unified mathematical formulation [4], existing semantic
encoding and decoding modules are mainly realized with model-
free machine learning methods [20–22]. Moreover, existing solu-
tions can be roughly classified into two categories: modular design
and integrated design. Modular design adds semantic encoding
and decoding modules to the existing communication systems
with block-wise segmentation. The semantic encoding and decod-
ing modules realize the mutual transformation between syntactic
and semantic information to support the efficient transmission of
text, speech, or image. For example, a context-based decoder was
integrated into a conventional communication system to reduce
the decoding overhead of text [4]. As another example, a long
short-term memory (LSTM) network was employed in Ref. [20]
to extract the meaning of the text for semantic encoding and
decoding, which further improves the performance of text trans-
mission. The integrated design takes the route of semantic-
enhanced joint source–channel coding. The semantic encoding
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and decoding module and other channel coding or joint source–
channel coding modules are optimized with a common objective.
For example, an end-to-end semantic communication architecture
was proposed in Ref. [21], which combines semantic reasoning and
physical layer communication to eliminate semantic errors. A joint
source–channel coding algorithm based on autoencoder architec-
ture was proposed in Ref. [22], in which convolutional neural net-
works replace the conventional source/channel coding blocks. Lite
semantic communication systems were proposed in Refs. [5,6],
which combined joint source–channel coding with pruning
strategies, achieving efficient image/text transmission and classifi-
cation in Internet of Things (IoT) networks. Moreover, end-to-end
semantic communication has been proposed in Refs. [5,23] for
text/speech transmission, which exhibits significant performance
improvement under various channel conditions.

2.2.2. Application–aware communication protocols
Existing lower-layer communication protocols are designed to

support various upper-layer applications, often providing a rela-
tively wide range of functions that may not always be relevant to
specific applications. Some application–aware protocol designs
have recently emerged with reduced physical resource consump-
tion to improve goal-achieving efficiency. The dominant approach
is the cross-layer protocol design. For example, efficient routing
protocols are proposed to address high-mobility and dynamic
topology challenges in an unmanned aerial vehicle (UAV) ad hoc
network [24] and inter-vehicle network [25], in which the informa-
tion in the lower protocol layers is directly integrated into the rout-
ing protocol to reduce the end-to-end delay. Recently, a more
ambitious application–aware cross-layer protocol framework was
proposed [7], wherein an application–aware semantic-filtering
mechanism is conceived to support flexible protocol-function
orchestration in order to reduce redundancy. Moreover, the appli-
cation–aware protocol design can deal with multi-agent communi-
cations, which sheds light on new protocol designs in mobile
communication networks. For example, Sukhbaatar et al. [26] pro-
posed a learning-based multi-agent communication scheme in
which the interaction strategy or protocol is autonomous via neu-
ral networks. Such a human-like communication protocol can be
considered as a prototype of an autonomous protocol for intelli-
gent communion agents with reduced resource consumption.

2.2.3. Semantic-based intent-driven networks
Current network management and control cannot autono-

mously capture the user’s business intents and agilely generate a
network to meet the user’s quality of experience in fine granular-
ity. Semantic-related techniques are essential in identifying users’
intents and implementing these intents across the network to
achieve intent-driven intelligent networks. To be specific, by utiliz-
ing the recent advances from AI and NLP, some progress has been
made toward accurately identifying and understanding intents. For
example, a stream of work in the contextual spoken language
understanding method is proposed by Refs. [8,27], which can
simultaneously identify intents and informative slots by capturing
contextual semantics. An intent-based cloud service management
framework is proposed in Ref. [28], which understands users’
intents in NL and translates them into the network’s resource-
management language. More recently, new architectures and
enabling technologies for intent-based networks have been
reviewed in Ref. [29], which shows that the users’ business intents
can be captured with domain-specific language and an appropriate
user–computer interface. Inspired by the studies described above,
the design and implementation of semantic-empowered intent-
driven networks demonstrate attractive potential. Accordingly,
advanced semantics processing techniques are required to achieve
accurate intent identification, decomposition, and representation
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in general scenarios. Moreover, the intent-driven design should
be implemented comprehensively across network protocol layers,
combining all intent-related elements toward an integrated and
agile intent-driven network.
3. IE-SC architecture

Recent progress in semantic information theory and communi-
cation techniques is relatively fragmented. Applications in differ-
ent network layers are independently studied, yet a systematic
design is still missing. In this section, we will further deepen the
technical implications of the Ubiquitous-X 6G [1] by integrating
IE-SC toward the WePCN. More specifically, we will first conceive
the semantic base (Seb) and propose an architecture for the
semantic-enhanced Ubiquitous-X 6G. Then we will introduce
advanced semantic communications and information-processing
technologies, infrastructures, and modules to enhance network
capabilities and reformulate the network protocol hierarchy. We
will also introduce mechanisms to enable intelligent communica-
tions among various communication objects in the Ubiquitous-X
6G.
3.1. Semantic base

It may be recalled that the concept of ‘‘Bit,” as proposed in
Shannon’s classical information theory, is not a unit but a represen-
tation and measurement framework of information entropy. In line
with this view, we propose the concept of ‘‘Seb” as a representation
framework for semantic information. In particular, Seb provides a
modularized and highly abstractive method to represent semantic
information, thus making semantic communication more efficient.
To clarify the differences between Seb and Bit more intuitively, we
refer to the process of constructing an architecture, as illustrated in
Fig. 2. The original message from the transmitter is the outline of
the construction. The communication system delivers this message
using its predefined base. Traditional communication systems can
be regarded as building the architecture or reconstructing the mes-
sage at the receiver in a brick-by-brick manner. Bit serves as brick
and concrete, which gives a precise representation of the original
message. In contrast, the semantic communication system uses
Seb, which is similar to reconstructing the architecture/message
using a laminboard/integrated window or door. Such a construc-
tion is highly modulated with the aid of a material warehouse
dimensioned by the Seb. Thus, the message delivery is much more
efficient using the common knowledge of architecture construc-
tion/decomposition and the warehouse.

Seb may provide a new perspective to describe the complex
nature of semantic information involving application intent and
the form of information. From an abstract perspective, Seb serves
as a representation framework. It contains multi-level transforma-
tions that extract the information’s multimodal characteristics and
eventually transform them into semantic elements. More specifi-
cally, Seb can contain user intent-related background knowledge,
intent-knowledge mapping mechanisms, semantic-elements
extraction, and expressions; the input of Seb can be the intent of
communication, and the output of Seb can be a bit sequence carry-
ing intent-related semantic elements. The intent-related back-
ground knowledge within Seb can be considered as a particular
knowledge graph or other organized expressions. Taking the
knowledge graph as an example, each vertex represents a semantic
element, and each edge represents the correlation between two
semantic elements. Moreover, semantic-elements extraction finds
all possible paths corresponding to the intent-accomplishing pro-
cess. Finally, semantic-elements expression is an appropriate bit



Fig. 2. A comparison between traditional communication systems and semantic communication systems.
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sequence that can uniquely identify intent-oriented semantic
information.

Furthermore, Seb may be further developed as a measurement
framework in line with Bit. It will contain the Bit framework as a
particular case and offer a multi-perspective measurement of
semantic information. For example, when viewed from the physi-
cal form or the syntactic perspective of the information, the num-
ber of bits needed to carry the information can be obtained from
Seb. When viewed from the application intent or the semantic per-
spective of the information, the semantic elements can be obtained
from Seb. Therefore, Seb can be a representation and measurement
framework to embrace the multimodal and multi-perspective
characteristics of information. The general principles and mecha-
nisms of Seb demand further investigation.

3.2. IE-SC architecture

3.2.1. Architecture design
In this subsection, we present a novel IE-SC architecture, which

features one plane, three layers, and a set of flows, as shown in
Fig. 3. More specifically, the SI plane is responsible for semantic
representation, knowledge management, semantic decision, and
deduction. The SI plane coordinates with the three layers:
� The S-AI layer, which identifies and decomposes user intents;
� The S-NP layer, which implements a semantic-empowered
interaction protocol to support the intelligent network;

� The S-PB layer, which implements semantic-empowered mes-
sage transmission in the physical layer.
The S-IF is a high-level representation of environmental infor-

mation and internal information. The former includes information
about the physical environment, spectrum environment, electro-
magnetic environment, and so forth. The latter includes network
layer information, decision-making information, and other related
intelligence information. The SI plane and the three semantic-
empowered layers interact with each other via a set of S-IFs. A brief
comparison between the proposed IE-SC and the conventional syn-
tactic communication architecture is given in Table 2. It is notable
that the IE-SC architecture requires the modification, enhance-
ment, or replacement of existing network modules. However, these
efforts can result in an advanced network with improved informa-
tion transmission efficiency, management–control efficiency, and
intent-achieving efficiency. It is also notable that the bottleneck
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of existing networks stems from the explosive growth of commu-
nication links and data. IE-SC provides a new approach to address
this challenge. In particular, with the advances of specialized chip-
sets and hardware, the awareness of semantics at transceivers can
significantly improve communication efficiency by reducing the
number of transmitted data bits while maintaining the intent of
the communication.
3.2.2. SI plane
The SI plane spans all layers in the IE-SC architecture, and has

the following functions:
(1) Semantic environment representation. The internal and

external environmental information is processed by filtering
and semantic extraction; then, the information is aggregated in
the SI plane. After the semantic classification, the environment
representation is formed. The semantic information is then embed-
ded into the S-IF, which can flow through the SI plane and inter-
faces at different layers.

(2) Background knowledge management. Different back-
ground knowledge of different network elements and layers, such
as context and environment, will affect the performance of the S-
AI, S-NP, and S-PB layers. Therefore, the SI plane is responsible
for coordinating the exchange of background knowledge. The SI
plane can classify, integrate, and store knowledge after semantic
extraction. It then shares the knowledge via S-IF.

(3) Semantic decision and deduction. The SI plane is capable
of evaluating network capability and synthesizing user intents.
More specifically, the S-AI layer feeds the decomposed user intents
to the SI plane via S-IF. The SI plane then synthesizes the intents
and network function to evaluate the achievable performance. It
then performs decision-making for all network layers. Finally, the
decisions are transmitted to the control plane to enable intent-
driven transmission and networking.
3.2.3. S-PB layer
The purpose of semantic communication differs from that of

conventional data communication, because semantic communica-
tion delivers meaning. To achieve this goal, the S-PB layer is
responsible for carrying semantic information from the upper lay-
ers with physical signals; the following modules in the S-PB layer
should be designed carefully.



Fig. 3. The intelligent semantic communication-empowered Ubiquitous-X 6G framework, featuring an SI plane, three layers including the S-AI layer, S-NP layer, and S-PB
layer, and S-IF.

Table 2
Comparison between semantic communication architecture and syntactic communication architecture.

Performance metric\architecture Semantic communication architecture Syntactic communication architecture

Complexity of computation and implementation High Low
Delay Low High
Bandwidth Low High
Accuracy High Low
Throughput High Low
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(1) Semantic encoding/decoding. According to the modular
design method, the encoding and recovering process of informa-
tion is realized at the semantic level, independent of other modules
in the system, such as channel coding.

(2) Semantic-aware joint source–channel encoding/decod-
ing. According to the integrated design method, source encoding/
decoding and channel encoding/decoding can be jointly designed
to perform semantic encoding/decoding.

(3) Semantic extraction/utilization of channel information.
Channel state information, such as fading, interference, and
signal-to-noise ratio (SNR), is extracted and integrated to facilitate
semantic information transmission.

The architecture of the semantic communication link is illus-
trated in Fig. 4. It is notable that the background knowledge of
the source and the destination may differ in general. As a result,
semantic information extracted at the source may be understood
in a different way by the destination, which imposes significant
challenges on semantic communications. In the following discus-
sion, we provide three cases of semantic transmission in the S-PB
layer with fully synchronized source–destination background
knowledge. The specific solutions are also discussed for semantic
encoding/decoding and semantic-aware joint source–channel
encoding/decoding. Here, we mainly consider the data-driven
method. Model-driven semantic encoding/decoding and
semantic-aware joint source–channel encoding/decoding are left
for future study.
65
Case 1: context-based semantic encoding/decoding for text
Context-based semantic encoding/decoding is designed

according to the modular design method, as shown in Fig. 4.
The transmitter’s background knowledge and the receiver are
implemented with part-of-speech (POS) tagging, semantic simi-
larity, and context. Besides the item-occurrence probability distri-
bution, the POS-based encoding method considers that one
codeword can be assigned to several items with different POS tag-
ging—that is, nouns, verbs, and so forth—to reduce the number of
transmitted bits. The decoding method can distinguish these
semantically distant items with the same codeword based on
specific context information. The encoding process can be
described as four steps, taking Google’s Brown corpus [30] as an
example. First, all words in the corpus are supposed to be divided
into P classes (P � 2) according to their POS tags, where P is the
number of classes. Second, each class is sorted in descending
order of the occurrence frequency of its words to form its occur-
rence frequency ranking list. Third, the ith word of the list is
obtained from each class to place into a coding node Ai,
i ¼ 1;2; :::;M; where M denotes the maximum number of items
in these P classes. Note that each coding node contains P words
Aif gj j ¼ P and the weight of Ai is the sum of the frequencies of

occurrence of these P words. Fourth, a Huffman tree is built with
all coding nodes, in which each Ai corresponds to a leaf node. The
Huffman coding works from leaves to root to minimize the
probability-weighted mean of the code length.



Fig. 4. Illustration of semantic communication in the S-PB layer.
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In the context-based decoding method, the sequence s is repre-
sented as s ¼ s1; s2; . . . ; snð Þ, n 2 Zþ is the size of the sequence s or
the context window in the context-based dynamic programming
algorithm. Here, s can be modeled as a Markov chain, and the con-
text can be modeled as a state transition probability. Thus, the
decoding involves finding the sequence s� with the maximum
probability in the set S that collects all the possible realizations
of s. Then, the N-grammodel [31] and dynamic programming algo-
rithm are adopted to solve the problem as s� ¼ argmaxs2SPrðsÞ,
where S is a set containing all possible realizations of s, and
N 2 Zþ is the size of a context window. The continuous bag of
words (CBOW) [32] is utilized to extract the context associated
with PrðsÞ, and f is the feature window’s size to extract the context
features. We combine the CBOW with LSTM [33] to further
improve the decoding performance in order to extract context
features.

Fig. 5(a) shows that the dynamic average codeword length of
the POS-based semantic coding method is shorter than that of
the baseline—that is, the standard Huffman coding method. This
observation suggests that the proposed encoding method can
reduce the number of bits for transmission. In Fig. 5(b), four stan-
dard semantic similarity scores regarding the transmitted and
recovered character all increase with the growth of the context
window size n when the size of the feature window f is set as 4.
Moreover, when n is not smaller than f, the proposed context-
based decoding method achieves and maintains a high semantic
similarity score.
Fig. 5. (a) Dynamic average codeword length; (b) semantic similarity with a feature win
word2vec: word to vector.
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Case 2: semantic encoding/decoding neural network for
industry images

In this case, we present a semantic image encoding/decoding
scheme in the specific scenario, as shown in Fig. 6. In the consid-
ered model, an input image x is compressed as a semantic vector
w by the semantic source encoder gEðx; hEÞ, where hE is the
parameter set of gE �ð Þ. After that, the semantic vector w should
be quantized as bw, coded, and modulated as discrete symbols for
transmission. The channel decoder and the semantic source deco-
der gGð bw; hGÞ parameterized by hG generate the reconstruction
image bx from the noisy symbols at the receiver. The
source encoder/decoder parameters are jointly optimized
as h�E; h

�
G

� � ¼ argmin
hE ;hG

Ex kH Q gE x; hEð Þð Þð Þ þ d x; gD Q gE x; hEð Þð Þð Þð Þ½ �,
where H �ð Þ is Shannon entropy, d �ð Þ is the distortion function,
Q �ð Þ is the quantization function, Ex �ð Þ denotes the expectation
operator for x, k is the hyper-parameter, and gD is a discriminator.
We use k > 0 to balance the distortion term against the entropy
term. The commonly used distortions (e.g., mean square error
(MSE)), sometimes fail to describe humans’ semantic/perceptual
distortion. Therefore, we use MSE to measure the pixel-wise
distortion and a neural discriminator to learn the semantic/
perceptual distortion. The distortion loss is defined as

dðx; bxÞ ¼ Ex�pðxÞ ak x� bx k22 þ bgD bx; hD� �h i
, where p(�) denotes the

probability distribution of a random variable, a and b are two
controlling factors balancing the related terms, and gDðbx; hDÞ is a
dow of size 4. METEOR: metric for evaluation of translation with explicit ordering;
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discriminator parameterized by hD that forms a generative adver-
sarial networks (GAN) structure with gEðx; hEÞ.

Our training set consists of a large set of images collected from
the industrial cameras. The model is trained with a resolution of
256	 256 and fine-tuned with 1920	 1080 images, where the res-
olution of h 	 w denotes a image with h pixels height and w pixels
weight. Adam [34] is chosen as the optimizer with a constant learn-
ing rate of 0.0002 for 50 0000 iterations during the training phase.
The detailed simulation settings are given in Table 3.

For a fair comparison, H.264 encoding is set to the frame-by-
frame encoding mode—that is, the intra-frame-only mode. Pixel-
wise metrics such as the peak signal-to-noise ratio (PSNR) or struc-
tural similarity (SSIM) are sometimes far from human aesthetic
perception. Therefore, we adopt the learned perceptual image
patch similarity (LPIPS) metric [35] for evaluation. Visual examples
are shown in Fig. 7. Case 2 presents a semantic image transmission
scheme with a finite image training dataset in a specific industry
Table 3
Simulation settings.

Source Resolution Frame rate (fps) Chann

Original video 1920 	 1080 25 3 dB A
H.264 encoding 1920 	 1080 25 3 dB A
Semantic encoding 1920 	 1080 25 3 dB A

fps: frame per second; dB: decibel; AWGNC: additive white Guassian noise channel;
perceptual image patch similarity.

Fig. 6. Illustration of the semantic encoding/decoding neural network for industry images
LDPC: low density parity check code; LeakyReLU: leaky rectified linear unit; Conv: conv
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scenario. For generalized image sources, more research efforts
are needed to develop universal coding and transmission schemes.

Case 3: deep learning-based end-to-end semantic encoding/
decoding

Unlike the modular design, source coding and channel coding
can be jointly designed and represented by neural networks. In this
case, the semantic transceiver can be regarded as an end-to-end
communication system, which merges the typical communication
blocks to represent and transmit semantic information [5], as
shown by the dotted box in Fig. 4. A deep learning-enabled seman-
tic communication (DeepSC) [5] and its variants, named L-DeepSC
[36] and DeepSC-S [23], have been proposed for texts and speech
transmission. The source information is directly mapped to the
transmitted symbols through the semantic transmitter, which con-
tains the semantic encoder and channel encoder, represented by
neural networks. At the receiver, noisy information is recovered
by the corresponding semantic receiver. More specifically,
el Channel coding Code rate (Mbps) LPIPS

WGNC (660, 440) LDPC 415 —
WGNC (660, 440) LDPC 12.44 0.15
WGNC (660, 440) LDPC 2.49 0.14

LDPC: low density parity check code; Mbps: megabit per second; LPIPS: learned

. x: input image;w: semantic vector; bw : the quantizedw ; bx : reconstructed image;
olution; Decov: deconvolution.
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Transformer [37] is utilized to extract the semantic information.
Channel coding is achieved by a fully connected layer.

Take text as an example, where the input of the neural network
is a sentence. The total loss function to train the whole neural net-
work is the weighted sum of the cross-entropy (CE) and the esti-
mated mutual information (MI), which recovers the transmitted
sentences at the semantic level, and maximizes the data rate
[31]. Furthermore, the denoising neural network estimates the
channel state information during training [36]. In addition, since
the transmitter directly maps the original sentence to the sending
symbols, the learned constellation will not be limited to just a few
points, placing additional burdens on the hardware. In this regard,
a two-stage method has been proposed to compress the learned
constellation point inspired by the network quantization for the
trained model. By doing so, the compressed constellation points
only need eight bits for quantization without performance degra-
dation. Thus, the size of the neural network model is lowered, mak-
ing the proposed method applicable for IoT scenarios.

Fig. 8 [5,38] shows a performance comparison of the proposed
DeepSC and the following benchmarks: ① the traditional commu-
nication link with Huffman coding and Reed–Solomon (RS) code
(5, 7) in 64-quadrature amplitude modulation (QAM); ② the
Fig. 7. (a) Visual comparison results of (i) original image, (ii) semantic encoding me
(ii) semantic encoding method, and (iii) H.264 coding with error propagation.

Fig. 8. Bilingual evaluation understudy (BLEU) score versus SNR for the same total num
AWGN channel [5]: (a) 1-gram, (b) 2-grams, (c) 3-grams, and (d) 4-grams. RS: Reed–So

68
traditional communication link with five bits coding with RS
(7, 9) in 64-QAM; and③ deep learning-enabled joint source–chan-
nel coding [38]. The bilingual evaluation understudy (BLEU) score
is used to measure the sentence similarity; this is a commonly
used indicator in machine translation [39]. As shown in Fig. 8
[5,38], the proposed DeepSC method performs better than the
benchmarks, especially in the low SNR regime.

3.2.4. S-NP layer
The primary function of the S-NP layer is to efficiently serve the

upper-layer application intents with intelligent network protocols.
The intent is related to the purpose of communication. For exam-
ple, the purpose of the real-time interaction between the terminal
and the monitor is to detect abnormal situations, so the interaction
is intended to ‘‘inform” about an abnormality or ‘‘inquire” about
the abnormal parameters. As another example, the purpose of
communication between two agents in the industrial network is
to collaboratively fulfill a specific task, so the interaction is
intended to ‘‘exchange” data or ‘‘confirm” a fact. Therefore, the
design of the S-NP layer mainly focuses on semantic interaction
mechanisms and strategies. More specifically, the S-NP layer
includes serval key modules:
thod, and (iii) H.264 coding. (b) Visual comparison results of (i) original image,

ber of transmitted symbols, with benchmarks and our DeepSC trained under the
lomon; AWGN: additive white Gaussian noise; dB: decibel.
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� Semantic information computation. This module extracts
intent information from the S-IF and obtains knowledge from
the counterparts.

� Semantic protocol parsing. This module analyzes the available

functions of the current protocols.

� Semantic protocol formation. This module optimizes the orig-

inal protocol or forms a new protocol to meet the application’s
intents.

� Semantic information conversion. This module encapsulates

semantic information according to the generated protocol.
Since network intelligence will be strengthened continuously

toward 6G, the interaction protocol among elements/terminals in
the 6G network will generate SI. Taking the routing scheme as an
example, the SI plane determines a routing policy with high-level
SI in order to directly fulfill the users’ intents. Moreover, the rout-
ing policy is dynamic and autonomous, so it is not fully preset by
the network administrator, as is done in conventional routing
schemes.

Recent advances in intelligent multi-agent communication
offer new insights into the autonomous protocol for future net-
works. A deep-learning-based multi-agent communication
scheme is proposed in Ref. [26], wherein a learning-based interac-
tion strategy is proposed. Such an intelligent interaction can be
considered as a semantic application-layer protocol built on top
of existing protocol layers. In this direction, a goal-oriented refer-
ence expression generation method is proposed in Ref. [40],
which investigates intelligent interaction schemes to accomplish
the application intents. The agent utilizes the learned model to
generate reference expressions based on interactive dialogue
clues, significantly improving goal-achieving efficiency. The
scheme in Ref. [40] offers some clues to inspire intent-grounded
semantic interaction among genies. Fig. 9 outlines a pipelined
method for such semantic interaction, which contains three main
steps:
� Complex interaction and learning. In this step, two genies
learn to recognize the intents of the counterpart through multi-
ple rounds of dialogues to accumulate experience for more effi-
cient communications.

� New knowledge update. In this step, the genies update their

knowledge about the communication goals and interaction
strategies.
� Simplified semantic interaction. In this step, the genies can
refine and optimize interaction strategies to achieve efficient
semantic interaction after knowledge accumulation.
Fig. 9. Multi-agent interactive dialogue organizes the protocols on demand to support sp
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Designing lower-layer network protocols to support efficient
semantic interaction is challenging. Aiming at this goal, we conceive
a roadmap to evolve the S-NP layer within the IE-SC architecture. In
general, we can modify existing layered protocols according to the
interaction intent with semantics awareness, and then gradually
integrate these protocols toward a new autonomous protocol. More
specifically, guided by specific intents, the genie in theUbiquitous-X
6G framework can use semantic information computation and pro-
tocol parsingmodules to sense and filter the intent-related protocol
functions in order to reduce non-intent-related protocol redun-
dancy. Then, based on intent-related protocol functions, the genie
rearranges the protocol functions with appropriate priorities deter-
mined by specific intent. The semantic protocol formation module
generates a modified protocol with clear semantics awareness. As
the genie is intelligent, various protocol modification policies can
be learned and accumulated. Employing the experience from such
policies, new intent can be quickly identified by matching it with
an appropriate semantic-aware protocol in the S-NP layer. Finally,
advanced AI tools can be implemented to promote an integrated
and autonomous protocol to align with general intents by using
the accumulated knowledge. Protocol functions will be automati-
cally orchestrated or even generated, and the boundaries between
the layers will also be blurred.

3.2.5. S-AI layer
In a broad sense, each communication user or object has an

intent that is related to specific network services. A user’s intent
is often decomposed and translated into the network’s specific
deployment, configuration, or control policies. Semantics play a
double role in the expression of a user’s intent and in the network’s
understanding of that intent. In our proposed architecture, the S-AI
layer can mine, understand, and decompose intents. It can transfer
the sub-intent set to the SI plane via the S-IF in order to drive intel-
ligent network management. As shown in Fig. 10, the S-AI layer has
three main functions:
� Intent mining. After receiving the original expressions of intent
from the users/applications, the S-AI layer extracts, analyzes,
aggregates, and synthesizes these intents for further processing.

� Intent decomposition. The extracted intent is decomposed into

a set of sub-intents that can guide the execution of each layer’s
functions.

� Semantic representation. The S-AI layer performs intent repre-

sentation on the sub-intent set, facilitating the SI plane’s
decision-making.
ecific communicating intent as the grounded knowledge accumulates incrementally.



Fig. 10. The proposed generalized intent resolution process. The S-AI layer is used to mine intent through semantic analysis, aggregation, and synthesis; the mined intent is
then decomposed into multiple sub-intents. Finally, the sub-intents are represented in the semantic embeddings.
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Based on the intent information from the S-AI layer, the SI plane
generates corresponding semantic instructions and maps them to
the functions of the S-NP and S-PB layers; in this way, SI is embed-
ded into the network.

Due to the diversity and complexity of intents, there are several
challenges in achieving an intent-driven network, especially in
understanding intents and in the cross-layer implementation of
an intent. First, intent understanding is related to complex seman-
tic processing. Taking NL as an example, users might express more
than one intent in an utterance, or the intent might be inexplicitly
embedded in dialogue. To address such issues, statistical tools and
machine learning tools are often employed for intent inference. In
addition, it is necessary to implement the intent across multiple
protocol layers and domains in order to fully exploit the potential
of semantic communication. To achieve this goal, we extend our
early work [41] and conceive the concept of S-IF. In particular, S-
IF can flow across layers in the overall framework, enabling the
cross-layer implementation of intent. For example, S-IF can inform
the S-PB layer to adopt scalable semantic coding to meet a specific
application intention with different information granularity, such
as a high-definition video with subtle details or autonomous robot
collaboration with only feature details. Moreover, S-IF can promote
efficient interaction among heterogeneous network elements to
achieve mutual understanding.

4. Promising application scenarios of semantic communication
networks

In this section, we outline three promising application scenarios
for the IE-SC-empowered Ubiquitous-X 6G network: the air–space–
ground–ocean integrated network (ASGO-IN), the Industrial
Internet of Things (I-IoT), and the intelligent unmanned machine
network (IUMN), as shown in Fig. 11. All these promising
application scenarios will converge in the WePCN vision of the
Ubiquitous-X 6G.
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4.1. ASGO-IN

The ASGO-IN integrates terrestrial networks with satellite,
ocean, and aerial networks, as shown in Fig. 11(a). It is a widely
recognized solution to achieve global coverage and on-demand
service for 6G networks. One technical challenge in realizing
ASGO-IN is flexible and efficient interconnection among heteroge-
neous networks covering a large span of space and time. Currently,
gateways are used to bridge different networks with complicated
protocol translations. Our proposed IE-SC architecture provides
an agile and concise solution to support ASGO-IN. To be specific,
the S-AI layers at heterogeneous nodes in ASGO-IN can identify
their intent of integration. Using the preinstalled common
knowledge, the SI plane coordinates the S-NP layer to orchestrate
the intent-related semantic elements to form a concise
integration-oriented protocol that is implementable among the
nodes. Without an additional gateway, these nodes can directly
interact with the S-PF layer through a unified air interface to per-
form the integration.
4.2. Industrial Internet of Things

The I-IoT introduces advanced information and communication
technologies to connect various elements, such as humans, machi-
nes, and things, to serve the purpose of industrial manufacturing
with collaboration and interoperability, as shown in Fig. 11(b).
However, existing data communication networks cannot effi-
ciently integrate manufacturing intents into the interactions
among these elements, which results in low collaboration effi-
ciency and heavy signaling overhead. Under our proposed IE-SC
architecture, the S-AI layer can identify the manufacturing purpose
and generate semantic communication strategies toward collabo-
ration and interoperability. Furthermore, intent-related semantic
information can be transmitted efficiently in a highly compressed
manner by using efficient joint semantic-source–channel coding



Fig. 11. (a) A semantic-empowered ASGO-IN; (b) a semantic-driven I-IoT; (c) a
semantic-based IUMN with unmanned ground vehicle (UGV).
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at the S-PB layer. Thus, the overall efficiency of the I-IoT will be
boosted significantly to support intelligent manufacturing with
intent-oriented networking and collaboration under our IE-SC
architecture.
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4.3. Intelligent unmanned machine network

The IUMN, which includes autonomous vehicles, robotics, and
drone swarms, as shown in Fig. 11(c), represents an expansion of
networking from data-centric communication to machine-centric
control and collaboration [42]. Equipped with advanced sensing
and communication modules, each intelligent unmanned machine
(IUM) can sense the environment and interact with others to
accomplish specific tasks. Our proposed IE-SC architecture can sup-
port autonomous and task-driven networking among IUMs. The S-
AI layer can comprehensively analyze the sensing data to extract
the task-related semantic information, which is then fed into the
SI plan to generate semantic-based decision policies and network-
ing strategies to accomplish the task. Following the SI plan decision
and strategy, the S-NP layer can dynamically control link configu-
rations, network topology, and routing strategy to assure a robust
and agile task-driven IUMN.
5. Main challenges and future directions

(1) Further development of Seb representation. The exact
connotation behind a piece of information is affected by the under-
standing of communication agents. Moreover, different agents may
have different syntactic forms for the same connotation, just like
synonyms or multilingual phenomena in NL. Therefore, the Seb
framework should be further studied to enable unified and gener-
alized semantic information extraction and representation for mul-
timodal information. It should be noted that the current semantic
extraction/representation relies on AI and neural networks, which
involve extensive computation. Therefore, Seb is expected to be an
essential building block for a more comprehensive semantic
information-processing framework that integrates semantic com-
munication and computation.

(2) Fundamental limits of semantic communications. In the
physical layer, the design objective of semantic communications
is to optimize semantic information transmission over different
types of channels with relevant background knowledge. Therefore,
the fundamental limits of semantic communications are deter-
mined by physical and contextual constraints. Furthermore, the
degree of mutual understanding between a pair of communication
agents may determine the interaction or signaling strategies and
the volume of semantic communications. Thus, an appropriate
measure of intent-achieving efficiency should be established in
order to answer this question: What is the most efficient semantic
communication strategy to achieve the intent? The measurement
framework is generally abstract and complex; strategies may
include the semantic-related processing in higher layers and
semantic-aware joint source–channel coding in the physical layer.
Therefore, some theories and coding schemes should first be estab-
lished in order to concretize the new measure framework, offering
certain achievable bounds toward the limits of semantic
communications.

(3) General semantic-based intent-driven networks. Cur-
rently, intent-driven networks mainly target human-centric net-
work configuration and management. NL serves as the carrier for
human intents. The NLP module serves as a middle-ware to trans-
late human intents into predefined network configuration policies.
However, NL is not necessarily the best tool for non-human-centric
networks in the new era of human–machine–thing–genie net-
working. In addition, the concept of intent-driven networks may
go beyond conventional ICT data networks; it is applicable in var-
ious emerging functional networks, including military and manu-
facturing networks, among others. To this end, a generalized
semantic-based intent-driven network should be established,
wherein Seb-based coding and interaction may replace NL to
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enable efficient cross-species semantic communications, and
intent-driven capabilities should become native capabilities for
both data and functional networks.
6. Conclusions

In this paper, we proposed a systematic design for semantic
communication networks to support intelligent interactions
among various communication agents in Ubiquitous-X 6G net-
works. First, we initiated the Seb concept, which serves as the rep-
resentation of semantic information. Next, we presented the IE-SC
architecture, which consists of the SI plane, S-PB layer, S-NP layer,
S-AI layer, and S-IF. Initial simulation results were presented to
demonstrate the efficiency of semantic-based information deliv-
ery. Promising application scenarios and future directions were
discussed to inspire further research efforts toward the vision of
WePCNs.
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