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Organ transplant rejection (OTR) is a complex immune reaction involving multiple cells, and it determi-
nes graft survival and patient prognosis. At present, most transplant recipients are administered a com-
bination of immunosuppressive and biological agents to protect them from OTR. However,
immunosuppressive agents negatively impact the immune system of the patients, causing them to suffer
from serious complications, such as chronic infection and malignant tumors. Therefore, a thorough
understanding of the mechanisms involved in immune tolerance and immune rejection with regard to
organ transplant (OT) is essential for developing better treatment options and improving patient out-
comes. This article reviews the role of immune cells in OTR and organ transplant tolerance (OTT), includ-
ing the novel cell therapies that are currently under clinical trials for transplant recipients.

� 2021 THE AUTHORS. Published by Elsevier LTD on behalf of Chinese Academy of Engineering and
Higher Education Press Limited Company. This is an open access article under the CC BY-NC-ND license

(http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

An organ transplant (OT) is an effective treatment for patients
with end-stage organ failure. Since ancient times, humans have
had this idea: If a certain organ of the body has been damaged
by disease, can it be replaced like a damaged part in a machine
[1,2]? In 1954, Joseph Murray performed the first human kidney
transplant between monozygotic twins [3]. Moore et al. [4]
described the first orthotopic liver transplant in dogs in 1958,
and in 1963, Starzl et al. performed the first human liver transplant
[5]. In the same year, D. Hardy conducted the first lung transplant
in Jackson, Mississippi [6]. In 1967, Christiaan Barnard performed
the world’s first heart transplant at Groote Schuur Hospital in Cape
Town, South Africa [7]. Although the technical limits of surgery
were overcome during that period, patient mortality due to organ
rejection remained high. It was not until the development of
cyclosporine, a drug inhibiting the body’s attack on foreign grafts,
that OT became a routine treatment for end-stage organ failure
patients in the late 1970s. However, transplant tolerance or rejec-
tion by the immune system determines graft survival and patient
prognosis.
Organ transplant rejection (OTR) is an immunological response
to foreign tissue involving various innate and adaptive immune
cells. As immunosuppressants are continuously being developed,
short-term graft survival has achieved great success, and a one-
year graft survival rate is greater than 80%. However, such
immunosuppression strategies do not promote long-term (ten-
year) graft survival [8,9]. The general lifespan of a transplanted
organ does not exceed 15 years, and in the case of a single lung
transplant, it is approximately six years [10]. Therefore, a better
comprehension of the mechanisms that determine tolerance or
rejection of OTs is essential to develop better immunosuppressive
strategies and improve patient prognosis.

This article provides an overview of the role of immune cells in
inducing OTR and organ transplant tolerance (OTT), including
novel cell therapies that are currently under clinical trials for trans-
plant recipients (Tables 1 and 2 and Fig. 1).
2. Innate immune cells

2.1. Monocytes/macrophages

Macrophages consist of tissue-resident macrophages, and
monocyte-derived macrophages recruited from blood vessels and
play an essential role in innate immune responses. Macrophages
can change their phenotype and function according to the tissue
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Table 1
The role and mechanism of immune cells in the immune response to transplantation.

Cell Mechanisms involved in transplant rejection Mechanisms included in graft tolerance

Monocytes/macrophages Produce proinflammatory factors and ROS, RNS; swallow and kill
the graft cells; enhance adaptive immune response; MHC receptor-
mediated rejection; promote fibrosis

Suppress or swallow the alloreactive T cells; regulate the
alloreactive T cells by IDO or iNOS; promote Treg cell differentiation
and inhibit DCs maturation; promote angiogenesis and wound
healing

NKs Kill the graft cells directly; attract or regulate other immune cells
and promote alloreactive T cell proliferation and function

Inhibit the alloreactive T cells directly; kill or inhibit the function of
DCs and indirectly suppress the alloreactive T cells; expand Treg
cells

DCs Present antigen and activate alloreactive T cells TolDCs inhibit alloreactive T cells; induce T cell apoptosis by Fas/
FasL and IDO; express immunomodulatory molecules and
immunosuppressive factors; promote regulator lymphocyte
differentiation

Neutrophils Produce ROS and inflammatory factors; release tissue digestive
enzymes; NETosis; enhance T cell immune response; associated
with antibody-mediated rejection

Inhibit T cell proliferation; promote angiogenesis and wound healing

MCs Degranulation; produce inflammatory factors and recruit other
immune cells; promote fibrosis

Adjust the Treg function; inhibit T cell proliferation; present antigen
and induce production of Th2

Eosinophils Release inflammatory factors and cationic proteins Down-regulate T cell-mediated immune response; inhibit CD8+ T
cell proliferation

MDSCs None Directly inhibit immunogenic myeloid cells; secrete cytokines and
growth factors that convert immunogenic into tolerogenic myeloid
cells

Tregs None Interfere with metabolism; release inhibitory cytokine; improve
cytolysis; regulate other immune cells through extracellular
mechanisms; induce ‘‘immunosuppression” neutrophils

NKT cells Produce inflammatory cytokines Produce anti-inflammatory cytokines; augment the proliferation of
Treg cell; decrease inflammatory factors

cd T cells Produce inflammatory cytokines; ADCC Secrete inhibitory cytokine; inhibit proinflammatory cytokines;
induce production of Th2

Regulatory B cells None Secrete inhibitory cytokine; inhibit T cell proliferation; promote
Tregs cell differentiation; induce immunological unresponsiveness
to specific alloantigens

MC: mast cell; NK: natural killer cell; NKT: natural killer T; DC: dendritic cell; ROS: reactive oxygen species; RNS: reactive nitrogen species; MHC: major histocompatibility
complex; iNOS: inducible nitric oxide synthase; IDO: indoleamine 2,3-dioxygenase; TolDC: tolerogenic DC; MDSC: myeloid-derived suppressive cell; Treg: regulatory T cell;
NETosis: neutrophil extracellular trap formation; Th2: T helper type 2 cell; ADCC: antibody-dependent cell-mediated cytotoxicity; Fas: factor associated suicide; FasL: factor
associated suicide ligand; CD: cluster of differentiation.

Table 2
Clinical trials of regulatory cell-based therapies in solid organ transplantation
(resource from ClinicalTrials.gov).

Therapeutic agent Type of graft Quantity Study phase

Tregs Liver 10 I–II
Kidney 17 I–II
Intestinal 1 Unknown

Bregs No report No report No report
Monocytes Kidney 2 I
TolDCs Kidney 1 I–II
MDSCs No report No report No report

Bregs: regulatory B cells.
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microenvironment to attack transplanted organs or prolong graft
survival through various suppressive mechanisms [11]. Studies
have shown that macrophages activated by interferon (IFN)-c,
lipopolysaccharides (LPS), tumor necrosis factor (TNF)-a, and granu-
locyte–macrophage colony-stimulating factor (GM-CSF) differenti-
ate into type 1 macrophages (M1), and macrophages stimulated by
interleukin (IL)-4 and IL-13 differentiate into type 2 macrophages
(M2) [12]. Despite substantial research, the diversity and complex-
ity of tissue-specific macrophages in vivo are constantly being
revealed, and there are no widely accepted classifications.

M1, also known as classically activated macrophages, secrete
pro-inflammatory cytokines such as IL-1, IL-6, TNF-a, IL-23, and
highly express inducible nitric oxide synthase (iNOS). M1 partici-
pate in the immune response to bacterial, fungal, and viral infec-
tions; however, their sustained activation inflicts damage on the
tissue. In contrast, M2 express platelet derived growth factor
(PDGF), insulin-like growth factor-1 (IGF-1), vascular endothelial
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growth factor (VEGF)-a, anti-inflammatory cytokines, and
chemokines, promoting wound healing, angiogenesis, phagocyto-
sis, fibrosis, and the resolution of inflammation.

An increasing number of studies have shown that macrophages
are essential in acute OTR. One full-gene transcriptome analysis
indicated that the pro-inflammatory macrophage-associated-3
gene was up-regulated during acute graft rejection in a biopsy
study. Its expression was positively correlated with the severity
of subclinical graft injury [13]. During the early stage of OT
ischemia-reperfusion, recipients’ macrophages rapidly infiltrate
the graft site, producing many pro-inflammatory cytokines (such
as IL-1, IL-12, IL-18, IL-6, IL-23, TNF-a, and IFN-c), which damages
grafts [14]. Additionally, macrophages can also promote acute
rejection of transplants by producing reactive oxygen species
(ROS) and reactive nitrogen species (RNS) [15,16]. The interaction
between RNS and ROS promotes cytotoxic peroxynitrite produc-
tion and causes peroxidation of the cell lipid membrane. Moreover,
macrophages mediate acute OTR by activating adaptive immune
responses. As an antigen-presenting cell (APC), both donor- and
recipient-derived macrophages can present antigens and activate
T cells through co-stimulatory signals on the cell surface to release
pro-inflammatory cytokines, resulting in acute rejection.

Similarly, macrophages are associated with chronic rejection of
OT. Chronic rejection of allografts is characterized by interstitial
infiltration of macrophages and T cells, and increased macrophage
infiltration in the allograft is positively associated with graft failure
[17,18]. M2 accelerate chronic graft rejection by promoting smooth
muscle cell proliferation and interstitial fibrosis. Recipient biopsies
indicate that M2 dominate the grafts within chronic rejection, and
their number is positively correlated with the degree of fibrosis
[19]. Conversely, inhibition of infiltrating M2 by oxidized



Fig. 1. Schematic diagram of the interaction among the immune cells in transplant immune response. The main mechanisms involved in graft tolerance are marked in blue
and those involved in graft rejection are marked in red. ICOSL: inducible T cell co-stimulator ligand; FGF: fibroblast growth factor; FccR: Fc gamma receptor.
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adenosine triphosphate (ATP), whose receptor P2x7r is preferen-
tially expressed in M2, reduces the degree of graft vascular disease
and fibrosis and prolongs the survival of heart grafts [20]. Macro-
phages also promote interstitial fibrosis of the grafts by transform-
ing into myofibroblasts, characterized by the co-expression marker
of macrophages (CD68) and myofibroblasts (a-smooth muscle
actin (a-SMA)).

Although macrophages promote OTR through various mecha-
nisms, recent studies have shown that the adoptive transfer of reg-
ulatory macrophages (Mregs) can induce immune tolerance of the
transplanted organs. Mregs are macrophages activated by macro-
phage colony stimulating factor (M-CSF) and IFN-c and constitute
a subpopulation of macrophages with unique phenotypes and inhi-
bit alloreactive T cell proliferation and function. Mregs secrete IL-
10 via fucosylated ligand-mediated dendritic cell-specific intercel-
lular cell adhesion molecule-grabbing non-integrin (DC-SIGN) and
Toll-like receptor 4 (TLR4) pathways to inhibit CD8+ T cell immune
activity and promote CD4+ forkhead box P3 (Foxp3)+ regulatory T
cells (Tregs) amplification [21]. Studies show that mouse Mregs
inhibits T cell activity by iNOS and eliminates alloreactive T cells
by phagocytosis in vitro [22]. Human Mregs specifically expressing
DHRS9 inhibit T cell proliferation by activation of indoleamine 2,3-
dioxygenase (IDO) via IFN-c and contact-dependent mechanisms
[23,24]. Moreover, human Mregs induce T cell immunoreceptor
with immunoglobulin and ITIM domain (TIGIT)+Foxp3+ iTregs dif-
ferentiation and inhibit dendritic cell maturation to promote OTT
[25].

2.2. Natural killer cells

Natural killer cells (NKs) are important components of the
innate immune system, accounting for 10%–15% of peripheral lym-
phocytes, and play a key role in immune surveillance, including
tumor surveillance, defense against viruses, and allograft
immunoreactivity [26,27]. Human NKs are characterized as CD3�-
CD56+CD335(NKp46)+ lymphocytes and can be further divided into
two subgroups based on the expression level of CD56: low expres-
sion (CD56dim) and high expression (CD56bright) [28].

CD56dim NKs are mainly found in peripheral blood and express
high levels of CD16 (FccRIII) and terminal differentiation marker
CD57. They release perforin and granzyme to kill target cells
directly. CD56bright NKs are mainly found in secondary lymphoid
organs, express low amounts of CD16, mediate immune responses
by secreting pro-inflammatory cytokines (e.g., IFN-c and TNF-a),
and induce apoptosis by expressing membrane TNF family mole-
cules factor associated suicide ligand (FasL), TNF-related
apoptosis-inducing ligand (TRAIL), and transmembrane TNF
(mTNF), which bind to target cell membrane ligands [29,30].

Research has shown that NKs are not involved in solid OTR, as
severe combined immunodeficiency (SCID) or recombination-
activating protein (Rag)�/� mice (lacking T and B cells but have
functional NKs) are tolerant to allografts [31]. However, as
research continues, experts are increasingly aware that NKs also
participate in the transplant rejection of solid organs [32]. The bal-
ance of activating and inhibitory signals determines NKs function.
Early post-transplant, NKs infiltrate the allografts [33] and can be
activated by allograft antigens or cytokines (e.g., IL-12, IL-2, and
IFN-c) secreted by dendritic cells (DCs) and T cells [34]. Activated
NKs can kill alloreactive target cells either directly or by releasing
cytokines. Studies have shown that NKs activated by IL-15 con-
tributed to skin allograft rejection in Rag�/� mice [35]. In a study
of gene expression profiling in human kidney biopsy tissue, high
levels of NK transcripts were found, suggesting that NKs have a
unique role in this rejected kidney [36,37]. The pathology of renal
transplant rejection is divided into two categories: T cell-mediated
rejection (TCMR) and antibody-mediated rejection (AMR) [38]. The
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secretion of pro-inflammatory cytokines (e.g., IFN-c and TNF-a)
remains the primary cause of TCMR mediated by NKs. These
cytokines can:

(1) Up-regulate the chemokines (e.g., chemokine (C-X-C motif)
ligand 9 (CXCL9)) secreted by NKs to recruit alloreactive T cells
and promote T helper type 1 cell (Th1) response [39–41];

(2) Up-regulate the expression of major histocompatibility
complex (MHC)-II and co-stimulatory molecules on DCs to pro-
mote DCs maturation [42];

(3) Promote Th1 differentiation and transplant rejection
[43];

(4) Up-regulate human leucocyte antigen (HLA) alloantigen on
donor tissue grafts, marking them for destruction by NKs [44].

Recent transcriptomic evidence suggests that NKs activation is
triggered by the surface antigen CD16 (IgG Fc) receptor in AMR.
The donor-specific antibody (DSA) binding to allograft endothelial
cells interacts with CD16 on NKs to induce antibody-dependent
cell-mediated cytotoxicity (ADCC) on allografts [45].

Interestingly, NKs also induce tolerance in allografts, which
can occur by inhibiting alloreactive T cells and APCs functions.
NKs can specifically inhibit donor alloreactive T cells in the
mouse graft-versus-host disease (GVHD) model to promote
immune tolerance [46]. Additionally, NKs can directly kill
donor-derived DCs by releasing perforin, granzymes, or other
mechanisms, thereby suppressing immune responses and pro-
moting the formation of a tolerogenic environment [47]. In a
mouse skin graft model, recipient NKs kill donor APCs, thereby
inhibiting alloreactive T cell proliferation and promoting toler-
ance to allogeneic skin [48]. Immunoregulatory NKs (NKreg) have
also been shown to inhibit antigen-specific T cells in vitro cell
culture [49]. Trojan et al. [50] showed that renal transplant recip-
ients who survived for more than one and a half year might have
NKreg in their bodies. The function of NKreg, including secreting
IFN-c and ADCC, is also weakened in a similar way to NKreg in
the uterus to protect pregnancy [51]. Yu et al. [52] demonstrated
that alloreactive NKs promote tolerance to hemizygous
hematopoietic stem cell transplant by amplifying recipient-
derived CD4+CD25+ Tregs.

2.3. Dendritic cells

DCs are regarded as the most important APCs because they can
initiate an immune response by activating T and B cells, function-
ing as the bridge between innate and adaptive immune systems.
DCs are derived from hematopoietic stem cells in the bone marrow
and have complex heterogeneity. Human DCs can be divided into
classical/conventional DCs (cDCs), including myeloid DCs (mDCs),
lymphoid DCs, and plasmacytoid DCs (pDCs), which are capable
of secreting large amounts of type I interferons [53]. Functionally,
they can be divided into ‘‘mature” DCs and ‘‘immature” DCs
(imDCs).

After an OT, donor DCs migrate to the recipient’s secondary
lymphoid organs and induce alloreactive naive T cells to differen-
tiate into effector T cells, which in turn migrate into the graft
and mediate rejection. Recipient T cells recognize alloreactive anti-
gens directly, semi-directly, and indirectly. Direct recognition
occurs when recipient T cells directly recognize the alloreactive
MHCmolecules on the surface of donor DCs, which usually triggers
acute rejection. Semi-direct recognition occurs when recipient T
cells indirectly identify the donor antigen peptide presented by
the MHC on the recipient DC surface and directly identify the
donor antigen peptide–donor MHCmolecule complex that is trans-
ferred onto the surface of the recipient DCs [54,55]. Indirect recog-
nition means that recipient T cells recognize donor antigen
peptides processed and presented by recipient DCs, which is a fac-
tor in late stage rejection and chronic rejection.
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Studies have shown that ‘‘immature” tolerogenic DCs (TolDCs)
can promote tolerance to alloreactive antigens [56]. It is now
understood that TolDCs can promote allogeneic graft tolerance
via the following mechanisms:

(1) Expression of low levels of MHC class II molecules and co-
stimulatory molecules to induce T cell anergy and clonal deletion;

(2) Activation of the factor associated suicide/factor associated
suicide ligand (Fas/FasL) pathway and IDO expression to initiate
apoptosis in naive and memory T cells;

(3) Amplification or induction of regulatory lymphocytes (e.g.,
CD4+CD25hiFoxp3+ Tregs, lymphocyte-activation gene (LAG)-3+-
CD49b+CD25+Foxp3+/� Tregs (Tr-1), CD8+ Tregs, regulatory B cells
(Bregs), and T cell receptor (TCR) ab+CD3+CD4�CD8�NKRP1�

double-negative T cells (DNT cells)) to induce immune tolerance;
(4) Production of immunosuppressive factors (e.g., IL-10, trans-

forming growth factor (TGF)-b, IDO, IL-27, and nitric oxide (NO))
and expression of immunoregulatory molecules (e.g., programmed
death ligand-1 (PD-L1), PD-L2, heme oxygenase (HO)-1, human
leucocyte antigen (HLA)-G, TNF-related apoptosis-inducing
ligands, galectin-1, and DC-SIGN) to promote central and periph-
eral immune tolerance [57].

Mouse experiments have shown that injection of donor-derived
imDCs seven days before the allogeneic heart transplant can signif-
icantly prolong graft survival [58]. Additionally, injection of donor-
derived DCs can prevent graft rejection of the skin and GVHD
[59,60]. pDCs can also promote transplant immune tolerance
[61]. In a mouse model, pDCs presenting alloantigen migrate to
draining lymph nodes and induce Treg production. Studies have
shown that in liver transplant patients free of immunosuppressive
agents, the expression of PD-L1 and CD86 by pDCs was positively
correlated with the number of CD4+CD25+Foxp3+ Tregs [62].

2.4. Neutrophils

Neutrophils are small phagocytic cells derived from bone mar-
row stem cells and account for 50%–70% of peripheral blood leuko-
cytes. They express IgG Fc receptors and play a pivotal role in
phagocytosing and destroying foreign matter via complement-
mediated or antibody-dependent pathways. After an OT, neu-
trophils are first responders present in the graft and express pat-
tern recognition receptors (PRRs) binding to damage associated
molecular patterns (DAMPs) released by necrotic cells in extracel-
lular matrix (ECM) to induce ROS and hydrolase production, which
exacerbates graft ischemia-reperfusion injury (IRI) [63].

In the IRI phase of grafts, neutrophils destroy grafts and exacer-
bate rejection using the following mechanisms:

(1) Production of superoxide through the nicotinamide adenine
dinucleotide phosphate (NADPH) oxidase system to promote
macromolecular peroxidation and irreversible cellular damage of
the graft tissue [64,65];

(2) Release of tissue digestive enzymes such as metallopro-
teinase (MMP)-9 and neutrophil elastase (NE) to break the steady
barrier that promotes graft function [66];

(3) Neutrophil extracellular trap formation (‘‘NETosis”) to pro-
mote inflammation in the graft [67].

It has been reported that in the patient of primary lung graft
dysfunction and the mouse model of liver IRI mediated by a lung
transplant, researchers have used deoxyribonuclease (DNAse) to
solubilize NETs, which reduces acute inflammatory responses
and significantly improves graft function [68,69].

The adaptive immune response initiated by neutrophils is a pri-
mary cause of graft rejection. Neutrophils can induce chemokine
(C–C motif) ligand (CCL)1, CCL2, and CCL5 expression in T cells
via FasL/perforin-mediated activity to recruit activated CD8+ T cells
[70]. Researchers found acute rejection can be alleviated in the
mouse skin graft model by depleting neutrophils to attenuate the
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recruitment of alloreactive memory CD8+ T cells [71]. Moreover,
in a mouse orthotopic lung transplant model, the depletion of neu-
trophils promotes immunosuppression-mediated tolerance and
reduces the production of IL-12 by graft APCs and alloreactive
immune responses by Th1 cells [72].

Contrary to TCMR, clinical pathology suggests that increasing
neutrophils in the graft is associated with AMR. In mouse cardiac
and lung transplant models, AMR induces neutrophil infiltration
which destroys transplants [73]. Studies have shown that increas-
ing neutrophils infiltration is also related to chronic graft rejection
[74]. In chronic rejection, Th17 cells attract more neutrophils to
accumulate in local sites by secreting IL-17 and then mediate graft
rejection by the mechanisms mentioned above. Further, it has been
reported that in lung transplant recipients, IL-17-mediated neu-
trophil infiltration increases the risk of chronic rejection [75].

Some studies suggest that neutrophils are not conducive to the
formation of graft immune tolerance. However, others indicate
that regulatory subpopulations in neutrophils are equipped with
inducible anti-inflammatory properties, which can protect allo-
grafts and promote tolerance. Pillay et al. [76] have shown that
CD16bbrightCD62lo neutrophil subpopulations in patients with an
acute injury can bind to T cells via macrophage-1 antigen (Mac-
1) and release hydrogen peroxide, thereby inhibiting T cell prolif-
eration. Moreover, neutrophils can form dense clusters around
the necrotic tissue through their integrin receptors, isolating them
from healthy tissues and promote healing and tissue repair to inhi-
bit graft inflammation [77].

Christoffersson et al. [78] discovered a neutrophil subpopula-
tion marked with CD11b+Gr-1+CXCR4hi, which can be recruited
to the avascular islet grafts of mice model in a VEGF-A-
dependent manner and is helpful to reconstitute islet perfusion.
Additionally, neutrophil subpopulations characterized by CD49+-
VEGFR1hiCXCR4hi with similar pro-angiogenic functions were also
found in humans [79].

2.5. Mast cells

Mast cells (MCs) are a type of granular immune cell which dif-
ferentiate from CD34+/CD117+ multipotent progenitor cells in the
bone marrow [80]. Studies have shown that MCs regulate innate
and adaptive immune responses and play a key role in forming
immune tolerance and rejection in allogeneic OT [81].

The main mechanisms of MCs participating in OTR are
described below.

(1) Degranulation: Studies have shown that the use of MC sta-
bilizer Cromolyn to inhibit MCs degranulation can improve bron-
chiolitis obliterans and pulmonary fibrosis in allografts and
prevent allograft lung transplant rejection [82];

(2) Cytokine secretion: By secreting GM-CSF, TNF-a, IL-3, IL-4,
IL-5, and IL-13 up-regulates the vascular cell adhesion molecule
(VCAM)-1 and intercellular cell adhesion molecule (ICAM)-1 of
the endothelial cells and recruits neutrophils and T cells to graft
[83];

(3) Fibroblasts activation: In chronic rejection of kidney, lung,
and heart transplants, MCs release fibrogenic mediators (e.g., his-
tamine, fibroblast growth factor-2, TGF-b, heparin, cathepsin G,
and chymotrypsin) to activate fibroblasts, promote collagen syn-
thesis, and ultimately induce graft fibrosis [83].

MCs play a key role in Tregs-mediated peripheral immune tol-
erance. Tregs promote the migration of MCs to grafts by secreting
MCs growth factor IL-9 [84]. Tregs stabilize MCs and inhibit IgE-
mediated degranulation by interacting with MCs via tumor necro-
sis factor receptor superfamily member 4 (OX40)/OX40 ligand [85].
Conversely, MCs can release TGF-b, IL-10, and specific proteases to
inhibit T cell proliferation and promote Tregs production [86].
Moreover, MCs expresses the MHC-II molecule, which can present



X. Gan, J. Gu, Z. Ju et al. Engineering 10 (2022) 44–56
antigens to T cells, induces the production of Th2 cytokines (e.g.,
IL-4, IL-10, and IL-13), inhibits IFN-c production, and participates
in the transformation of immature T cells to Th2 cells, which is
conducive to tolerance.

2.6. Eosinophils

Eosinophils, named for their rich eosinophilic granules, are
derived from bone marrow stem cells and undergo phagocytosis.
They are mainly involved in rapid-onset hypersensitivity, anti-
parasitic and viral infections. Studies have shown that eosinophils
also mediate allograft rejection. Eosinophils cause tissue damage
and rejection by expressing cationic granule protein and cytokines
such as IL-5, and attenuating IL-5 can reverse graft rejection [87].
Increased eosinophils counts in peripheral blood and graft biopsy
tissues have been associated with acute rejection in kidney, heart,
and lung transplants [88–91]. It has been reported that the number
of eosinophils is increased in bronchoalveolar lavage and blood of
lung transplant recipients diagnosed with restrictive chronic lung
allograft dysfunction (rCLAD), which was also related to the low
survival rate of transplants [92]. Eosinophils participate in liver
regeneration and play an essential role in predicting acute liver
rejection [93,94]. The Royal Free hospital regards the increase of
eosinophils in graft biopsy as a key component in diagnosing acute
rejection [95,96].

Recent studies have shown that eosinophils can also promote
tolerance in the lung transplant mice model [97]. Onyema et al.
[97] demonstrated that eosinophils could down-regulate T cell-
mediated immune response, and this down-regulation depended
on synapse formation mediated by PD-L1/ programmed death-1
(PD-1) between eosinophils and T cells. Th1-polarized eosinophils
can interfere with TCR/CD3 subunit binding and signal transduc-
tion in an iNOS-dependent manner, thus inhibiting the prolifera-
tion of CD8+ T cells in the graft [98].

2.7. Myeloid-derived suppressive cells

Myeloid-derived suppressive cells (MDSCs) are immature,
highly heterogeneous cells developing from bone marrow. MDSCs
differentiate into macrophages, DCs, and granulocytes depending
on their microenvironment in vivo, and have immunosuppressive
properties [99]. Most human MDSCs express CD11b, CD33, CD34,
and MHC class II molecules, while CD11b and GR1 are expressed
in mice. Based on their morphology, MDSCs can be divided into
granulocytic MDSCs (G-MDSCs) and monocytic MDSCs (M-
MDSCs), and can be further subdivided according to Ly6C and
Ly6G expression. However, the surface marker of MDSCs remains
controversial [100]. MDSCs are thought to exert their induction
of immune tolerance using the following mechanisms:

(1) Direct inhibition of immunogenic bone marrow cells (e.g.,
macrophages, neutrophils, and DCs);

(2) Secretion of cytokines and growth factors (e.g., iNOS, argi-
nase (Arg)-1, HO-1, ROS, IDO, IL-10, and TGF-b1) to transform
immunogenic bone marrow cells into tolerogenic cells [101].

In 2008, Dugast et al. [102] first discovered the accumulation of
CD11b+CD80/86+Sirpa+ myeloid cells in blood and grafts of rat
allogeneic kidney transplant tolerance model and defined them
as MDSCs. MDSCs can inhibit effector T cells proliferation, induce
iNOS-dependent apoptosis, and induce Tregs amplification
[103,104]. A transplant tolerance mechanism of MDSCs was also
identified in mice models of corneal, islet, skin, and heart trans-
plants [105–107]. Hock et al. [108] observed an increase in the
number of MDSCs in kidney transplant recipients, especially those
with renal squamous cell carcinoma who underwent a kidney
transplant, and found that recipients with high numbers of MDSCs
survived longer than recipients with low MDSCs counts [109]. In a
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prospective cohort study of 36 intestinal transplant recipients,
researchers identified three types of MDSCs, all of which were able
to inhibit CD4+ and CD8+ T cell proliferation and IFN-c production,
and promote the survival of intestinal transplants [110]. Although
the above studies indicate MDSCs promote tolerance of trans-
plants, the exact mechanisms require further research.
3. Adaptive immune cells

3.1. Regulatory T cells (including CD4+ T cells, CD8+ T cells, and
CD4-CD8- T cells)

Studies have shown that many T cell subsets play a role in OTT,
including CD4+ T cells, CD8+ T cells, CD4�CD8� T cells, natural killer
T (NKT) cells, and cd T cells.
3.1.1. CD4+ regulatory T cells
CD4+ Tregs are the most intensively investigated Treg subset.

Tregs can inhibit allograft rejection and GVHD responses [111].
Tregs from the thymus (tTregs), also called natural Tregs (nTregs),
migrate to the periphery and inhibit autologous antigens immune
responsivity. Tregs phenotypes are heterogeneous, but Foxp3 is a
characteristic marker of CD4+ Tregs. Antigens can also induce Tregs
to express Foxp3 within the periphery microenvironment of toler-
ance, called adaptive or induced Tregs (iTregs). Both tTregs and
iTregs recognize and respond to alloantigens. However, studies
have shown that Tregs, persistently in response to alloantigens,
play a more important role in OTT [112].

Although there is growing evidence that alloreactive T cells par-
ticipate in allograft destruction and cause irreversible damage to
the transplanted tissue, Tregs can inhibit T cell function and pro-
tect the graft from damage. Therefore, regulating the balance
between alloreactive T cells and Tregs is important to preserve
the donor graft. Before and after OT, adoptive transfer of Tregs
can increase the number of Tregs in recipients and induce immune
tolerance. Tregs can inhibit the activity of immune cells and partic-
ipate in inducing tolerance to the OT through a variety of mecha-
nisms, including:

(1) Secretion of anti-inflammatory cytokines (e.g., IL-10, TGF-b,
and IL-35) to inhibit the proliferation of effector T cell;

(2) Release of granzyme and perforin to promote cell apoptosis;
(3) Expression of CD39/CD73 to inhibit the proliferation of

effector T cells by depleting ATP in the extracellular microenviron-
ment through the production of adenosine and AMP (immunosup-
pressive molecules);

(4) Overexpression of CD25 and uptake of more IL-2 in the
microenvironment to starve IL-2-dependent cells (e.g., effector T
cells and NKs);

(5) Interaction with B cells via PD-L1/PD-1 to inhibit autoreac-
tive B cells in an antigen-specific manner, or release granzyme B
and perforin to kill B cells;

(6) Expression of cytotoxic T lymphocyte-associated antigen 4
(CTLA4) to inhibit the antigen presentation of DCs and T cell prolif-
eration and promote the induction of Tregs by inducing DCs to pro-
duce IDO;

(7) Expression of lymphocyte activation gene (LAG)-3, a mole-
cule with higher affinity than CD4 binding to MHC-II, to decrease
antigen presenting ability of DCs and inhibit T cell activation;

(8) Induction of monocytes to differentiate into M2;
(9) Induction of immunosuppressive phenotype neutrophils to

resolve inflammation in the local environment;
(10) Expression of inducible T cell co-stimulator (ICOS) to

decrease the secretion of IL-5 and IL-13 by intrinsic lymphocyte
(ILCs) 2 [113–115].
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It has been reported that blocking the activity of CTLA4 or IL-10
in animal transplant models prevents Tregs-mediated immune
regulation [116], and many animal models’ acute and chronic allo-
graft rejection can be controlled via Tregs adoptive transfer [117].

3.1.2. CD8+ regulatory T cells
Like CD4+ Tregs, the phenotype of CD8+ Tregs is also heteroge-

neous, and even CD8+Foxp3� Tregs exist [118]. Studies have shown
that CD8+CD28� Tregs can inhibit immunoreactivity against trans-
planted kidneys in renal transplant recipients taking alemtuzumab
as their induction therapy [119]. It has also been reported that a
group of CD8+ Tregs can produce IL-10 to induce tolerance in
patients receiving an allogeneic kidney transplant. In one study,
this group of CD8+ Tregs were differentiated from immature
CD8+ T cells and exerted their action through an IL-10 dependent
mechanism [120]. Recently, CD8+ Tregs expressing IL-2 receptor
b chain (CD122) were found to inhibit islet and skin allograft rejec-
tion in an IL-10 dependent manner and were more effective at OTT
than CD4+ Tregs [121].

The mechanisms of CD8+ Tregs in the modulation of immune
tolerance in OT may be involved in multiple pathways:

(1) CD8+Foxp3+ Tregs express CTLA4 and promote the formation
of transplant tolerance through the samemechanism as CD4+ Tregs
mentioned above [122];

(2) CD8+CD28� Tregs up-regulate the expression of DCs
immunoglobulin-like transcripts 3/4 (ILT3 and ILT4), down-
regulate co-stimulatory molecules (CD80/CD86) and adhesion
molecules (CD54/CD58) to make DCs tolerogenic [123];

(3) CD8+CD45RClow Tregs overexpress glucocorticoid-induced
tumor necrosis factor receptor-related protein (GITR) and interact
with alloreactive APCs to inhibit T cell proliferation [124];

(4) CD8+CD122+ Tregs directly recognize activated T cells
throughMHC-I and then produce IL-10 to inhibit immune response
[125];

(5) CD8+CD122+PD-1+ Tregs interact with APCs via PD-1/PD-L1
and promote IL-10 production to inhibit T cell activation
[126,127];

(6) CD8+ Tregs promote graft immune tolerance by secreting
cytokines such as IL-34, IFN-c, and TGF-b [128–131];

(7) CD8+ Tregs interact with FccRIIB receptor by secreting
fibrinogen-like (FGL) 2 to inhibit DCs maturation, induce B cell
apoptosis, and promote Bregs production [132,133];

(8) CD8+ Tregs mediate target cell apoptosis by releasing per-
forin and induce T cell apoptosis by expressing FasL, which inter-
acts with Fas on T cell surface [134];

(9) CD8+ Tregs highly express CD122 and CD25, and exhaust IL-
2 in the microenvironment to make other IL-2-dependent cells
‘‘hungry” (e.g., effector T cells and NKs) [135].

Since MHC-I is expressed in all nucleated cells, the advantage of
CD8+ Tregs over CD4+ Tregs cells lies in the persistence of donor
MHC-I presentation. Immune tolerance induced via the direct pre-
sentation of MHC-I+ graft cells to alloreactive CD8+ Tregs is long-
term, while direct or indirect presentation by donor APCs to CD4+

Tregs is short-term. Studies have shown that in rat heart allograft
models, the consequence of donor antigen indirectly presented to
CD8+ Tregs is even more effective than directly identifying donor
cells to inhibit the alloreactive response of effector T cells [136].

Immune regulation mediated by CD4+ Tregs is complementary
to that of CD8+ Tregs. CD4+ Tregs mainly inhibit naive effector T cell
response, but not memory T cell response, while CD8+ Tregs inhibit
memory effector T cell response [137]. Additionally, the cytokines
produced by these two Tregs can promote the formation of the
tolerogenic environment in vivo. TGF-b and IL-10 secreted by
CD8+ Tregs can promote the expansion of CD4+ Tregs, while IL-34
secreted by CD8+CD45RClow Tregs can induce the production of
Mregs, CD4+ Tregs, and CD8+ Tregs. It has been reported that in
50
rat heart allograft models, the treatment of IL-34 can induce CD4+-
CD25+ Tregs and CD8+CD45RClow Tregs simultaneously, and trans-
ferring these two Tregs to new transplant recipients can produce
the tolerogenic effect as well [129].

3.1.3. CD4–CD8– regulatory T cells
CD4�CD8� Tregs (DN Tregs) express CD3 and abTCR, but not

CD4, CD8, or NK1.1. Animal model studies have shown that DN
Tregs can prevent CD4+ and CD8+ T cell-mediated immune
response and allograft rejection [138]. DN Tregs can inhibit
immune responses in many ways:

(1) DN Tregs can induce T cell apoptosis by the CD95–CD95L
pathway;

(2) DN Tregs can express a high level of CTLA4 and down-
regulate co-stimulatory molecules CD80 and CD86 on DCs to
induce apoptosis of DCs;

(3) DN Tregs can induce B cell apoptosis by perforin-dependent
pathways [139];

(4) DN Tregs can obtain the whole MHC–antigen complex pre-
sented by APCs using trogocytosis and then combine it with
CD8+ T cells through the MHC–antigen complex to mediate apop-
tosis via the Fas/FasL pathway [140]. Studies have shown that
the adoptive transfer of DN Tregs can prolong graft survival and
increase Foxp3+ Tregs in the mouse heart allograft models [141].
It has also been demonstrated that injection of DN Tregs can effec-
tively inhibit graft rejection in islet, skin, and hematopoietic stem
cell transplants [142].

3.1.4. Natural killer T cell
NKT cells are a group of distinct regulatory T lymphocytes

simultaneously expressing T cell (TCR and CD3) and NK surface
markers (CD56 or NK1.1) [143]. NKT cells rapidly secrete cytokines
(e.g., IL-4, IL-10, and IFN-c) after recognizing CD1d/lipid antigen by
TCR. NKT cells can secrete perforin or kill target cells via the Fas/
FasL pathway, leading to OTR. NKT cells are also associated with
graft tolerance [144]. Ikehara et al. [145] showed that Valpha14+

NKT cells promoted allograft immune tolerance in the mouse islet
transplant model. In the mouse hematopoietic stem cell transplant
model, the adoptive transfer of NKT cells inhibits the development
of acute GVHD and IFN-c, and TNF production [146]. Recent stud-
ies have also shown that the adoptive transfer of invariant NKT
cells can significantly improve cGVHD by amplifying donor Tregs
in a mouse cGVHD model [147].

3.1.5. cd T cells
cd T cells are highly conserved lymphocyte subpopulations,

accounting for 0.5%–6% of total circulating lymphocytes, 4%–10%
of circulating CD3+ T cells, and 10%–50% tissue-resident T cells
[148,149]. cd T cells are heterogeneous and can be classified into
Vd2+ and Vd2� cd T according to the TCR d chain [150,151]. As a
bridge between innate and adaptive immunity, cd T cells play a
significant role in allograft rejection and immune tolerance [152].
In a mouse kidney IRI model, early infiltration of cd T cells after
ischemic injury resulted in ab T cell infiltration and subsequent
tubular damage. At the same time, kidney IRI improved with cd
T cell knockout [153]. Studies have shown that if cytomegalovirus
(CMV) infection occurs in transplant recipients, leading to the pro-
liferation of CMV-specific Vd2� cd T cells, renal allograft injury and
acute rejection will be caused by DSA-mediated ADCC activity
[154,155].

In a mouse lung transplant model, IL-17+ cd T cells were acti-
vated in a TCR-dependent or independent pathway and secreted
IL-17, contributing to acute rejection [156,157]. Similarly, in a
mouse heart transplant model, cd T cells producing IL-17 were
associated with acute and chronic rejection of the graft, and
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depletion of cd T cells reduced serum IL-17 and inflammatory cell
infiltration, prolonging graft survival [158,159].

While the adaptable role of cd T cells in both rejection and tol-
erance continues to be explored, increasing evidence shows that cd
T cells play a role in immune tolerance. Studies have found that,
compared with healthy controls of the same age, the number of
cd T cells was significantly increased, and the ratio of cd T cells
expressing Vd1 and Vd2 was altered (Vd1:Vd2 > 1) in sponta-
neously tolerant liver transplant recipients [160]. Vd1 cdT cells
are capable of producing IL-10 and promoting Th2 production,
while reversing acute rejection of liver transplant associated with
elevated Vd2 cd T cells [161,162]. Before a skin transplant, injecting
the recipient with hybridoma cells in the portal vein can induce the
expansion of oligoclonal cd TCR+ cells, increasing IL-4 and IL-10
production, inhibiting IL-2 and IFN-c production, and improve
graft survival rate [163]. Additionally, in animal models of small
bowel and islet transplant, increased infiltration of cd T cells
improved graft rejection [164,165].

3.2. Regulatory B cells

B cells have multiple immune system functions and can medi-
ate allograft rejection by presenting antigens and producing
cytokines and antibodies. However, B cells can also be manipulated
to inhibit allograft rejection [166]. Bregs have been identified in
humans and mice and are capable of secreting anti-inflammatory
cytokines such as IL-10 and IL-35. Bregs have complex heterogene-
ity with different phenotypes and regulatory functions in humans
and mice. Mouse Bregs usually express elevated levels of CD1d,
CD5, CD21, CD24, and IgM, while human Bregs express CD19,
CD24, and CD38 [167]. One study of a mouse experimental autoim-
mune encephalomyelitis model showed that Bregs inhibited
inflammatory responses, and the adoptive transfer of LPS-
activated Bregs protected non-obese diabetic mice against diabetes
[168,169]. The consumption of Bregs in humans promoted psoria-
sis in multiple sclerosis (MS) patients, exacerbated inflammation,
and aggravated ulcerative colitis [170]. Moreover, in OT, TIM-1+

Bregs can prolong the survival of mouse allografts. In contrast,
TIM-1�/� mice showed defects in IL-10+ Bregs and demonstrated
accelerated graft rejection; however, after the adoptive transfer
of TIM-1+ Bregs, graft survival was significantly prolonged
[171,172]. The mechanism of Bregs participating in the induction
of immune tolerance in OT may be as follows:

(1) Inhibition of the release of pro-inflammatory cytokines (e.g.,
IFN-c and IL-17) from Th1, CTLs, and Th17 via secretion of IL-10 to
suppress monocyte activation and DC maturation and induction of
Tregs by CD80/CD86;

(2) Inhibition of the activation of Th1, Th17, and APCs via secre-
tion of IL-35 and simultaneous induction of Treg amplification to
promote the production of Bregs producing IL-35 and IL-10
[173,174];

(3) Induction of anergic CD8+ T cell and Treg development by
secreting TGF-b [175];

(4) Inhibition of effector T cell expansion or induction of effector
T cell apoptosis by expression of FasL and granzyme B [176,177];

(5) Overexpression of PD-L1 to inhibit follicular helper T cell
(Tfh) differentiation and proliferation;

(6) Production of inhibitory IgG4 and sialylated IgG to limit
inflammation [178].

Clinical studies have shown that patient’s with operational tol-
erance, such as kidney transplant recipients, have maintained graft
function for many years without taking immunosuppressive drugs,
and the absolute number and proportion of B cells are elevated in
these patients compared with those in patients who experienced
graft rejection, indicating that B cells may play a regulatory role
in OTT [179,180]. Another study showed that, compared with
51
patients taking immunosuppressive agents, the number of naive
and transitional B cells was increased in peripheral blood samples.
Meanwhile, B cells expressing CD20 detected in urine sediment
were increased, and this increase in cell number was also noted
in kidney transplant-tolerant patients who did not take immuno-
suppressants [181].
4. Clinical translation of cell therapies in transplantation

Adoptive cell therapy is a recently developed method used to
promote allograft tolerance. The transfer of regulatory immune
cells to recipients before or after transplant inhibits the activation
of effector cells and promotes graft tolerance [182]. Most clinical
trials carried out globally on the induction of graft tolerance by
adoptive cell therapy in solid OT are still underway, and few
reports have been published.

Adoptive Treg therapies can control acute and chronic rejection
in many animal transplant models and may be used in humans.
Results of TRACT, a phase I dose-escalation safety trial infusing
ex vivo expanded recipient polyclonal Tregs into kidney transplant
recipients, was published (NCT02145325) by Northwestern
University (Chicago, USA) in 2018 [183]. Nine renal transplant
recipients were divided into three groups, and infusion of
5 � 108, 1 � 109, and 5 � 109 Tregs, respectively, was carried out
at 60 days after transplantation. The Tregs were isolated from
leukocytes, which had been collected one month before transplan-
tation and expanded ex vivo for 21 days. During the follow-up per-
iod, no serious adverse events due to reinfusion of Tregs were
observed to have occurred, and none of the recipients presented
with opportunistic infections associated with non-specific
immunosuppression. The number of Tregs in the Tregs-reinfused
recipients was increased compared to that in the control group
under the same immunosuppressive conditions. The presence of
DSA was observed in two recipients due to drug intolerance or
overt noncompliance. Overall, the trial demonstrated that it is safe
to infuse ex vivo-expanded Tregs to kidney transplant recipients.
The authors of the TRACT trial, therefore, are planning a phase II
trial as well.

Hokkaido University Hospital and University of California
(UCSF, USA) have completed and published clinical trials using
the expanded recipient Tregs for reinfusion. Todo et al. [184] con-
ducted a clinical trial wherein ten liver transplant recipients
received ex vivo expanded ‘‘Tregs-enriched” cell product reinfu-
sion, and seven subjects had successfully stopped immunosuppres-
sants. Chandran et al. [185] conducted a clinical trial of UCSF for
autologous polyclonal Tregs reinfusion in kidney transplant recip-
ients. The results of the trial showed that the isolation, expansion,
and reinfusion of Tregs are safe and feasible in transplant recipi-
ents taking immunosuppressive agents post transplantation
(NCT02088931).

Currently, the European Union ONE Study is conducting a phase
I/II clinical trial of autologous TolDCs for cell therapy in live kidney
transplant recipients to assess their safety and feasibility
(NCT02252055) [186]. Thomson et al. [187] have also proposed a
phase I/II clinical safety trial investigating the effects of donor-
derived DCregs combined with conventional immunosuppressive
agents on clinical and subclinical renal transplant rejection
patients. Clinical trials of adoptive MSC therapy to induce immune
tolerance in liver, lung, and kidney transplant patients have also
been conducted [188–190]. Perico et al. [191] showed that autolo-
gous MSCs could protect transplanted kidneys from graft dysfunc-
tion before renal transplant (NCT00752479). Although the number
of clinical trials on adoptive Mreg treatment is limited, the results
are promising. Two recipients required very low-dose tacrolimus
monotherapy for stable renal function after six years of adoptive



X. Gan, J. Gu, Z. Ju et al. Engineering 10 (2022) 44–56
transfer therapy (NCT00223067) [192]. While all of the above-
described cell adoptive therapies show promise in terms of safety,
feasibility, and tolerability, the route of administration, time of
administration, the dose administered, and the optimal combina-
tions of these therapies with other therapeutic modalities remain
to be fully elucidated.
5. Application of chimeric antigen receptor technology in
adoptive cell therapy

Currently, chimeric antigen receptor (CAR) T cell therapy has
shown great potential in clinical anti-tumor applications, but its
application in the induction of graft tolerance by immune cells
(e.g., Tregs) has so far been limited to the laboratory. Nevertheless,
the technology holds promise in improving the antigen specificity
of certain immune cells to induce tolerance. Recently, innovative
CAR-Treg therapies in animal transplant models have been
reported. CAR-Tregs genetically modified with coding CARs are
non-MHC dependent and have better antigen specificity than the
conventional Tregs. Hombach et al. [193] genetically modified
Tregs using CAR technology a decade ago and engineered ‘‘designer
Tregs” with defined specificity. The mechanism of CAR-Tregs in
inducing immune transplant tolerance is similar to that of poly-
clonal Tregs. Pierini et al. [194] constructed mAb-CAR-Tregs target-
ing specific tissue sites and successfully reduced GVHD in the
mouse model. The mAb-CAR-Tregs targeted MHC class I proteins
on allografts and prolonged the survival of islet allografts and sec-
ondary skin grafts.

Similarly, in the animal skin transplant model, Boardman et al.
[195] and Noyan et al. [196] designed CAR-Tregs for HLA-A2 to
induce immune tolerance. The designed CAR-Tregs could inhibit
graft rejection more effectively than polyclonal Tregs. ANS8-CAR-
Tregs engineered for FVIII antibodies could also significantly inhi-
bit the proliferation of FVIII-specific T-effector cells in hemophilia
A patients. Thus, these Tregs have strong potential for further use
in tolerogenic therapy of hemophilia A patients [197]. To date,
there have been no reports on the implementation of CAR technol-
ogy for induction of transplantation tolerance by other immune
cells.
6. Conclusions

Although T cells are thought to be the main effector cells
involved in OTR and OTT, the role of innate immune cells in trans-
plant immune responses has received increasing attention in
recent years.

Notwithstanding the different types of rejection in OT, rejection
can be roughly divided into two categories: acute rejection and
chronic rejection. Regardless of the type of rejection, precise preop-
erative tissue matching and appropriate desensitization treat-
ments (e.g., plasma exchange, immunoadsorption, and high-dose
intravenous immunoglobulin) are essential to prevent rejection.
For acute rejection after transplant surgery, hormone pulse thera-
pies, strong immunosuppressants, anti-human immunothymocyte
globulin (ATG) or anti-human T lymphocyte immunoglobulin
(ALG), plasma exchange, immunoadsorption, and intravenous
immunoglobulin therapies should remain the default clinical treat-
ment strategies.

Although there are no effective treatments for chronic trans-
plant rejection, we posit that therapies utilizing adoptive immune
cells to prevent and treat chronic transplant rejection will see
widespread use and significantly improve patient prognosis in
the years ahead. Efforts should be made to develop adoptive cell
therapies with low immunogenicity and high universality and
specificity, such as universal chimeric antigen receptor Tregs (U-
52
CAR-Tregs). Universal cell products should be used before surgery
to improve the success rate of transplants through induction of
immune tolerance.

Animal organs could be considered for use in human transplan-
tation; however, immunogenicity caused by animal organs is a
major hindrance to their use. Therefore, future studies should focus
on directly examining these issues in the context of clinical needs,
aiming to optimize cell product manufacturing methods (e.g., U-
CAR-Tregs), the associated cell product equipment (e.g., cell sor-
ter), and specific cell product and cell quality control procedures
for OT patients.
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