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Soil microbial diversity is extremely vulnerable to fertilization, which is one of the main anthropogenic
activities associated with global changes. Yet we know little about how and why soil microbial diversity
responds to fertilization across contrasting local ecological contexts. This knowledge is fundamental for
predicting changes in soil microbial diversity in response to ongoing global changes. We analyzed soils
from ten 20-year field fertilization (organic and/or inorganic) experiments across China and found that
the national-scale responses of soil bacterial diversity to fertilization are dependent on ecological context.
In acidic soils from regions with high precipitation and soil fertility, inorganic fertilization can result in
further acidification, resulting in negative impacts on soil bacterial diversity. In comparison, organic fer-
tilization causes a smaller disturbance to soil bacterial diversity. Despite the overall role of environmental
contexts in driving soil microbial diversity, a small group of bacterial taxa were found to respond to fer-
tilization in a consistent way across contrasting regions throughout China. Taxa such as Nitrosospira and
Nitrososphaera, which benefit from nitrogen fertilizer addition, as well as Chitinophagaceae, Bacilli, and
phototrophic bacteria, which respond positively to organic fertilization, could be used as bioindicators
for soil fertility in response to fertilization at the national scale. Overall, our work provides new insights
into the importance of local environmental context in determining the responses of soil microbial diver-
sity to fertilization, and identifies regions with acidic soils wherein soil microbial diversity is more vul-
nerable to fertilization at the national scale.
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1. Introduction

By regulating nutrient cycling, food production, and ecosystem
sustainability in natural and cropland ecosystems [1–3], soil
microbial diversity is a fundamental driver of ecosystem function-
ing. Such a diversity is extremely vulnerable to fertilization [4],
which is considered to be one of the most important anthropogenic
drivers impacting terrestrial ecosystems and causing global
changes [5,6]. For example, nutrient-heavy inputs have led to mul-
tiple side-effects, such as escalating production costs, heavy reli-
ance on nonrenewable resources, water contamination, and soil
degradation, with global consequences [7]. In the past decade,
the influences of fertilization on soil microbial diversity have been
frequently reported [8–10], although these investigations are
mainly conducted at small (local and/or field) scales. It has been
found that the application of organic fertilization can have differ-
ent influences even in the same fertilization regime, depending
on the soil characteristics. For example, organic fertilization causes
an increase in diversity in acidic soils [11], a decrease in alkaline
soils [12], and no impact in pH-neutral soils [13]. The responses
of soil microbial diversity have also been found to be dependent
on fertilization type (i.e., inorganic vs organic fertilization) [6,8].
Although investigations have been conducted on the large-scale
response of soil microbial diversity to nutrient amendments
[4,14], these studies mainly focus on natural ecosystems over
relatively short time periods (less than four years). Thus, a
comprehensive understanding of long-term and large-scale effects
is basically lacking. The direction and magnitude of the responses
of soil microbial diversity to long-term fertilization remain largely
undetermined across contrasting ecological contexts (e.g., climates
and soil types). In this study, we hypothesize that local ecological
context—including the site-dependent environmental conditions
of the climate [15,16] and soil properties [17]—ultimately controls
the responses of soil microbial diversity (i.e., richness, community
composition, and species level) to fertilization across large-scale
environmental gradients [4,14]. In short, we started with the belief
that soil microbial diversity might not be equally vulnerable to
fertilization along the gradient of ecological contexts. It is also
possible, however, that a small subset of microbial taxa may
respond to fertilization in a relatively consistent manner. If so, this
response is likely to be associated with the direct impact of
nutrient and/or carbon additions on ‘‘opportunistic” (i.e., taxa with
positive responses) or ‘‘sensitive” (i.e., those with negative
responses) microbial taxa, which are early bioindicators of
response to fertilization regimes. Assessing the role of ecological
context in controlling the responses of soil microbial diversity to
fertilization across a national scale and identifying those taxa that
consistently respond are fundamental in order to accurately
predict changes in the distribution of soil microbial diversity, as
well as the associated functions of these taxa, in a globally
changing world.

To accomplish our goals, we collected surface bulk soils from
ten 20-year fertilization field experiments in croplands (mainly
two crops, wheat and maize) across China (Fig. S1 and Table S1
in Appendix A). Our choice of experimental stations was based
on two reasons: ① Over-fertilization is one of the most important
concerns affecting Chinese cropland ecosystems. For example,
today in China, the nitrogen (N) application rates for wheat and
maize can be as high as 283 and 402 kg∙hm�2∙a–1, respectively
[18]. ② Lands for these two crops cover a great majority of agroe-
cological areas across China (24.5 million hm2 of wheat (account-
ing for 19.6%) and 42.4 million hm2 of maize (34.0%) in 2017)
[19]. Each experimental station had several fertilization regimes
over 20 years (Fig. S1 and Table S2 in Appendix A): control (with-
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out fertilizer), inorganic fertilization with nitrogen–potassium
(NK) and/or nitrogen–phosphorus–potassium (NPK), and organic
plus inorganic fertilization (organic manure amendments (OM))
and/or NPKM (OM plus NPK). These experimental sites cover
most climate zones, soil characteristics, and agricultural regimes
in China (Fig. S1). Thus, this investigation provides a unique
opportunity to evaluate the role of ecological context, in associa-
tion with contrasting local environmental conditions in terms of
soil properties and climate, in regulating the responses of soil
microbial diversity to fertilization at the national scale. To this
end, we used amplicon sequencing to investigate the responses
(i.e., directions and magnitudes) of bacterial richness, community
composition, and the relative abundances of common abundant
taxa (top 10% of taxa in terms of relative abundance) to experi-
mental fertilization. We focused on bacterial communities for
two main reasons: ① Bacteria are the most diverse and abundant
organisms on Earth; and ② bacterial communities are the funda-
mental engines for soil fertility, soil health, and plant productivity
in agroecosystems [2].
2. Material and methods

2.1. Information on the long-term fertilization experiments

Detailed information on the ten long-term fertilization experi-
mental stations is presented in Fig. S1 and Table S1. These stations
are: Fukang (FK), starting from 1987; Fengqiu (FQ) from 1989;
Changwu (CW) from 1984; Yingting (YT) from 1980; Yangliu (YL)
from 1981; Mengcheng (MC) from 1982; Hailun (HL) from 1978;
Shenyang (SY) from 1979; Jinxian (JX) from 1986; and Qiyang
(QY) from 1990. The main fertilization treatments were:① control,
no fertilizer; ② NK applied as urea and potassium sulfate, no
superphosphate; ③ NPK applied as urea, superphosphate, and
potassium sulfate; ④ NPKM (half N applied as compost, the other
half, as well as phosphate (P) and potassium (K), from chemical fer-
tilizers); and ⑤ OM (i.e., total N at the same rate as in NPK treat-
ment but from compost, plus chemical P and K fertilizers as in
NPK treatment).
2.2. Soil sampling and chemical measurements

Surface bulk soils were sampled from ten long-term fertiliza-
tion experimental stations across China after harvesting in 2015.
For each triplicate plot of YT, YL, CW, SY, MC, QY, and JX and each
quadruplicate plot of FQ, FK, and HL, two composite samples were
independently taken from each plot. One composite sample was
generated by homogenizing ten random soil cores with a depth
of 10 cm. All the tools used were previously disinfected with
75% ethanol. A total of 284 soil samples were collected for down-
stream chemical and molecular analyses. The samples were
placed in sterile plastic bags and transported to the laboratory
at 4 �C within one week. Sub-samples for biological assays were
sieved (2 mm mesh size) and stored at �40 �C for DNA extraction.
For chemical assays, soil samples were air dried and sieved
through a 100-mesh sieve to determine the soil pH values, the
contents of soil organic matter (SOM), dissolved organic carbon
(DOC), total nitrogen (TN), total phosphorus (TP), total potassium
(TK), available nitrogen (AN), available phosphorus (AP), available
potassium (AK), nitrate (N in the form of –NO3

–), and ammonium
(N in the form of –NH4

+), according to the protocols provided by
Lu [20]. Detailed information on soil chemical properties is given
in Table S2.
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2.3. Soil DNA extraction

For each soil sample, genomic DNA was extracted from 0.5 g of
soil using a FastDNA SPIN Kit for soil (MP Biomedicals, USA), fol-
lowing the manufacturer’s protocol. The extracted soil DNA was
dissolved in 50 lL of Tris-EDTA buffer, quantified by spectropho-
tometry, and stored at �40 �C until further use.

2.4. Preparation of amplicon libraries and high-throughput sequencing

The bacterial community was characterized using 16S amplicon
sequencing. For each DNA extract, the primer set 519F/907R was
used to amplify approximately 400 bp of bacterial 16S ribosomal
RNA (rRNA) gene V4–V5 fragments [21,22]. The oligonucleotide
sequences included a 5 bp barcode fused to the forward primer.
Polymerase chain reactions (PCRs) were carried out in 50 lL reac-
tion mixtures with the following components: 4 lL (2.5 mmol∙L�1

each) of deoxynucleoside triphosphates; 2 lL (10 mmol∙L�1 each)
of forward and reverse primers; 2 U of Taq DNA polymerase
(TaKaRa, Japan), and 1 lL of template containing approximately
50 ng of community DNA as a template. Negative controls were
always run with sterile double distilled water (ddH2O) as the tem-
plate. Thirty-five cycles (95 �C for 45 s, 56 �C for 45 s, and 72 �C for
60 s) were performed, with a final extension at 72 �C for 7 min. The
bar-coded PCR products from all of the samples were purified
using a QIAquick Gel Extraction kit (QIAGEN, Germany), and then
normalized in equimolar amounts. Next, they were prepared using
the TruSeq DNA Sample Prep LT Kit and sequenced using the MiSeq
Reagent Kit (600 cycles) following the manufacturer’s protocols.
The bacterial 16S rRNA gene sequences for this study have been
deposited in the DNA Databank of Japan (DDBJ) database (acces-
sion no. PRJDB9137).

2.5. Processing high-throughput sequencing data

Raw sequence data were assembled with FLASH [23] and pro-
cessed with the UPARSE algorithm [24]. Primers were trimmed
with Cutadapt (version 1.9.2) [25]. Sequences with an average
quality score of below 25 and a length of less than 300 bp were dis-
carded, and chimeras were filtered by UPARSE. Operational taxo-
nomic units (OTUs) were delineated using a 97% similarity
threshold, and the taxonomy was then determined by ribosomal
database project (RDP) classifier v2.12 for bacteria at a confidence
threshold of 80%, using the taxonomy version of RDP 16S rRNA
training set 16 [26]. OTU representative sequences were aligned
using PyNAST against the GreenGene database (v13_8) [27], and
a phylogenetic tree was then constructed using FastTree [28]. In
total, we obtained 20 294 908 bacterial 16S rRNA gene reads, with
between 40 691 and 158 122 reads per sample, and a median value
of 68 470 reads per sample. Because an even depth of sampling is
required for alpha (a) diversity and beta (b) comparisons, samples
were randomly rarified to 40 000 reads per sample for downstream
analyses.

2.6. Changes in bacterial richness, community composition, and
bioindicators in response to fertilization regimes

The influence of fertilization regimes on bacterial richness (i.e.,
the number of OTUs) was expressed as an index of effect size using
the natural logarithm of the response ratio (lnRR). The lnRR was
calculated based on the ratio of the bacterial richness in an organic
plus inorganic fertilized group (OM and/or NPKM, hereafter termed
‘‘organic fertilization”) or in an inorganic fertilized group (NK and/
or NPK) to that of the control group without fertilization within
each experimental site or across all experimental sites, using the
R (version 3.3.1; R Development Core Team 2016) package
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‘‘Metafor” [29]. Thus, the lnRR values generated a summary of
the outcomes to determine the responding magnitudes and direc-
tions of bacterial richness to fertilization regimes.

Shifts in community taxonomic composition were calculated by
means of Bray–Curtis dissimilarities, which were then visualized
using non-metric multidimensional scaling (NMDS) plots and eval-
uated by permutational multivariate analysis of variance (PERMA-
NOVA) tests [30]. The F model values derived from PERMANOVA
within each experimental site and across all sites characterized
the degrees of shifts in bacterial taxonomic communities under
fertilization.

To reveal the common abundant taxa (the top 10% OTUs
accounting for 87.5% of the total reads) responding to fertilization
at a large scale, we classified four categories based on the chang-
ing pattern of the lnRR of the relative abundance of each taxon to
fertilization [31,32]. Across at least nine sites, consistently posi-
tive responders (i.e., with lnRR values greater than zero) were
classified as ‘‘opportunistic,” while consistently negative respon-
ders (i.e., with lnRR values less than zero) were termed ‘‘sensi-
tive.” In addition, taxa without changes in relative abundances
(i.e., with lnRR values overlapping zero) in each site were termed
‘‘tolerant,” and those without consistent changing patterns across
sites were termed ‘‘context-dependent.” The phylogeny of the
bacterial taxa and each taxon’s assigned life strategy under fertil-
ization were drawn using the Interactive Tree of Life (iTOL)
webtooly.

2.7. Statistical analysis

The data were expressed as the means with standard deviation
(SD), and different letters were used to indicate significant differ-
ences between different samples. Differences in fertilization were
evaluated with one-way analysis of variance (ANOVA) followed
by post hoc Tukey’s honestly significant difference (HSD) tests.
Pearson andMantel analyses were respectively conducted to corre-
late community (i.e., richness and composition) to environmental
variables [33]. P < 0.05 and P < 0.01 respectively denote significant
and highly significant differences between samples. To determine
the direct and indirect effects of environmental variables on the
lnRR of bacterial richness, shifts in community composition, and
changes in common abundant taxa, structural equation models
(SEM) were conducted and tested using AMOS 20.0 (SPSS Inc.). A
maximum likelihood estimation method was used to compare
the SEMmodels with the observations. Model adequacy was deter-
mined by v2 tests, comparative fit index (CFI), goodness-of-fit
index (GFI), and root square mean errors of approximation
(RSMEA). Adequate model fits are indicated by nonsignificant v2,
high CFI, high GFI (>0.9), and low RSMEA (<0.05).
3. Results and discussion

3.1. Ecological context determines the responses of soil bacterial
diversity to fertilization

We first investigated the responses of bacterial richness (i.e., the
number of phylotypes of bacteria) to fertilization in the soils from
ten experimental sites across China (Fig. 1(a)). These sites included
contrasting climates (e.g., different mean annual temperature
(MAT) and mean annual precipitation (MAP)) and soil properties
(e.g., soil pH) (Table S1), as well as both inorganic and organic fer-
tilization regimes (Table S2). Our results showed that both the
direction and the magnitude of the responses of bacterial richness
(calculated by the lnRR-response ratio) to fertilization were depen-
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Fig. 1. (a) Effects of organic plus inorganic (NPKM and/or OM) and inorganic (NPK and/or NK) fertilization on bacterial richness (unitless) (calculated by the lnRR of bacterial
richness) in ten experimental sites across China: FK, FQ, CW, YT, YL, MC, HL, SY, JX, and QY. The horizontal error bars are 95% confidence intervals for effect sizes within each
site and across the ten experimental sites. The sites have been color-coded according to soil pH gradient. (b) Correlation between lnRR (under inorganic or organic
fertilization) and soil pH (log10 value) across ten experimental sites. (c) Direct and indirect effects of latitude, longitude, climate, soil properties, and inorganic vs organic
fertilization on the lnRR of bacterial richness across ten experimental sites. The inset bar graph presents the standardized total effects (direct plus indirect effects) of
fertilization and local environmental conditions derived from the SEM on lnRR. Numbers adjacent to lines indicate the effect size of the relationship. Continuous and dashed
lines indicate positive and negative relationships, respectively. The width of the lines is proportional to the strength of the path coefficients. R2 denotes the proportion of
variance explained. df indicates degree of freedom.
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dent on ecological context (i.e., were dependent on the site and fer-
tilization regime (Fig. 1(a) and Fig. S2 in Appendix A) and were
associated with key local soil properties, climate, and fertilization
regimes (Figs. 1(b) and (c)). These results provided the evidence
that soil bacterial richness is not equally affected by fertilization
across China. Our findings are inconsistent with the observations
of Leff et al. [4] and Ramirez et al. [14] on the consistent responses
of microbial diversity to inorganic nutrient amendments. Possible
reasons for these inconsistencies might include important method-
ological differences: ① temporal frameworks (<4 years vs 20 years
of nutrient additions); ② nutrient input types (e.g., inorganic vs
inorganic and organic); and ③ ecosystem types (e.g., natural
ecosystems vs agroecosystems). The higher temporal and nutrient
type resolutions of our study make our findings more comprehen-
sive in comparison with previous works. It is well known that cli-
mate conditions (e.g., MAT and MAP) [34,35] and soil properties
[16,17] drive soil microbial community diversity, structure, and
ecological function at large scales. Subsequently, they determine
microbes’ responses to environmental changes [1]. It has been
attested, for example, that in response to organic fertilization,
bacterial diversities increased in acidic soils with higher MAT and
MAP [11] but decreased in alkaline soils with lower MAT and
MAP [12].

Our results indicate that the natural variation in soil acidity (i.e.,
in pH, the major driver of soil bacterial diversity, shown in Fig. 1(b)
and Table S3 in Appendix A) [17] determines the response of bac-
terial richness to fertilization at the national scale. Our analysis
suggests that bacterial richness is far more vulnerable in acidic
soils, typically in regions with high precipitation and soil fertility.
For example, in already acidic (e.g., SY and QY) and neutral (e.g.,
YL and MC) soils (Table S1), inorganic fertilization led to further
acidification (Table S2), which subsequently resulted in strong
reductions in bacterial richness (Table S4 in Appendix A). Acidic
environments inhibit the growth of microorganisms and thus
negatively influence soil bacterial diversities [36,37]. Multiple
studies have demonstrated the negative influence of inorganic fer-
tilization on microbial diversity in acidic and neutral soils
[10,13,38,39]. However, this effect was not observed in alkaline
soils, which could buffer the potentially negative effects of inor-
ganic fertilization on soil acidity (e.g., YT, FK, and CW; Fig. 1(a),
Fig. S2, Tables S2 and S4). Soil pH is known to be the most impor-
tant driver of changes in soil bacterial community at the large
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scale, since it is the integrated proxy of local ecological contexts
[37,40,41]. Naturally, this understanding led to our attempt to
unravel how changes in soil pH, triggered by fertilization regimes
and local environmental factors, alter soil bacterial diversity. With
SEM, we further assessed the direct and indirect effects of local
environmental factors (i.e., climate and soil properties) and fertil-
ization regimes on the response of bacterial richness (i.e., the lnRR
of bacterial richness; Fig. 1(c)), as well as the shifts in bacterial
community composition (Figs. S3 and S4 and Table S5 in Appendix
A), to fertilizations. Our models explained large portions of the
variations in the bacterial responses to fertilization (R2 = 87.3%
for the lnRR of bacterial richness and 62.8% for shifts in community
composition). Among all the environmental variables, soil acidity—
associated with high precipitation, temperature, and soil fertility—
had the strongest total (direct plus indirect) positive effects on the
response of bacterial richness to fertilization (Fig. 1(c) and Table S6
in Appendix A) [37]. Similarly, ecological context effects (e.g., MAT,
MAP, soil pH, and TP) were found for bacterial community compo-
sition (Tables S7–S9 in Appendix A). The effects of ecological con-
text on the shifts in bacterial community composition were also
site- and fertilization regime-dependent at the national scale of
China (P < 0.01) and were closely associated with the response of
soil acidity to fertilization regimes (Table S6).

Our results further indicated that, in general, the response of
bacterial richness to organic fertilization was smaller than the
response to inorganic fertilization (t-test P = 0.038) across ten
experimental sites (Figs. 1(a) and S2 and Table S6) [10]. Even so,
the effects of organic fertilization on bacterial richness were also
associated with the local environmental context. In line with the
idea that soil acidity regulates the response of bacterial richness
to fertilization, organic fertilization resulted in an increase in bac-
terial richness associated with a decrease in acidity in the most
acidic soils (e.g., QY and JX (Table S2)). In addition, organic fertil-
ization can input amounts of exogenous carbon into soils; this
indistinctively stimulates microbial lineages more than inorganic
fertilization does, and is speculated to help to reduce differences
caused by the influence of the local environmental context [42].
Our SEM results further highlighted that the ecological context-
dependent soil fertility, including the total carbon, phosphorus,
and potassium contents [43–45] (Tables S3, S4, S9 and S10 in
Appendix A), was also partially responsible for determining the
responses of bacterial richness and community composition to fer-
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tilization. In addition, we found that the reported patterns of the
response of bacterial richness to fertilization were independent
of crop type. For example, we did not find any effect of wheat
(FK and CW) or maize (HL, SY, and JX) on the response of bacterial
richness to inorganic (t-test P = 0.43) or organic fertilization (t-test
P = 0.48) across China. In summary, our findings suggest that soil
microbial diversity is not affected similarly by fertilization in the
investigated sites; it is far more vulnerable to fertilization in acidic
(vs alkaline) soils; and it is more sensitive to inorganic fertilization
than to organic fertilization at the national scale (as shown in the
inset bar graphs in Figs. 1(c) and S4).

3.2. Only a small subset of bacterial taxa show consistent responses to
fertilization

We then evaluated the responses of common dominant micro-
bial phylotypes (top 10% taxa (Fig. S5 in Appendix A) in terms of
relative abundance and accounting for 87.5% of all 16S rRNA gene
reads, following the standard of Delgado-Baquerizo et al. [32], to
over two decades of fertilization (Fig. 2). These common taxa were
categorized into four groups based on their adaptive strategies to
fertilization (� 90% of field experiment sites) (see Section 2.6):
① opportunistic taxa, composed of the subsets of taxa with consis-
tently positive responses to fertilization; ② sensitive taxa, com-
posed of the subsets of taxa with consistently negative responses
to fertilization; ③ tolerant taxa, comprising those taxa with a con-
sistent lack of response to fertilization; and ④ context-dependent
taxa, including bacterial taxa with inconsistent responses to fertil-
ization across multiple experimental sites. We noticed that a small
subset of opportunistic taxa (2.3% and 0.2% for organic and inor-
ganic fertilizations, respectively) and sensitive taxa (0.3% and
0.7%) consistently responded to fertilization across multiple exper-
Fig. 2. Phylogeny of bacterial taxa, and each taxon’s assigned life strategy (colors in wider
wide ring) fertilization. The inset table presents the percentages of four life strategies un
opportunistic, sensitive, and tolerant taxa under organic and inorganic fertilization, respe
strategies within the most dominant phyla under inorganic (outer pie charts) and organic
of the subset of taxa with consistently positive and negative responses to fertilizations (a
to fertilization (across at least nine sites). Taxa with inconsistent responses (i.e., contex
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imental sites (Fig. 2 and Table S11 in Appendix A). The emergence
of opportunistic taxa, compared with the control without fertiliza-
tion, is likely to be directly driven by nutrient and/or carbon addi-
tions linked to fertilization regimes. Unlike bacterial richness and
community composition, our SEM results indicated that the total
effects accumulated from two decades of organic and inorganic fer-
tilization were more important than ecological context, including
local environmental conditions in terms of climate (e.g., MAT and
MAP) and soil properties (e.g., N and SOM), in controlling the rela-
tive abundances of opportunistic taxa (Figs. 3(a) and (b)). The
opportunistic taxa were mainly dominated by Proteobacteria and
Bacteroidetes (Fig. 2 and Fig. S6 in Appendix A). Many members
within these two phyla are potential copiotrophs [46], and thus
might have competitive advantages in eutrophic environments
under fertilization. Other examples of opportunistic taxa included
Nitrosospira and Nitrososphaera, which could benefit from the addi-
tion of N from fertilization, and Chitinophagaceae (Bacteroidetes),
Bacilli (Firmicutes), and phototrophic bacteria (Rhodopseudomonas,
Rhodospirillaceae, and Rhodospirillales within Proteobacteria)
(Fig. 2), which were all found to respond positively to exogenous
carbon resource inputs from organic fertilization and in arable soils
with high fertility [8,47–49]. Thus, it is reasonable to associate the
desirable responses of these opportunistic taxa with the high soil
fertility, regardless of the local ecological context. This information
could be a powerful tool to determine the best agricultural prac-
tices. Sensitive taxa included members of Acidobacteria and Acti-
nobacteria (Fig. 2 and Fig. S6), which are often classified as
oligotrophic taxa [14,46]. In addition, taxa related to N cycling
within Nitrospirae, Planctomycetes, and Proteobacteria (e.g., Rhi-
zobiales, Myxococcales, and Burkholderiales [50]; Fig. 2 and
Fig. S6) were classified as sensitive due to their response to the
addition of N from fertilization. Such taxa can be used as early-
rings, corresponding to Fig. S6) under inorganic (outer wide ring) and organic (inner
der fertilization. The values behind the phyla are the percentages (in total OTUs) of
ctively. Phyla are indicated by branch colors. Pie charts show the distribution of life
(inner pie charts) fertilization. Opportunistic and sensitive taxa respectively consist
cross at least nine sites); tolerant taxa are those that consistently show no response
t-dependent taxa) were excluded from the phylogenetic statistical analysis.



Fig. 3. Direct and indirect effects of space, climate, and soil properties as well as (a) organic and (b) inorganic fertilization on opportunistic taxa across at least nine
experimental sites. The inset bar graphs show the standardized total effects (direct plus indirect effects) of fertilization and local environmental conditions (space and
climate) derived from the SEM on opportunistic taxa under organic and inorganic fertilization.
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warning indicators of the negative impacts of agricultural practices
on soil fertility. Taken together, our findings suggest that these
taxa that are opportunistic and sensitive to fertilization hold
potential for use as bioindicators of soil fertility in response to
anthropogenic activities at the national scale.
4. Conclusions

In summary, based on a national-scale investigation of ten 20-
year experimental sites, our findings provide novel evidence that
the local environmental context determines the responses of soil
microbial diversity to fertilization. We demonstrate that soil
microbial diversity is not equally vulnerable to fertilization across
China. At this scale, soil microbial diversity is far more vulnerable
to fertilization in acidic soils, in which fertilization results in fur-
ther acidification, and to inorganic fertilization compared with
organic fertilization. Only a very small subset of microbial taxa
was found to consistently respond to fertilization across very dif-
ferent ecological contexts. These findings were integrated in order
to better predict future potential changes in and the distribution of
soil microbial diversity in a changing world [1]. They further
advance the existing theoretical framework on the importance of
local ecological context in controlling the responses (e.g., magni-
tude and direction) of soil microbial diversity to anthropogenic
alterations at the national scale [4,14].
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