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Many properties of natural fractures are uncertain, such as their spatial distribution, petrophysical prop-
erties, and fluid flow performance. Bayesian theorem provides a framework to quantify the uncertainty in
geological modeling and flow simulation, and hence to support reservoir performance predictions. The
application of Bayesian methods to fractured reservoirs has mostly been limited to synthetic cases. In
field applications, however, one of the main problems is that the Bayesian prior is falsified, because it fails
to predict past reservoir production data. In this paper, we show how a global sensitivity analysis (GSA)
can be used to identify why the prior is falsified. We then employ an approximate Bayesian computation
(ABC) method combined with a tree-based surrogate model to match the production history. We apply
these two approaches to a complex fractured oil and gas reservoir where all uncertainties are jointly con-
sidered, including the petrophysical properties, rock physics properties, fluid properties, discrete fracture
parameters, and dynamics of pressure and transmissibility. We successfully identify several reasons for
the falsification. The results show that the methods we propose are effective in quantifying uncertainty in
the modeling and flow simulation of a fractured reservoir. The uncertainties of key parameters, such as
fracture aperture and fault conductivity, are reduced.

� 2022 THE AUTHORS. Published by Elsevier LTD on behalf of Chinese Academy of Engineering and
Higher Education Press Limited Company. This is an open access article under the CC BY-NC-ND license

(http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction The uncertainty quantification of reservoir prediction is often
Naturally fractured reservoirs constitute a significant portion of
the world’s remaining oil and gas reserves [1,2]. Although the exis-
tence of fractures enhances the fluid storage and flow capacity
[3,4], it also brings significant challenges to oilfield development
[1]. In reservoir modeling and simulation, many fracture properties
are uncertain, such as the discrete fracture network (DFN) param-
eters [5,6], permeability anisotropy [2], relative permeability and
wettability [7,8], and dependence of fracture permeability on
reservoir pressure [9,10]. Thus, uncertainty quantification plays a
critical role in mitigating decision-making risk in fractured reser-
voir development.

The information gained from different sources, such as three-
dimensional (3D) seismic surveying [11–14], fracture field out-
crops [2,15–17], borehole imaging logging [18,19], and laboratory
experiment data [10], contributes to reducing the uncertainty in
static reservoir modeling and dynamic flow simulation.
performed by generating multiple models constrained by the pro-
duction history [20,21]—namely, posterior realizations. Bayesian
theorem is a commonly used framework to generate (posterior)
models [22], based on a stated prior and a likelihood model. When
used on fracture properties, a prior model makes it possible to
impose important geological characteristics [23,24] generated from
MonteCarlo simulationsonto themodel. In theMonteCarlomethod,
uncertain variables are randomly sampled. TheMarkov chainMonte
Carlo (McMC) method is introduced to target the distribution from
which we want to sample. Recently, the McMC method has been
increasingly used in history matching and uncertainty quantifica-
tion [21,25]. McMC generates a dependent chain of models that
makes it possible to estimate and sample the posterior distribution.
In each iteration of the Markov chain, an acceptance rule is used to
decide whether to accept the proposed model or retain the old
model. Several modified McMC approaches have been developed
to enhance theperformance of theMcMCmethod; examples include
hybridMcMC [26], mode jumpingMcMC [27], and parallel interact-
ingMcMC [28], which deal with low acceptance, multi-mode poste-
rior, and high-dimensional issues arising in practical applications.
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The efficiency of McMC methods is limited because the realiza-
tions are sequentially generated. Ensemble methods—such as the
ensemble Kalman filter (EnKF) [29–31], ensemble smoother (ES)
[32,33], iterative EnKF [34], and ensemble smoother with multiple
data assimilation (ES-MDA) [35]—have recently gained attention
for quantifying uncertainty and history matching. EnKF is a Monte
Carlo method that implements a covariance-based Bayesian updat-
ing scheme for data assimilation [31]. The prior model parameters
and production data are jointly updated through assimilation by
the observation data under the primary assumptions of linear sys-
tem dynamics and multivariate Gaussian distribution of the model
parameters. The ES method is used to avoid rerunning the simula-
tion as the parameters are updated, while the iterative EnKF
extends the assumption of the EnKF to be applicable when the
relationship between the data and model parameters is highly
nonlinear. The ES-MDA improves the ES method by introducing
an inflated error covariance matrix.

More recently, direct forecasting [24,36,37] and data-space
inversion [38,39] have been introduced to evaluate the uncertainty
of future reservoir performance prediction without generating
posterior reservoir models. Instead, direct forecasting establishes
a statistical model between the (historical) data and the target
(future prediction). The posterior prediction distribution is directly
estimated from the observations. Data-space inversion treats
production data as random variables. The posterior data variable
distribution is sampled through a data-space randomized
maximum likelihood method.

However, these methods do not address a case in which the
prior distribution is falsified [40]. Falsification simply means that
the stated model can never predict the historical data, no matter
how many realizations are generated. Bayesian evidential learning
(BEL) [41] offers a protocol for uncertainty quantification that
includes falsification. It is increasingly used to quantify the uncer-
tainty in oil and gas [24], groundwater [42], and geothermal [23]
applications. Rather than being a method, BEL is a protocol of
how existing methods can be applied to solve field case problems.
The advantage of BEL is that it can handle any distribution of the
prior and any sensitivity analysis methods, which makes it applica-
ble to quantify the uncertainty of complex problems in practice.

Many uncertainty quantification processes are time-consuming,
as they usually require the generation of thousands to tens of thou-
sands of model samples from geological modeling and forward
simulation. In fractured reservoirs, significant computational cost
must be considered in order to capture the detailed fluid flow in
fractures using an unstructured grid explicitly or a refined struc-
tured grid. This challenge makes it attractive to build surrogate
models (also known as proxy models) as less computationally
expensive alternatives for practical fractured reservoirs. Many sur-
rogate models have been developed for history matching and
uncertainty quantification, such as polynomial models, kriging
models, splines proxy models with space-filling designs, and more
widely used response surface proxy models [43–45]. More
recently, the use of tree-based regression, such as random forest
models [46] and stochastic gradient boosting [47], for sensitivity
analysis and history matching has obtained increased attention.

Many studies on and methods for uncertainty quantification
use synthetic cases (e.g., Ref. [39]), in which the prior uncertainties
are manually designed, and the observed data are selected from
the simulated results. This simplification bypasses the falsification
issue because the selected ‘‘truth” from the simulation is always in
the population of prior data, indicating that the probability of the
observation in the prior is prominent enough. In real cases, the
prior model uncertainty—as determined through careful geologi-
cal, geophysical, and engineering analysis—is often unable to pre-
dict the actual observations, meaning that the prior model is
falsified [40]. The prior model may be falsified for various reasons:
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the parameter uncertainty may be too narrow or taken to be deter-
ministic, the physical model used may be incorrect, or any combi-
nation of both may occur [23,48].

Falsification problems are often reported in prior-based tech-
niques [24,49]. However, a systematic approach—namely, de-
falsification—is needed to diagnose the prior problem and adjust
it to become non-falsified. The first main contribution of this paper
is that we present a systematic approach that indicates what is
wrong in the prior model when the prior model is falsified. We
combine global sensitivity analysis (GSA), dimension reduction,
and Monte Carlo techniques to identify the problem. The second
contribution is that we employ an approximate Bayesian computa-
tion (ABC) method combined with a random-forest-based surro-
gate model trained on the non-falsified prior to match the
production history. Finally, we apply this method to a complex
fractured reservoir for which all uncertainties are jointly consid-
ered, including petrophysical properties, rock physics, fluid proper-
ties, and fracture properties.

The field case is a naturally fractured metamorphic reservoir
located at the Bohai basin in China, where decision-making under
uncertainty is needed in order to plan additional wells. The uncer-
tainty components include fracture density, fracture aperture, per-
meability at the well location and spatial distribution, relative
permeability, and fault transmissibility. The problem is how to
evaluate and, more importantly, how to reduce the uncertainty
of the reservoir model based on the measured data (i.e., well log-
ging and seismic data) and the historical data (i.e., production rates
and pressure).
2. Case study

2.1. Bayesian evidential learning for field cases

BEL is a comprehensive framework for uncertainty quantifica-
tion and inversion [41]. Rather than being a method, BEL is a pro-
tocol based on Bayesian reasoning with priors. It uses a GSA to
suggest effective inverse methods (i.e., history matching) for the
case at hand, and it uses observations (i.e., the production history
data in this study) as evidence to infer model hypotheses by learn-
ing from the prior distribution [24]. In general, BEL consists of six
stages [23]:

(1) Formulation of the decision problem and definition of the
prediction variables;

(2) Statement of the prior uncertainty model;
(3) Monte Carlo simulation and falsification of the prior uncer-

tainty model;
(4) GSA of the data and prediction variables;
(5) Uncertainty reduction with the data;
(6) Posterior falsification and decision-making.
This work aims to quantify uncertainty in reservoir modeling

and simulation processes; it corresponds to Stages 2–5 in the
framework.
2.2. Geological settings and production history

The study area is an offshore, naturally fractured burial-hill
reservoir located in China. The reservoir consists of metamorphic
rocks, which are impermeable. Before being buried to the subsur-
face, the top of the reservoir was weathered, forming a capacity
for storage and fluid mobility. Natural fractures are caused by both
weathering and tectonic movement. Five producers are drilled in
the upper area of the reservoir, surrounded by four injectors in
the relatively lower part of the reservoir (Fig. S1(a) in Appendix
A). There are two exploration wells are drilled, but not brought
to producing or injecting.
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The fluids in the reservoir are oil and water, which are sepa-
rated by a constant oil–water contact (WOC) near�1880 m
(Fig. S1(b) in Appendix A). The reservoir started to produce oil in
September 2015. The production history data of the five produc-
tion wells are collected (Fig. S2 in Appendix A). The observation
data are the oil production rate (OPR), gas production rate (GPR)
for all the production wells, and the bottom hole pressure (BHP)
for the production wells P1, P2, and P3. No water production
occurred for any of the production wells until March 2019.
2.3. Reservoir modeling data and prior uncertainty elicitation

Uncertainties remain in many aspects of static modeling and
flow simulation, such as structure modeling, petrophysical model-
ing, fluid modeling, and rock physics modeling. In this section, we
describe the information available for characterizing the reservoir
and the sources of uncertainty throughout the modeling and sim-
ulation processes. The quantified uncertainty parameters and their
distribution are listed in Table 1, and the whole modeling work-
flow is shown in Fig. 1.
2.3.1. Structural uncertainty
The reservoir is divided into three vertical zones (Fig. S3(a) in

Appendix A). The ratio of the reservoir to non-reservoir decreases
because the weathering degree decreases from top to bottom.
Forty-six faults (Fig. S3(b) in Appendix A) are interpreted from
the 3D seismic ant tracking attribute (Fig. S4 in Appendix A). The
position of all the faults is deterministic, while the fault conductiv-
ity remains uncertain because the fault conductivity is difficult to
Table 1
Uncertainty parameters and their distribution.

Model Global parameter

Facies Major variogram range
Ratio of minor to major variogram
Vertical variogram
Major variogram direction

Petrophysical properties Major variogram range
Ratio of minor to major variogram
Vertical variogram
Major variogram direction
Coefficient of seismic impedance to porosity
Matrix porosity multiplier

Fracture density Major variogram range of fracture density
Ratio of minor to major variogram of fracture density
Vertical variogram of fracture density
Coefficient of seismic anisotropy to fracture density
Major variogram direction of fracture density

DFN Fracture aperture
Direction variation of fracture azimuth
Fracture length distribution shape
Maximum fracture length
Minimum fracture length
Minimum explicit fracture length
Fracture concentration

Fluid Oil–water contact
Oil density
Bubble point pressure
Gas–oil contact
Gas density

Rock physics Maximum capillary pressure
Water saturation at Cp = 0
Initial water saturation
Residual oil saturation
Rock compressibility

Fault property Fault seal/open scenarios

Cp: capillary pressure; U: uniform; GOC: gas–oil contact.
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measure in the reservoir. Here, we simplify the fault conductivity
uncertainty as two scenarios: fully sealed and fully opened.

2.3.2. Petrophysical property uncertainty
Petrophysical properties, such as porosity and permeability,

have uncertainties. In this case, matrix porosity is measured from
well logs. Seismic acoustic impedance (Fig. S4 in Appendix A) is
measured to indicate the spatial variation of the porosity. We
apply co-SGS to simulate the 3D property distribution with log
interpretations as ‘‘hard” data and the seismic attribute as ‘‘soft”
data. In the matrix property modeling process, the uncertain
modeling parameter includes variogram parameters, and the cor-
relation coefficient of the seismic attribute to the borehole prop-
erties. Matrix permeability is not measured at well locations.
Thus, we provide a prior depending on past experience. The spa-
tial distribution of the matrix permeability is constrained by the
porosity.

2.3.3. Uncertainty in fracture properties
Fractures may have a considerable impact on fluid flow. The

four existing wells (two production wells and two exploration
wells) directly measure the fracture information using image
logging, including fracture density and orientation. The spatial
variation of the fracture density can be indicated by the seismic
azimuthal anisotropy (Fig. S4 in Appendix A). We use
co-sequential Gaussian simulation (co-SGS) to simulate the 3D
fracture density model under the constraint of a seismic azimuthal
anisotropy cube. Several modeling parameters are uncertain, such
as the variogram and correlation coefficient with the seismic
attribute. A stochastic DFN model is then built using the fracture
Variable name Prior uncertainty Unit

MajorVarioFacies U (500, 3000) m
MinorVarioFacies U (0.3, 1.0) m
VertiVarioFacies U (2, 10) m
VarioDirectFacies U (�90, 90) �

MajorVarioPoro U (500, 3000) m
MinorVarioPoro U (0.3, 1.0) m
VertiVarioPoro U (2, 10) m
VarioDirectPoro U (�90, 90) �
CoImpedancePoro U (�1.0, 0.5) —
MtrxPoroMulti U (0.5, 1.5) —

MajorVarioFrac U (500,3000) m
MinorVarioFrac U (0.3, 1.0) m
VertiVarioFrac U (2, 10) m
CoSeisAzimuFD U (�1, 1) —
VarioDirectFrac U (�90, 90) �

FracAperture Log-U (�2.2, �1.3) mm
DirectVariFracAzimu U (�90, 90) �
FracLengthShape U (2, 3) m
MaxFracLength U (100, 200) m
MinFracLength U (5, 30) m
MinExplicitFracLength U (100, MaxFracLength �10) m
FracConcentration Log-U (2, 5) —

WOC U (�1870, �1890) m
OilDensity U (920, 960) kg∙m�3

BubPointPressure U (80, 120) MPa
GOC U (�1570, �1400) m
GasDensity U (0.75, 0.80) kg∙m�3

MaxPc Normal (0.1, 3.0) MPa
SwPc0 U (0.6, Sorw) —
Swi U (0, 0.4) —
Sorw U (0, 0.3) —
RockCompressibility U (0.00004, 0.00700) m

FT1/FT2/. . ./FT46 Binary —



Fig. 1. Reservoir modeling and reservoir simulation workflow.
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density, fracture orientation, fracture length distribution, fracture
aperture, and so forth. The fracture orientation is constrained by
the trend of the fault lines, while the deviation of the fracture ori-
entation to the fault line is uncertain. The DFN model is then
upscaled to continuous grid properties using the Oda method
[50] to reduce the computational complexity in the fluid flow
simulation.

2.3.4. Rock and fluid property uncertainties
Fractures make it difficult to obtain rock physics measurements

and interactions between fluids and rocks. In this case, no direct
measurement—such as rock compressibility, relative permeability
curves, initial water saturation, or capillary pressure—is available
for the reservoir. Thus, we refer to previous research [8,51] and
similar reservoirs to define the rock physical properties and uncer-
tainty ranges. The pressure–volume–temperature (PVT) properties,
including the bubble point pressure, oil and gas density, and other
fluid distribution parameters, such as gas–oil contact (GOC), and
oil-water contact (WOC), are treated as uncertain by introducing
a range around a reference (base-case) value provided by the oil
company.

2.3.5. Table of all prior uncertainties
Bayesian model-based uncertainty quantification requires a

prior statement of the model parameterization and a probability
distribution for each parameter. In the analysis of uncertainty
sources in the previous sections, we observe that many aspects
of properties are uncertain, including petrophysical properties,
fluid storage, PVT, rock physics, and the spatial heterogeneity
caused by the different scales of fractures. On the one hand, we
try to consider every possible uncertain parameter in the entire
modeling and simulation process to avoid missing important
parameters. On the other hand, we need to balance the model com-
plexity and computational demand to address multiple uncertain-
ties affordably. Detailed names and distributions of the uncertain
parameters are listed in Table 1.

2.4. Static modeling, flow simulation, and Monte Carlo simulation

Because physics-based models for subsurface systems are
high-dimensional and nonlinear, Monte Carlo simulation is
needed. Each variable specified in the prior model is sampled
according to its probability distribution to generate a single-
model realization via Monte Carlo simulation. We apply a
dual-porosity dual-permeability simulation as a forward model
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to compute the production data as a response to the variation of
uncertain parameters. Two commercial software, PETREL and
ECLIPSE E100, are used to do static modeling and reservoir simula-
tion, respectively. The forward model function can be formalized as
follows:

d ¼ gd mmatrix; mfrac; mfault; mfluid; mrockð Þ ð1Þ
where gd is a deterministic function that maps a model to data vari-
able d, the simulated production data. mmatrix is a matrix model;
mfrac is a fracture model; mfault is a fault model; mfluid is a fluid
model, including fluid contacts and PVTs; andmrock is a rock physics
model, including the rock compressibility, capillary pressure, and
relative permeability.

The entire workflow of geological modeling and reservoir simu-
lation is shown in Fig. 1. We perform Monte Carlo sampling of all
uncertain parameters from the distribution of Table 1; 1000 mod-
els (Fig. S5 in Appendix A) and simulations are generated.

Fig. 2 shows the simulated production data compared with the
production history. It can be seen that, for some of the production
curves, the prior appears to cover the observations, such as the gas
rate of wells P1, P3, P4, and P5. This is not the case for the BHP
curves of well P3. The BHP of P1 and the gas rate of P2 have a cer-
tain degree of coverage but have a different trend in time. These
results indicate that the prior is not adequate, even when consider-
ing many aspects of uncertainty.

In the next section, we develop a systematic approach to iden-
tify what is wrong with the prior and, more importantly, how we
can correct the prior when it is falsified.

3. Methodology

3.1. Falsification in Bayesian evidential learning

Once the forward functions are established, it is necessary to
check whether or not the defined prior model is falsified. A falsified
prior means that the prior statement is not informative to cover
the observation. As a result, the posterior calculation will be unsuc-
cessful. In probabilistic approaches, it is common to attempt to
prove that the prior model is incorrect rather than proving it is cor-
rect (i.e., to reject the null hypothesis of ‘‘the prior model predicts
the data”). If the prior model cannot be falsified, then the assump-
tions it made have been strengthened but are not necessarily pro-
ven to be correct. The falsification process can be achieved by
verifying: ① that the model reproduced known physical variation
in the system, or ② that the model can predict observed data [23].



Fig. 2. Simulation data using the prior defined in Table 1.

J. Fang, B. Gong and J. Caers Engineering 18 (2022) 116–128
The latter does not entail matching historical data (i.e., observed
data, dobs), but rather indicates that the probability of the observed
data within the population of generated data responses using Eq.
(1) is not zero. This falsification process has been used in many pre-
vious studies [25,42,52]. Developing the prior model is typically
iterative, meaning that the first choice of a prior model tends to
be falsified. Depending on the reason the prior model was falsified,
the prior model may need to be adjusted by increasing ① the
model complexity, ② the parameter uncertainty, or ③ both.

When the data variable is of low dimension, falsification detec-
tion is straightforward by means of visual inspection. In this study,
the data variable is high-dimensional, which means that a system-
atic method is required. Mahalanobis-based methods have gained
attention for falsification detection. Yin et al. [24] used a robust
Mahalanobis distance (RMD) method to detect the prior with a
multi-Gaussian distribution. In the application of field cases, the
simulated production data may not be Gaussian. Alfonza and
Oliver [48] used an approximation of the Mahalanobis distance
between the observation and the ensemble of simulations to diag-
nose the prior model parameters. Their method can be used for
both Gaussian and non-Gaussian data, as well as large models with
large amounts of data. However, their method focuses on how
many samples are accepted to improve the prior model. The results
do not give a straightforward criterion of whether or not the prior
model is falsified. A one-class support vector machine (SVM) is a
popular outlier detection method [41,53], in which a minimal vol-
ume hypersphere around the samples in data space is fit. Any
observation that falls outside of the hypersphere is classified as
inconsistent with the prior. Using kernels, a one-class SVM pro-
vides a powerful tool for detecting outliers in high dimensions
and with nonlinear decision boundaries. We employ a one-class
SVM as a falsification method to diagnose the prior model.
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3.2. Global sensitivity analysis

Another way of analyzing Monte Carlo simulations is by means
of a GSA, which investigates what model parameters (or a combi-
nation thereof) influence the response (e.g., simulated production).
GSA methods are based on Monte Carlo sampling, in which all
parameters are varied jointly [54]. In this study, we perform a
GSA using the distance-based generalized sensitivity analysis
(DGSA) method [55,56]. DGSA is a regionalized GSA method [57]
that reduces the number of samples into a small number of classes.
The distances between the prior cumulative distribution functions
(CDFs) and the class-conditional CDFs are then calculated to mea-
sure the sensitivity. One advantage of DGSA is that it supports all
types of input parameter distributions, such as continuous, dis-
crete, and scenario-based distributions. Another advantage of
DGSA is that it accounts for the possible high-dimensional
responses of the computer models [41], which is typically the case
in subsurface systems.

We employ DGSA to assist in the de-falsification of the prior in
two aspects. The first aspect is the adjustment of the current prior
model parameters. DGSA simplifies the de-falsification by filtering
out the non-sensitive parameters by reducing the model
complexity. Another aspect is that prior model complexity may
be increased by adding new uncertain parameters. DGSA can
examine the effectiveness of the new model parameters. In the
application, we will show how DGSA can be used to identify the
problem when the prior model is falsified.

3.3. Uncertainty quantification with data

If the prior is not falsified, a proper Bayesian uncertainty
quantification can proceed. The full Bayesian approach estimates
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a likelihood function P(d|m) occurring under the prior distribution
P(m). The posterior distribution of the model P(m|d) is then calcu-
lated via the following formula:

P mjdð Þ ¼ P djmð ÞP mð Þ
P dð Þ ð2Þ

However, it is computationally expensive—or completely infeasi-
ble—to evaluate the likelihood in real cases with high-dimensional
and different distribution types of parameters [58]. Here, we employ
anABCmethod to generate theposterior distributionof the variables
[58,59]. ABC methods are rooted in rejection sampling. An ABC
approximates the likelihood function by comparing simulated data
with the observed data. In ABC methods, the modelm is accepted if
its simulation data gd mð Þ is close to the observed data dobs. Thus, this
method bypasses exact likelihood calculations [60]. The probability
of generating acceptedmodels with a small distance to the observed
data decreases as the dimensionality of the data increases. Summary
statistics, which are values calculated from the data to represent the
maximum amount of information in the simplest possible form, are
introduced into the ABC method to replace the data. This method
accepts the samples if the summary statistics of the simulated data-
set are within a distance e from the summary statistics of the
observed dataset. The distribution of the accepted samples is an
approximation of the posterior given by the following:

f e mjdð Þ ¼ f mð Þ
Z

P djmð ÞI d gd mð Þ;dobsð Þ < eð Þdd ð3Þ

where I(d(gd(m), dobs) < e) is a summary statistic that defines a win-
dow size e, defining the acceptance region.

It is essential to highlight that, unless data d is sufficient, the
approximation error does not vanish as e ? 0 [58,60]. On the other
hand, the acceptance rate decreases as the dimension of data variable
d increases.We should then increase e, which leads to an approxima-
tionof lowerquality. Basedon the limitations,wemust:①generateas
many as realizations of modelm as possible and simulatemodelm to
data d; and② reduce the dimension of data variable d.

Since DFN modeling and simulation for a field case with mil-
lions of grid cells are very time-consuming, it is impractical to gen-
erate as many realizations as are required by the ABC method,
which may be tens of thousands. Thus, a surrogate model is
needed, which will be explained in the next section.

3.4. Surrogate model

3.4.1. Tree-based regression
We perform a tree-based regression [61] surrogate model to

replace the time-consuming static and forward modeling. Using a
tree-like topology, the tree-based method is based on a binary par-
tition of the input space and model y employing a constant in the
partitioned region. The model output is piecewise discontinuous,
which can be formulated as follows:

y ¼
XM
m¼1

cmI x 2 Rmð Þ ð4Þ

where cm is a constant; Rm is partitioned region; I(x) is a linear com-
bination of discrete indicator functions over M regions. The advan-
tage of the regression tree is that it works for both continuous and
categorical input variables, which is often the case in geological
issues. However, due to the piecewise nature, the regression tree
method trades off regression accuracy. Its predictive precision is
less than most other methods [62].

3.4.2. Ensemble trees
‘‘Boosting” [63] and ‘‘bagging” [64] are two ways to improve the

prediction performance of a tree-based regression via an ensemble
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of trees. The boosting regression tree method uses the outcomes of
weaker estimators to enhance the prediction performance by com-
bining the strengths of each weak classifier [65,66]. The trees of
boosting method are generated sequentially. In each step, the tree
estimator is trained with early estimators, fitting simple models to
the data and then analyzing the data for errors. The weights of
samples with more significant errors are then increased. The final
estimator takes a weighted combination of the sequence of estima-
tors. Gradient boosting is an extension of the boosting method; it
combines the gradient descent algorithm to optimize the differen-
tiable loss function. The new tree of each generation attempts to
recover the loss between the actual and predicted values [65].

Bagging (bootstrap) aggregation [64] with trees creates several
subsets of data randomly chosen with replacements from training
samples. The tree estimators are trained independently using each
subset of the data. The final estimator is created by averaging all
the estimators generated from different trees with these bootstrap
samples. The random forest [67] method is an extension of bag-
ging. In addition to selecting a random subset of data, it randomly
selects the input features instead of using all features to grow trees.
This extension handles missing values, maintains accuracy for
missing data, and handles higher dimensionality data very well.
4. De-falsification and uncertainty quantification: a case study

4.1. Falsification identification

We now return to the case study and follow the sequence of the
BEL protocol. We have stated the prior uncertainty and performed
a Monte Carlo simulation; hence, the next step is falsification
detection. We map the simulated data and observed data in lower
dimensions, and then perform an outlier detection test on the
lower-dimensional space to perform falsification detection. Here,
we use principal component analysis (PCA) for dimension reduc-
tion. Fig. 3 shows the principal component (PC) score plots for dif-
ferent responses and wells.

As shown in Fig. 3, some observations (red dots) are far away
from the simulation data points (gray dots), such as the BHP of well
P3 and the gas rate of well P2. Some observations are close to the
simulation points but do not have enough coverage, such as the
BHP of well P1, the gas rate of well P1, and the gas rate of well
P3. The BHP of well P2 does not seem to be falsified, because the
observation dot is inside the prior dots in the PC1 and PC2 plots.
However, it is falsified in the higher dimension. This can be viewed
in the PC2 and PC3 plot (Fig. 4).

Thus, the prior we defined is falsified—that is, it is proven incor-
rect. We need a systematic method to identify the problem with
the prior. Any revision would need to increase the uncertainty,
add complexity, or perform some combination of the two. Simple
ad hoc modifications such as multipliers on parameters are non-
Bayesian [40]. Instead, we will formulate the problem as a hypoth-
esis test. We will make revisions to the prior, state this as a hypoth-
esis, and then attempt to reject this as a hypothesis.
4.2. Hypothesis 1: incorrect distribution of current uncertain
parameters

To identify what the problem is with the prior, we perform
DGSA to conduct a sensitivity analysis. The result (Fig. 5) shows
that the fracture aperture is the most sensitive parameter. The
PCA plot (Fig. 4) shows that the points closer to the observation
are more likely to have a larger fracture aperture value. Those
two features indicate that the fracture aperture distribution might
be too narrow. Thus, we increase the upper limit of the fracture



Fig. 3. PCA plot of the data for each production well and data type. Gray points are the simulations, and red dots are the actual field observations.

Fig. 4. PCA plot of P2 BHP data. (a) PC1 and PC2 plot; (b) PC2 and PC3 plot. The color of the dots represents the fracture aperture value. Red dots are the PCs of observations,
while other dots are the PCs of the prior data.
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aperture distribution from �1.3 to �0.2, and the lower limit
remains as �2.2.

After increasing the range of the fracture aperture of the prior,we
redo theMonte Carlo and reservoir simulation to generate the prior
data (Fig. S6 in Appendix A). Fig. 6 shows a comparison of the prior
data of Hypothesis 1 (blue dots) and the initial prior (gray dots). It
can be seen that the data points of Hypothesis 1 havemore coverage
of the observation. This evidence indicates that Hypothesis 1 is not
wrong. However, the prior is still falsified, even though the data
hasmore coverage of the observation than the initial prior. As shown
in Fig. 6, the observation points of the gas rate ofwell P2 and the BHP
of well P1 are still outside of the simulation points. Thus, we should
propose new hypotheses to figure out the prior problems.
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4.3. Hypothesis 2: add model complexity—dynamic transmissibility

As shown in Fig. 2, the BHP history curve of well P1 continu-
ously decreases during the production. However, the simulated
curves are flatter, which means that the borehole has a much more
fluid supply in the simulation than in reality. One potential reason
is that the permeability is pressure-dependent—that is, the perme-
ability is dynamically changing with the reservoir pressure. This
phenomenon has been investigated by several studies [9,10] for
fractured reservoirs. We missed this mechanism in the definition
of the previous prior. Chen et al. [10] reported a power-law rela-
tionship of the fracture permeability changing with reservoir pres-
sure drawdown. The function is as follows:



Fig. 5. Sensitivity analysis of the uncertain parameters for the BHP data of well P2.

Fig. 6. Comparison of the data with Hypothesis 1 to the data of the initial prior.
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k ¼ k0e3cf
m

1�mab p�p0ð Þ ð5Þ

where p0 is the reference pressure, p is the reservoir pressure, k0 is
the fracture permeability at p0, cf is the rock compressibility, m is the
Poisson’s ratio, and ab is the Biot coefficient.

Since there is no information on the Poisson’s ratio and Biot
coefficient of the study area, we define an uncertain parameter
DynamicTM (Table 2) to represent the value of the coefficient
3cf m

1�m ab jointly. In the reservoir simulation, we use a dynamic
transmissibility multiplier (Fig. S7 in Appendix A) to represent this
phenomenon.

When the dynamic transmissibility multiplier is added to the
model, the Monte Carlo simulation results have a larger observa-
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tion coverage both on simulation curves (Fig. S8 in Appendix A)
and PCA plots (Fig. S9 in Appendix A). The results of DGSA shows
that the dynamic transmissibility multiplier is sensitive to the sim-
ulation data (Fig. S10 in Appendix A). These evidences indicate that
the hypothesis is not wrong; it should be considered in the prior
model. However, closer inspection of the gas rate points of well
P2 (Fig. S9 in Appendix A) shows that the observation is still out-
side of the prior data points. The production curves in Fig. S9 show
that the production history of the gas rate in P2 increases after the
year 2018, while the simulated curves do not have this feature. The
BHP observation of well P2 decreases during the production his-
tory. This shows that the model we built is still not complex
enough to reflect all the features remaining in the production his-



Table 2
Modification of the prior in Hypothesis 2 and Hypothesis 3.

Parameter Distribution Description

Parameter added in
Hypothesis 2

DynamicTM U (0, 0.09) A larger value indicates that the transmissibility decreases more per drawdown of
reservoir pressure

Parameter added in
Hypothesis 3

PermFracDRS U (�3, 0) Degree of decrease in fracture permeability from top to bottom.
FaultNetCase Two geological

scenarios
Whether or not the modified fault shown in Fig. 7 is used

PoroVolMultiZone3 Two geological
scenarios

Whether or not the pore volume multiplier is used for the bottom zone
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tory. The possible reason for this phenomenon is that the pressure
supply is insufficient, leading to degasification in the area of wells
P1 and P2. This is reasonable, because the peak of the reservoir is
located in this area.

4.4. Hypothesis 3: Add model complexity—decrease the pressure
supply of the producers

Pressure supply comes from two aspects: bottom water and
injectors. We introduce two additional uncertain parameters—
the fracture aperture decreasing degree from top to bottom
(Fig. 7(a)) and the pore volume multiplier of the bottom zone
(Fig. 7(b))—to represent the pressure supply uncertainty from the
bottom water. In the original fault network (Fig. 7(c)), it can be
seen that the production wells P1 and P2 are not fully separated
by the faults from the nearby injection wells, INJ1 and INJ2. This
means that, even though the faults are fully sealed, there are still
some connections between the producers and injectors. This might
be a reason for the abundant pressure supply of wells P1 and P2.
Here, we define a variable that represents whether or not we use
a modified fault network. The added parameters are listed in
Table 2, and the fault modification strategy is shown in Fig. 7(c).

We then perform Monte Carlo simulation to generate the prior
data. The simulation results (Fig. S11 in Appendix A) show that
Fig. 7. Model modification in Hypothesis 3. (a) One realization of permeability, consid
realization of a pore volume multiplier for Zone 3; (c) fault modification. INJ: injector. m
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some of the BHP curves behave more consistently with the field
observations for wells P1 and P2. More importantly, some of the
gas rate curves for well P2 start to increase after 2018, which
was not captured in the previous priors. The prior data points of
PC1 and PC2 have good coverage of the observation (Fig. S12 in
Appendix A). The DGSA result (Fig. S13 in Appendix A) also reveals
that the Hypothesis 3 should be included in the prior.

Thus far, we have proceeded with a visual inspection of the low-
dimensional PC score plots. Now, we include all PC dimensions and
use a systematic method to detect falsification. We employ a one-
class SVM, an outlier detection method, to perform falsification
detection. The logic is that, if the observations are an outlier rela-
tive to the simulated observations, then the prior is falsified. We
employ a one-class SVM rather than the Mahalanobis distance-
based method because the data distribution is not Gaussian
(Fig. 8(a)).

In a one-class SVM, all the simulation data are considered to be
training samples for training a classification model. Then the
observation score is calculated using the trained model. An obser-
vation with a negative score is considered to be an outlier, which
means that the prior is falsified. Fig. 8(b) shows that the observa-
tion score is still positive when 10 PCs containing more than 99%
of the information are included in the training data. This reveals
that the prior is not falsified.
ering the decreasing degree of the fracture aperture from top to bottom; (b) one
D: millidarcy.



Fig. 8. Outlier detection using a one-class SVM. (a) SVM result using PC1 and PC2; (b) prediction score of the observation using the SVMmodel, considering high-dimensional
PCs.
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4.5. Surrogate model training

Bayesian theorem allows us to reduce the uncertainty by calcu-
lating the posterior distribution. In this study, we employ ABC to
calculate the posterior distribution, which needs sufficient prior
realizations. Thus, a surrogate model is required to build a statisti-
cal model between the parameters and the simulation result. Here,
we employ two tree-based regression techniques—random forest
and gradient boosting—to build the relationship between the
parameters and the distance of the simulation curves to the
observation.

We use all the uncertain parameters as inputs of the regression
model. The target output (label) is the mismatch of the simulations
to the observation; hence, our output is a scaler (a distance). All the
data curves are scaled between zero and one before being aggre-
gated to capture the features from different wells and different
data types.

We use 75% of the samples as the training dataset and 25% as
the testing set. Fig. 9 shows that the regression performance of
the random forest model and that of the gradient boosting model
do not have a significant difference, with correlation coefficients
of 0.83 (Fig. 9(a)) and 0.85 (Fig. 9(b)), respectively. The correlation
coefficients of the testing dataset on the random forest and gradi-
ent boosting models are 0.72 (Fig. 9(a)) and 0.77 (Fig. 9(b)), respec-
tively. The gradient boosting regression model seems to have
better performance on both the training and testing datasets. How-
ever, the random forest model has better performance on the sam-
ples with a smaller distance value, which is more important
Fig. 9. Surrogate model performance. (a) Random forest; (b) gradient boosting; (c) rank
the prediction performance on the training dataset, while orange dots represent the pre
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because those samples are closer to the observation. Fig. 9(c) com-
pares the ranking correction between the random forest model and
the gradient boosting model. It can be seen that the random forest
model has a better performance when considering the samples
that are close to the observation. Thus, we select the random forest
model as the surrogate model.

4.6. Posterior global parameter distribution and data

Posterior distributions of the parameter are calculated via the
ABC method. First, we generate 50 000 realizations of the prior
parameters. The predicted distance is then calculated via the ran-
dom forest model. In the ABC procedure, we use the value of 1.1
as the criterion to select the posterior samples (Fig. S14 in Appen-
dix A). Fig. 10 compare the posterior distribution of some sensitive
parameters (e.g., fracture aperture, oil density, and fault modifica-
tion of the area of wells P1 and P2) to their prior distribution. There
are significant reductions in the uncertainty for the sensitive
parameters.

Finally, to validate whether the uncertainty reduction is effi-
cient, we use the updated parameters to build geological and sim-
ulation models again, and then run an actual flow simulation.
Fig. 11 shows the simulation curves using the updated parameters.
The results demonstrate that the whole workflow is valid, because
the posterior curves are closer to the observation curves. To further
improve the match, it is possible to reject the simulated realiza-
tions that are deemed too far from the production history. Compu-
tational complexity should be taken into account in matching the
correlation of random forest and boosting models. Blue dots in (a) and (b) represent
diction performance on the testing dataset.



Fig. 10. Prior and posterior distributions of (a) the sensitive continuous parameters and (b) categorical sensitive parameters.
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history. In this study, the average time for each modeling and sim-
ulation realization is about 30 min. Because we only use Monte
Carlo simulation and not iterative matching, parallel computing
can be used to speed up the generation of the prior and posterior
models.

5. Discussion and conclusions

Falsification of the prior has been of concern in several field case
studies [24,42,49]. In field applications, especially for cases we have
little knowledgeof, a non-falsifiedpriormust be stated. In this study,
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we considered many uncertainties in the initial prior. Even then, it
turned out that the prior was falsified. Many papers on history
matching do notmention the falsification step. Usually, ad hocmod-
ification is done but not published; only the application of a tech-
nique is studied, and its success is emphasized. However, this is
usually not the most essential problem engineers face in real cases.

In the de-falsification processes, it is easy to identify the prob-
lem of too-narrow distributions of the current uncertain parame-
ters by using a sensitivity analysis and dimension reduction, such
as the fracture aperture problem in Hypothesis 1 (Section 4). The
more challenging part is to discover the important uncertainties



Fig. 11. Simulation data curves using posterior parameters.
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that are ignored in the prior definition, which requires a great deal
of domain knowledge and experience. For example, in this study,
we consider the fault positions and connectivity to be certain in
the initial prior. Without domain knowledge of seismic interpreta-
tion, a data scientist or a reservoir engineer would find this identi-
fication challenging. The alternative way is to have deep
discussions with experts from different domains to determine
the uncertainties in each domain, such as seismic interpretation,
well logging interpretation, and production management.

Considering the computational complexity of the modeling and
simulation, we generated 1000 realizations and then used a surro-
gate model. A statistical surrogate model will always decrease the
uncertainty reduction performance. We used tree-based surrogate
models because some input parameters are categorical. However,
the tree-based regression model sacrifices some regression accu-
racy, as it uses a piecewise average in each node. A surrogate model
will not be required if the geological model and forwarding simu-
lation time is tolerable to run tens of thousands to millions of
realizations.

In conclusion, we proposed a systematic approach to diagnose
the falsification problem of the prior in the uncertainty quantifica-
tion of a real fractured reservoir case. The proposed approach inte-
grates GSA, dimension reduction, and Monte Carlo sampling. We
demonstrated that the method is efficient in identifying the too-
small uncertainty of a stated prior and the deficiency of model
complexity. More importantly, this method can diagnose the con-
flict that remains in the field data, such as the fault interpretation
and production history in this study, as such conflict often occurs
in field geological studies where the data of different aspects are
measured.
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