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The application of artificial intelligence (AI) has become inevitable in the petroleum industry. In drilling
and completion engineering, AI is regarded as a transformative technology that can lower costs and sig-
nificantly improve drilling efficiency (DE). In recent years, numerous studies have focused on intelligent
algorithms and their application. Advanced technologies, such as digital twins and physics-guided neural
networks, are expected to play roles in drilling and completion engineering. However, many challenges
remain to be addressed, such as the automatic processing of multi-source and multi-scale data.
Additionally, in intelligent drilling and completion, methods for the fusion of data-driven and physics-
based models, few-sample learning, uncertainty modeling, and the interpretability and transferability
of intelligent algorithms are research frontiers. Based on intelligent application scenarios, this study com-
prehensively reviews the research status of intelligent drilling and completion and discusses key research
areas in the future. This study aims to enhance the berthing of AI techniques in drilling and completion
engineering.

� 2022 THE AUTHORS. Published by Elsevier LTD on behalf of Chinese Academy of Engineering and
Higher Education Press Limited Company. This is an open access article under the CC BY-NC-ND license

(http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

In recent years, the rapid development of artificial intelligence
(AI) and big data technology has attracted extensive attention from
various industries [1]. Strategies for the development of AI, to seize
the golden opportunity of the new technology, are being formu-
lated by countries across the globe. In China, enhancing efforts
on AI research and education has become a national strategy,
and almost all industrial societies have formulated plans for intel-
ligent transformation. As a capital- and technology-intensive
industry, the oil and gas exploration and development industry
has a greater demand for AI (Fig. 1), and this has attracted the
attention of oil and gas companies worldwide [2]. Through cooper-
ation with digital companies, oil companies have accelerated their
transformation to an intelligent and digital age [3].

Drilling and completion engineering, a critical part of the oil and
gas exploration and development process, accounts for approxi-
mately 50% of the total cost. Drilling and completion engineering
will be further increased in case of complex oil and gas resources,
such as offshore and ultra-deep reservoirs [4]. Drilling under these
complex conditions has multiple challenges in terms of efficiency,
risks, and costs, which requires technological innovation to
improve efficiency and lower costs. Traditional empirical and
physics-based approaches are limited and struggle to cope with
increasingly complex drilling processes [5], such as the precise
characterization of a complex reservoir and real-time optimization
of the drilling process. AI and big data technologies have significant
advantages in solving complex problems with strong nonlinear fit-
ting and information-mining abilities. Therefore, intelligent dril-
ling and completion technology is regarded as a transformative
technology and has become a hot spot in the research and develop-
ment of oil and gas industries.

Intelligent drilling and completion implies using big data, AI,
information engineering, control theory, and other advanced trans-
formative technologies in the drilling and completion process. It is
expected to realize advanced detection, closed-loop control, preci-
sion steering, and intelligent decision-making through automated
equipment to significantly improve drilling efficiency (DE) and
reduce drilling costs. Intelligent drilling and completion technolo-
gies can be categorized into two branches: intelligent algorithms
and intelligent equipment. Intelligent algorithms use AI algorithms
to solve nonlinear and other complex problems and provide
optimization and control schemes, providing necessary instruc-
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Fig. 1. Intelligent oil and gas engineering. The definitions of the abbreviations in
this and subsequent figures can be found in the section ‘‘Abbreviations” at the end
of the manuscript.

Fig. 2. Intelligent application scenarios in drilling and completion.
tions and assistance for intelligent equipment. Intelligent equip-
ment provides data sources and hardware support to establish
and verify intelligent models. In this study, a comprehensive inves-
tigation and analysis of intelligent algorithms was conducted to
determine the development status of, and trends in intelligent dril-
ling and completion.

The application scenarios for AI in the intelligent drilling and
completion process are first defined, and then scenario-specific
algorithms and other research content, research gaps and future
works, are reviewed. This study serves as a comprehensive review
for researchers in intelligent drilling and completion, clarifies AI
application scenarios, and provides an important reference for
the development of intelligent drilling and completion. The defini-
tion of each abbreviation used in the manuscript can be found in
the ‘‘Abbreviations” section at the end of manuscript.

2. Intelligent application scenarios and research status

The application scenarios for AI in drilling and completion engi-
neering refer to the use of AI technologies in certain engineering
processes, including engineering conditions, data sources, and
algorithms. This study divided intelligent drilling and completion
into seven scenarios based on the engineering section and objec-
tives, as shown in Fig. 2.
Fig. 3. Intelligent prediction and enhancement of ROP.
2.1. Intelligent prediction and enhancemental of drilling rate

An increasing number of wells have been drilled in deep, hard,
and abrasive formations, generally resulting in severe bit wear and
low drilling rates. It is also challenging to dynamically manipulate
drilling parameters to ensure an ROP. The enhancement of the ROP
requires intelligent algorithms to accurately characterize the drill-
ability of the formations, select the best bit, and optimize the con-
trollable parameters (Fig. 3).
2.1.1. Downhole environment perception
Environmental perception is the foundation of ROP enhance-

ment. The formation lithology and bit wear can be accurately diag-
nosed using intelligent classification and regression algorithms. An
accurate description of the bottom-hole environment, based on
intelligent algorithms, is a reference for the optimization of drilling
parameters and enhancement of the drilling rate. Conversely, it
could also indicate identifying abnormal conditions and avoiding
complex accidents. As shown in Table 1 [6–13], current studies
on intelligent perception of the downhole environment mainly
focus on the properties of the formation rock and bit wear.

The definitions of the abbreviations in this and subsequent
tables can be found in the section ‘‘Abbreviations” at the end of
the manuscript.
2.1.2. Optimization and design of drilling bit
The drill bit and bottom-hole assembly are critical to the rock-

breaking process. Bit selection and optimization not only select a
suitable bit based on the lithology of formation, but also reveal
the rock-breaking ability of different drilling tools, which guides
the design of new high-performance bits. AI technology facilitates
the selection of a suitable bit structure to ensure rock-breaking
efficiency and bit stability. Numerous studies have been conducted
on bit selection, bit optimization, and bit wear management, as
presented in Table 2 [14–20].

2.1.3. Prediction and optimization of ROP
AI technology can discover the complex mapping relation

between the ROP and impacting factors such as formation proper-
ties, bit characteristics, and drilling parameters, which is superior
to the capability of physics-based models. It is not subject to the
limitation of expert knowledge, and it can not only accurately pre-
dict the drilling rate of various conditions, but also provide opti-
mized drilling parameters with real-time downhole conditions to
obtain the optimum ROP and avoid downhole risks. Optimization
algorithms and hybrid models are the main methods of improving
the accuracy of the ROP prediction (as presented in Table 3 [21–
30]).



Table 1
Downhole environmental perception.

Application Authors Algorithms Inputs Contents/innovation

Prediction of
drillability

Gamal et al. [6] and
Asadi et al. [7]

ANN Includes WOB, RPM, and GA Combination of mechanism model and ANN
algorithm

Li and Cheng [8] GA and
ANN

Bit type, drilling time, rotation, WOB, etc. IGA–ANN avoids the local convergence in
classical GA

Prediction of bit
wear

Asadi [9] ANN UCS, BTS, and rock brittleness Combination of mechanism model and AI
algorithm

Sirdesai et al. [10] MVRA, ANN, and
ANFIS

Includes compressive and tensile strength and
porosity

Comparison of various algorithms

Kahraman et al. [11] Regression analysis Includes UCS and BTS Predict the value of CAI
Lakhanpal and Samuel
[12]

Adaptive data
analytics

Drilling parameters and ROP Using EMD

Prediction of
lithology

Zhekenov et al. [13] RF RPM, ROP, WOB, TOB, and SPP Integrating ML with the mechanism

Table 2
Design and optimization of drilling bit.

Authors Methods/algorithms Inputs Contents/innovation

Batruny et al. [14] ANN and Monte–Carlo WOB, RPM, hydraulic, and formation properties ML-assisted bit selection and optimization
Abbas et al. [15] ANN and GA Nineteen parameters (i.e., geology, bit) Drill bit selection and optimization
Tortrakul et al. [16] Big data analysis Database of neighboring wells Bit and BHA selection
Okoro et al. [17] ANN, PCA, and PSO Drill bit images and drilling parameters Drill bit selection
Rashidi et al. [18] Clustering algorithm Drilling parameters Drill bit design

Physics-based models Real-time drilling parameters Bit wear evaluation
Gidh et al. [19] ANN Drilling parameters of neighboring wells Bit wear prediction and management
Losoya et al. [20] KNN, RF, and ANN Includes WOB, RPM, TOB, ECD, and MSE Drilling condition recognition

Table 3
Intelligent prediction of ROP.

Authors Methods/algorithms Inputs Contents/innovation

Liao et al. [21] ANN Thrust, RPM, flushing media, and compressive
strength

Bee colony optimize ANN

Mehrad et al. [22] COA, PSO, GA, SVR, MLP, and LMR UCS, FR, WOB, depth, MD, and RPM Use a variety of algorithm
Gan et al. [23] Hybrid SVM and eight other methods Depth, WOB, RPM, and FR A hybrid model
Anemangely et al. [24] MLP–COA and MLP–PSO Rotary speed, WOB, and FR MLP is combined with COA and PSO
Abbas et al. [25] ANN MD and other 19 parameters Features are optimized using FSCARET
Hegde et al. [26] Integrated RF, ANN, and linear

regression.
WOB, RPM, and FR A better integration model

Han et al. [27] ANN and LSTM Includes well logging and mud logging data Timing relation of ROP
Sabah et al. [28] DT, RF, SVM, MLP, RBF, and MLP–PSO Includes WOB, RPM, and FR Comparison of multiple prediction

models
Soares and Gray [29] RF, SVM, and ANN Depth, WOB, RPM, and FR The RF has higher accuracy
Diaz et al. [30] MR and ANN Includes WOB and normal compaction Fast Fourier transform improves the

model
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The prediction and optimization of the ROP are inseparable
because the prediction results are an important reference for opti-
mization. ROP optimization is an extension of ROP prediction,
whereby optimal drilling parameters (e.g., WOB, rotational speed,
and FR) are obtained in real time using optimization algorithms
(Table 4 [31–40]).
2.2. Intelligent prediction and optimization of a well trajectory

Deviated, horizontal, and extended-reach wells are commonly
used for efficiently developing unconventional reservoirs. The dril-
ling trajectories of these wells are prone to deviate from their
design owing to the high abrasiveness, anisotropy, and heterogene-
ity of the formation rocks. Before drilling a well, the design process
of the well trajectory can be optimized based on big data and AI
technology. During the drilling process, the drilling trajectory can
be calculated in real time, the degree of deviation evaluated, and
steering controllable parameters optimized. Finally, the mapping
relationship between the key controllable parameters and applied
35
control instructions is established to form a closed-loop control
framework. Intelligent design and real-time optimization of a bore-
hole trajectory mainly includes intelligent prediction of the bore-
hole trajectory, real-time evaluation, and optimization, and real-
time control of the steering parameters (Fig. 4).
2.2.1. Intelligent design of a well trajectory
Based on the geological reservoir model, a well trajectory design

process can be optimized and automated using intelligent tech-
nologies, such as computer vision algorithms. The intelligent
design process aims to increase the contact area of the oil layer
as much as possible while meeting the curvature requirements,
considering torque and drag, total length, and other targets. This
reduces the time costs compared to traditional design models. As
shown in Table 5 [41–51], the borehole trajectory design is an opti-
mization problem of the parameter matrix, including deviation
depth and deviation length, and the optimization objectives are
usually borehole length, drill string torque, target hitting, and oil
and gas production.



Table 4
Intelligent optimization of ROP.

Authors Methods/algorithms Inputs Contents/innovation

Hegde and Gray [31] RF and PSO Includes WOB, RPM, flow-rate, and rock
strength

Coupling ROP, MSE, and TOB models

Arabjamaloei and Shadizadeh [32] ANN and GA Includes bit type, RPM, WOB, bit tooth wear,
and ECD

GA optimized ANN to obtain the optimal
parameters

Bataee and Mohseni [33] ANN, LM, and GA Includes bit diameter, depth, WOB, RPM, and
MW

Using GA to optimize real-time drilling
parameters

Gan et al. [34] Nadaboost–ELM and RBFNN–
IPSO

Includes FD, depth, SWOB, RPM, and MW A novel two-level intelligent modeling
method

Oyedere and Gray [35] LR, LDA, QDA, SVM, and RF Includes WOB, FR, RPM, and UCS, The best classifier for each formation
Hegde et al. [36] RF and gradient ascent Includes WOB, RPM, and UCS Consider the effect of drilling vibrations
Momeni et al. [37] ANN and GA Includes hole size, WOB, RPM, and MW Using ROP model to optimize bit
Jiang and Samuel [38] BRNN and ACO Includes depth, WOB, RPM, mud FR, and GR ACO and BRNN were combined to optimize

ROP
Zhang et al. [39] K-means Includes depth, AC, GR, density, and UCS Enhancing ROP with lithology
Moazzeni and Khamehchi [40] ROA Includes WOB and MSE Use ROA algorithm to optimize ROP

Fig. 4. Intelligent prediction and optimization of a well trajectory.
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2.2.2. Real-time evaluation and optimization of a wellbore trajectory
The difference between a drilling trajectory and the designed

trajectory can be evaluated using intelligent algorithms, and it
can be subsequently reduced by optimizing controllable parame-
ters such as the drilling angle. The optimization of a drilling trajec-
tory is a multi-objective process, where parameters such as the
smallest deviation, well length, and friction are objectives, and
others such as the deflecting capacity of the BHA are constraints.
Table 5
Intelligent design of a well trajectory.

Authors Algorithms Objectives

Wang et al. [41] Computer vision Images showing oil and gas

Selveindran et al. [42] LSTM Well depth, inclination ang
azimuth angle

Lee et al. [43] GA Production rate and cost
Vlemmix et al. [44] Gradient-based search

method
Net present value

Zheng et al. [45] MOC–PSO Length, torque, and
well strain energy

Mansouri et al. [46] MOGA Length and torque
Wang et al. [47] Heuristic algorithm Total trajectory length, wel

energy, and target hitting
Zheng et al. [48] ATC Length, torque, and profile
Liu and Samuel

[49]
Minimum energy
method

Minimum well profile ener

Li and Tang
[50]

Mogi-coulomb
condition with MCM

Measured depth

Khosravanian et al. [51] GA, ABC, ACO, and HS Measured depth
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In contrast to a well trajectory design, a wellbore trajectory opti-
mization requires real-time calculation of the optimization results,
which requires higher computational efficiency. The trajectory
evaluation not only involves the fitness between the actual and
real trajectories, but also considers the cost, risk, and drilling sta-
bility of the wellbore (Table 6 [52–60]).

2.2.3. Intelligent decision-making and closed-loop control of a wellbore
trajectory

A control model must be established to construct an optimized
well trajectory. The model discovers the mapping relationship
between the key controllable parameters (i.e., the applied control
instructions) and the holding, building, and dropping of the angles.
Subsequently, closed-loop control can be realized using highly effi-
cient downhole data transmission technology and intelligent tools
(e.g., BHA and bit).

Trajectory control is a combination of the control strategy and
tool (Table 7 [61–65]), and it requires specific control methods to
be designed according to the BHA or steering tool. Furthermore,
information on real-time logging and LWD is required for trajec-
tory control.

2.3. Intelligent warning and control of drilling risks

Intelligent management of drilling risk involves achieving accu-
rate characterization of formation properties, dynamic prediction
of wellbore flow behavior, early warning, efficient control of dril-
Contents

distribution Consider the reservoir-encountered rate as the target and the
build-up rate as the constraint

le, and RNN classifies wells with similar trajectories

Improving both profit and cumulative production
Significant improvement in NPV of the well

Constructed neighbors affected the search

The adaptive function for parameter setting
l profile Optimal clusters sidetracking horizontal

energy Decomposition of the objective functions yields a better result
gy criterion Less electric power consumption

The stability of wellbore trajectory improved

ACO took less computational time than GA



Table 6
Real-time evaluation and optimization of a well trajectory.

Authors Algorithms Inputs/objectives Contents

Vabø et al. [52] Tree search algorithm Well location and target location Evaluating results for the optimization of drilling based on risk,
value, and cost

Koryabkin et al.
[53]

Lasso regression and RF Includes block position, WOB, ROP,
and SPP

The result shows MedAE of depth, inclination, and azimuth

Tunkiel et al. [54] RNN and MLP Logging parameters and well inclination
parameters

The study can predict 23 m, while the existing methods can only
predict 7 m

Noshi and Schubert [55] ANN, AdaBoost, RF, and
GBM

Includes BHA, parameters of drill bit,
and logging parameters

The side forces in the form of seven dominant factors are
primarily responsible

Li et al. [56] PSO with AHP Target hitting, lowest cost, and least
drilling string friction

Numerical solutions are computed

Atashnezhad et al. [57] PSO True measured depth Meta optimization helped PSO to perform better
Sha and Pan [58] FSQGA True measured depth The Fibonacci series enhanced the convergence speed
Xu and Chen [59] Bat algorithm

optimizer
True measured depth Stable wellbore trajectory designed

Halafawi and Avram [60] MCM Includes wellbore stability and stress
determination

Optimal horizontal wellbore trajectories are designed

Table 7
Intelligent decision-making and control of wellbore trajectory.

Authors Methods/algorithms Inputs/objectives Contents

Zalluhoglu et al. [61] Physics-based and self-learning model Real-time parameters from RSS, MWD,
and LWD

Steering decisions given the BHA configuration

Sugiura et al. [62] Physics-based models Real-time parameters from RSS, MWD,
and LWD

Saving four days compared with non-high-dogleg
RSS runs

Zhang et al. [63] Dual-loop feedback cooperative control
method

Real-time parameters from RSS, MWD,
and LWD

Trajectory tracking control for RSSs

Song et al. [64] Physics-based models Real-time parameters from RSS Tracking-based tool faces positioning on RSS
Kullawan et al. [65] Discretized stochastic Real-time parameters from LWD Decision-oriented geosteering
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ling risk based on various data resources (e.g., geological detection,
logging, and MWD), and AI algorithms (e.g., digital twin, computer
vision, and intelligent control) (Fig. 5).

2.3.1. Intelligent characterization of formation properties
Formation properties mainly include formation pressure, stress,

and permeability, which are critical to improving the ROP, avoiding
risks, and stabilizing borehole walls. To improve the reliability of
the formation characterization, some innovative fusion of data
and neural network optimization methods have been developed
(Table 8 [66–73]).

2.3.2. Intelligent description of wellbore flow behavior
Generally, a wellbore flow description involves the wellbore

pressure, flow pattern, circulating pressure loss, cutting concentra-
Fig. 5. Application scenarios for AI in drilling risk control.
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tion, and ECD, based on real-time surface monitoring data and
intelligent algorithms (Table 9 [74–85]). The wellbore structure,
geothermal gradient, formation pressure, and intruding fluids com-
plicate wellbore flow characterization. MPD or underbalanced dril-
ling processes are the main fields for the intelligent prediction of
the bottom-hole pressure and the ECD. The introduction of intelli-
gent algorithms has significantly improved the accuracy and effi-
ciency of downhole pressure prediction and cuttings
concentration prediction, overcoming the limitations of traditional
empirical models, and replacing the function of downhole sensors.

The direct combination of intelligent algorithms and wellbore
flow data is a primary form of intelligent modeling. In recent years,
scholars have explored new modeling approaches, such as data
fusion, hybrid algorithms, and a combination of data and mecha-
nisms, as shown in Table 9.

2.3.3. Intelligent prediction and diagnosis of drilling risks
The instability of near-wellbore formation and the imbalance of

interaction between the wellbore and formation are the main
causes of drilling accidents, such as overflow, well loss, stuck dril-
ling, and well collapse. Advanced prediction and real-time diagno-
sis are essential for avoiding the occurrence of accidents. However,
complex formation properties, such as micro-fractures, high tem-
perature and high pressure in the bottom hole, and the co-
existence of kicks and blowouts, are the primary limitations of
accurate prediction and identification of drilling accidents. An
intelligent algorithm can reflect the comprehensive relationship
between multiple factors and drilling risks while exhibiting excel-
lent robustness to the noise of logging data. Conversely, an intelli-
gent algorithm with sensitivity to data fluctuations can diagnose
risks in faster. Related research includes pre-drilling risk predic-
tion, risk warning and diagnosis, and risk grade assessment. To
the best of the author’s knowledge, existing research mainly
focuses on early warning and diagnosis of risks in the drilling pro-
cess, while research on prediction and risk grade assessment is still
in progress (Table 10 [86–104]).



Table 9
Intelligent description of wellbore flow behavior.

Application Authors Algorithms Input parameters Main contents

BHP Liang et al. [74] GA–BPNN Includes inlet and outlet flow, overflow time, and
depth

Real-time prediction of BHP

Al Shehri et al. [75] FCNN and LSTM Water-gas ratio, well depth, wellhead
temperature, and pressure

Considering the sequence of BHP and the
flow mechanism

Fruhwirth et al. [76] BPNN and SVM Includes engineering parameters and combine
parameters

Integration parameters enhance model
generalization ability

Zhang and Tan [77] Naive Bayesian Engineering parameters and combination
parameters

Improved the prediction accuracy

Li et al. [78] Mechanism-based
BPNN models

Incline angle, surface velocity, and surface tension Broadened the model application range

Gola et al. [79] Grey box Includes pump flow, throttle valve opening, back
pressure, and pump FR

Combine mechanism and AI model for a
stable result

Feili et al. [80] Neural fuzzy system Various engineering parameters Higher prediction accuracy
Ashena et al. [81] ANN Various engineering parameters Higher prediction accuracy

ECD Alsaihati et al. [82] and
Alkinani et al. [83]

ANN Various engineering parameters Various AI models were compared

Han et al. [84] ARIMA–BP BHP sequence ARIMA–BP model captures the linear and
nonlinear trend

Elzenary et al. [85] Adaptive fuzzy neural
network

ROP, inlet density, and riser pressure FL enhances generalization

Table 8
Intelligent characterization of formation properties.

Application Authors Algorithms Input parameters Contents/innovation

Prediction of formation
pressure pre-drilling

Kazei et al. [66] CNN and LSTM Zero-offset VSP and well-logging Predict the rock mechanics of the lower part of the bit

Monitoring of formation pore
pressure in real-time

Rashidi and
Asadi [67]

ANN MSE and DE Using MSE and DE to predict the formation pressure

Ahmed et al.
[68]

ANN Pump rate, SPP, RPM, ROP, torque,
and WOB

Using mechanical and hydraulic parameters to monitor
formation pressure

Vefring et al.
[69]

LM and Kalman
filter

Pump pressure, BHP, and outlet
rates

Inversion of the pore pressure based on the drilling
parameters

Post-drilling assessment of
formation pore pressure

Zambranoet al
[70]

DT, RF, SVM, and
AdaBoost

Includes gamma-ray, bulk density,
and deep resistivity

Using the parameters of the normal compaction trend
line as the input

Mylnikov et al.
[71]

ANN TVD and acoustic well-logging Using the vertical depth and sonic logging to establish a
formation pressure evaluation model

Booncharoen
et al. [72]

Quantile, Ridge,
and XGBoost

Includes net sand thickness,
porosity, and water saturation

Considering the influence of reservoir parameters

Naeini et al.
[73]

DNN Includes compressional velocity,
gamma-ray, and density

Three neural network models are connected in series to
predict geomechanical parameters
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2.3.4. Intelligent management of wellbore stability
Wellbore stability is central to drilling process control. Through

the control of wellbore flow to maintain the expected wellbore
pressure and cuttings concentration, complex accidents can be
eliminated. An intelligent control algorithm can not only regulate
wellbore flow through a single parameter, such as throttle valve
opening, backpressure pump FR, or mud FR, but also realize the
collaborative control of multiple parameters, improve the control
efficiency and accuracy, and avoid unnecessary fluctuation of well-
bore pressure, which can induce secondary accidents (Table 11
[105–112]).

2.4. Intelligent evaluation and optimization of cementing quality

Cementing is an important part of well construction. Because
cementing quality assessment is highly dependent on expert
knowledge, intelligent cementing is proposed to achieve an accu-
rate assessment and prediction of cementing quality, which
includes cementing quality evaluation and prediction (Fig. 6).
Cementing quality prediction is primarily based on logging data,
and intelligent algorithms are used to correct logging information
to evaluate cementing quality. The evaluation is based on a large
number of acoustic amplitudes and variable density logging
curves, using machine or DL algorithms to train the model to accu-
rately evaluate the cementing quality.
38
2.4.1. Cementing quality prediction
Deepak Kumar Voleti of Abu Dhabi Company for Onshore

Petroleum Operations Limited (trading as ADNOC Onshore) in
the United States established different ML algorithms, such as
RF and neural networks, based on sound amplitude, variable
density logging data, and ultrasound imaging data to make pre-
dictions, and eventually adopted an integrated learning method.
All the prediction models were combined to output the predic-
tion results of cementing quality with an accuracy rate of 99.4%
[113]. Santos and Dahi at the Pennsylvania State University
used a Gaussian process regression algorithm for training to
generate synthetic logging curves based on CBL and VDL data,
which can capture the heterogeneity of cement. This research
achieved good results in predicting cement bonding quality
[114].

2.4.2. Cementing quality evaluation
Reolon et al. [115] used the MRGC algorithm by identifying pat-

terns in acoustic and ultrasonic logging/graphs and then integrat-
ing MRGC into a Bayesian framework through entropy to
calculate the probability of obtaining cement cementation phases,
the most likely scenarios, and related uncertainties. This method
can interpret and analyze cementing quality in real time. Viggen
et al. [116] proposed the use of a CNN for logging data interpreta-
tion; inputted 11 types of logging data, conducted training, and



Table 11
Intelligent control of drilling process.

Application Authors Algorithms Input parameters Main contents

Wellbore
pressure

Siahaan et al. [105] Adaptive PID Wellhead throttle valve Based on real-time data, not limited by prior
knowledge

Zhou and Krstic [106] Adaptive predictor control Backpressure pump and throttle
valve

Considered time delay of wellbore pressure
transmission

ECD Yin et al. [107] Wellhead control
equipment

Backpressure pump and throttle
valve

Automatic management of gas kick

BHP Pedersen and Godhavn
[108]

MPC Backpressure pump and throttle
valve

Pressure control under different conditions

Li et al. [109] Adaptive controller Backpressure pump and throttle
valve

Robust to BHP noise

Nandan and Imtiaz [110] NMPC Backpressure pump, throttle valve,
and FR

Constant BHP after kick

Nandan et al. [111] Robust gain switching
control

Backpressure pump The robustness of the controller is enhanced

Sule et al. [112] NMPC Choke manifold Automatic management of gas kick

Table 10
Intelligent prediction and diagnosis of drilling risk.

Application Authors Algorithms Input parameters Main contents

Wellbore
stability

Jahanbakhshi
et al. [86]

PCA and ANN Geological, engineering parameters, and
mud properties

PCA implements dimension reduction of input factor

Okpo et al. [87] ANN ROP, pressure, MD, and other 26 parameters Integrated drilling, geological and reservoir information
Lin et al. [88] BRNN and SVM ROP, BHA, depth, and other 20 parameters Noise and variation in data were eliminated by EMD
Tewari [89] RF, ANN, and SVM Includes FR, well angle, well depth, and ROP Accurately predict wellbore stability in deviated wells

Drilling risk Mohan et al. [90] Monte Carlo Includes well trajectories, completions, and
historical events

Risk can be integrated into the system in real-time to
ensure model timeliness

Li et al. [91] FL Drilling monitoring parameters Grade classification of nine risks
Yin et al. [92] Bayes and FL Formation pressure, fluid density, and

drilling parameters
The probability profile of risk is established by FL

Blowout and
gas kick

Sule et al. [93] Bayesian networks Wellhead back pressure, BHP, etc. A seven-level classification of blowout risk
Yin et al. [94] LSTM and RNN Includes flow difference, pool volume, and

WOB
A five-level classification of gas kick

Yin et al. [95] LSTM Includes flow difference, pool volume, and
WOB

Data preprocessing reduces late warning time

Muojeke et al.
[96]

ANN Includes downhole pressure, inlet–outlet
flow and density

Data from laboratory risk experiments

Lost circulation Liang et al. [97] ANN and PSO–SVR Includes pore pressure, fracture pressure,
and BHP

A risk level index was constructed by FL

Pang et al. [98] Mixture density
networks

FR, density, cell volume, and hook load Accurate warning of loss risk

Li et al. [99] BPNN, SVM and RF Includes MD, filtration loss, and pump
pressure

Real-time prediction of loss level

Hou et al. [100] ANN Formation, fluid, and engineering
parameters

Well loss probability distribution of six grades

Alkinani et al.
[101]

SVM MW, equivalent loss density, and yield point Classification and identification of loss degree

Shi et al. [102] RF and SVM Includes flow, pressure, and temperature Data preprocessing can reduce detection time
Stuck Mopuri et al.

[103]
CNN, SVN, and RF Includes torque, ROP, and bit position Reverse learning of a few sample data

Al Dushaishi et al.
[104]

DT Includes rotation speed, BHA, and fluid
parameters

Sticking prediction under different conditions

Fig. 6. Intelligent evaluation and optimization of cementing.
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finally outputted six types of cementing quality with an accuracy
rate of 86.7%. Viggen et al. [117] studied ML methods to automat-
ically evaluate cementing quality and compared the self-extracting
feature CNN with feature engineering to extract features artifi-
cially. The results showed that the classifier using feature engi-
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neering performed better, with accuracies of 88.9% for HI, 86.7%
for CNN, and 51.6% for BQ.
2.5. Intelligent design and optimization of fracturing process

Intelligent fracturing involves the use of AI and big data tech-
nology to solve nonlinear, multiparameter, and multiobjective
problems in the fracturing process. Intelligent fracturing consists
of three application scenarios: intelligent design of the fracturing
process, intelligent monitoring of the fracturing process, and frac-
turing optimization for production (Fig. 7).
2.5.1. Intelligent design of the fracturing process
The fracturing design of a horizontal well includes fracturing

location and fracture parameter design. The optimization design



Fig. 7. Intelligent design and optimization of fracturing.
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of horizontal fracturing has evolved through several methods and
technologies, from simple analytical to complex numerical models
from being data-driven to, now, being intelligence-driven. With big
data (e.g., logging, MWD, and rock mechanics data) and intelligent
algorithms (e.g., clustering, regression, and optimization algo-
rithms), perforation fracturing optimization can be achieved
(Table 12 [118–123]). Currently, the accuracy is approximately
70%–80%, which greatly improves the prediction accuracy of the
productivity of fractured horizontal wells, compared with tradi-
tional methods. However, owing to the limitations of data quality
and quantity, there are few examples of field applications of rele-
vant research.
Table 12
Intelligent design of hydraulic fracturing.

Authors Algorithms Inputs

Tran et al. [118] KNN Surface drilling
Palmer [119] Fuzzy C-means Acoustic loggin

logging
Xu et al. [120] GA and adaptive evolution Reservoir struc

parameters
Dalamarinis et al. [121] RR and RF Fracturing proc

Rahmanifard and Plaksina [122] Genetic, differential evolution,
and PSO

Includes well s
permeability

Gong et al. [123] Clustering algorithm and ANN Rock structure
characteristics

Table 13
Intelligent warning and identification of fracturing event.

Application Authors Algorithms Inputs

Event
recognition

Ramirez and
Iriarte [124]

SVM and logistic
regression

Includes pump pressure
proppant concentration

Decision tree

Shen et al. [125] CNN and U-net
Pump pressure

prediction
Ben et al. [126] MLP, CNN, and

RNN
Casing failure

recognition
Li et al. [78] RF

Screen-out
prediction

Maučec et al. [127] CART

Sun et al. [128] CNN–LSTM Includes pump pressure

Yu et al. [129] GHMMs Includes pump pressure
proppant concentrationHu et al. [130] ARMA
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2.5.2. Intelligent monitoring of the fracturing process
Real-time monitoring is an important aspect of the fracturing

process. The intelligent algorithms are gradually replacing tradi-
tional manual feature selection and anomaly monitoring, and the
performance of intelligent algorithms in abnormal signal identifi-
cation has greatly improved compared with traditional methods.
The intelligent monitoring of the fracturing process consists of
two aspects: fracturing condition identification and intelligent risk
warning (Table 13 [78,124–130]).
2.5.3. Productivity prediction and fracturing optimization
Staged fracturing is necessary for efficient exploitation of

unconventional oil and gas resources. The productivity prediction
of fractured horizontal wells is of great significance for the evalua-
tion of production schemes and completion optimization. With the
extensive use of hydraulic fracturing technology and development
of AI, the effective application of ML methods in parameter opti-
mization design has become a trend that is expected to grow in
the future. Intelligent algorithms, such as support vector machines,
decision trees, neural networks, and their variants, are already
being used to construct productivity prediction models (Table 14
[75,131–134]).
2.6. Intelligent design and optimization of completion

Intelligent completion is primarily composed of downhole
automation, remote sensing, and control systems. The intelligent
completion analyzed here is an advanced method for maximizing
Contents/innovation

data Identified brittle and frackable zones
g and natural fracture Classified similar shale formations

ture grid and hydraulic The azimuth and perforation clusters were
optimized

ess parameters Reduce inter-well interference and improve fracture
complexity

pacing, porosity, and PSO has the highest NPV

and geomechanical ANN is used to identify brittle clusters

Contents/innovation

, injection rate, and Automatically mark the beginning and end of hydraulic
fracturing
The pressure changes are analyzed and abnormal
conditions are identified
Mark fracturing start and end points
Real-time prediction of wellhead pressure

Casing failures are identified

The prediction of screen-out, and identifying the affecting
factors

and injection rate Combination of physics-based inverse slope method and
newly-developed ML techniques.

, injection rate, and Successful warning about 8.5 min before screen-out
The early warning rules were designed based on the
prediction of pump pressure



Table 14
Productivity prediction and fracturing parameter optimization.

Application Authors Algorithms Inputs Contents/innovation

Productivity prediction Pankaj et al.
[131]

GradBoost Includes fluid type; proppant quantity; and
pumping rate and BHP

Provide the best directional response in real-time

Bhattacharya
et al. [132]

RF Includes fracturing length, casing pressure, and
tubing pressure

Optical fiber parameters are introduced to improve
the accuracy of the model

Al Shehri et al.
[75]

Boost Includes the number of stages, propping dose, and
injected fluid volume

Model integration and uncertainty quantification

Liu et al. [133] ANN Includes length of fracturing, fracturing clusters,
and formation thickness

The underlying algorithm of time series analysis

Fracturing parameter
optimization

Duplyakov et al.
[134]

CatBoost Injected fluid volume, TVD, perforation angle, and
perforation spacing

The recommendation system for optimizing
fracturing parameters

Duplyakov et al.
[134]

CatBoost Includes formation thickness, angle, and
formation pressure

Euclidean distance was used to find similar wells

Fig. 8. Intelligent design and optimization of completion.

Fig. 9. Overall optimization of the drilling process.
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production and recovery using the methods shown in Fig. 8. The
data sources for completion are composed of static and dynamic
data. Static data include the reservoir properties and multilateral
well structure, while dynamic data include surface monitoring pro-
duction data and downhole sensing information. Regarding intelli-
gent algorithms, sequential regression algorithms are usually
combined with numerical simulations to predict future production
dynamics, and optimization algorithms and hydraulic control lines
are used to optimize and control the operating state of downhole
fluid control equipment, such as inflow control valves (Table 15
[135–144]).
Table 15
Intelligent completion design and optimization.

Application Authors Algorithms Input p

Completion design
optimization

Ma et al. [135] Augmented
AI

Enginee
propert

Production prediction Klie [136] RBF Product

Inflow performance in
wellbore

Tariq et al. [137] SVM–PSO Product

Dynamic production
optimization

Prosvirnov et al. [138] — Wellbo
distribu

Wellbore production
profile

Chaplygin et al. [139] RF The nu

Multilateral inflow
prediction

Khamehchi et al. [140] ANN ICV and

Multilateral inflow
optimization

Aljubran and Horne [141] ANN ICV and

Well and reservoir
management

Bello et al. [142] Data-driven Downh

Completion design Solovyev and Mikhaylov [143] Data-driven Product
ICD and packer

optimization
Goh et al. [144] Data-driven ICD and
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2.7. Overall optimization and intelligent decision-making of the
drilling process

A drilling system is extremely complicated because it is com-
posed of several tightly related downhole subsystems, such as
geo-steering, rock-breaking, hydraulic, and drill-string systems,
the majority of measurements are only available at the ground,
and very sparse data from downholes are accessible (Fig. 9). The
arameters Main contents

ring and geological
ies

Model sensitivity analysis

ion data and time The fusion of physics-based models and data-driven
models

ion data and time The data source is a numerical simulation

re inflow and pressure
tion

Based on an intelligent completion system

mber of tracers Determine the inflow distribution based on the
number of tracers

production parameters Prediction of downhole flow conditions

production parameters Optimization of downhole flow

ole monitoring data Real-time reservoir management

ion log data Layout of the AICD
packer layout Dynamic optimization of a single well
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goal of drilling is to form a hole with high efficiency and quality
while maintaining low risks and costs. Therefore, drilling optimiza-
tion involves multiple objectives and subsystems, for which a
model integrating the coupled subsystems is needed. The overall
optimization and intelligent decision-making of the drilling pro-
cess is an important scenario in which AI is applied in the realm
of drilling and completion. It is expected to ensure drilling safety,
shorten drilling periods, and save drilling costs.

To achieve this goal, a mathematical model integrating the sub-
systems by combining physics-based and data-driven methods and
analyzing the coupling mechanism of the subsystems is required.
The integrated model should be dynamic and serve as the founda-
tion for drilling optimization. The model should be constrained by
the controllable operational parameters on the ground as well as
drilling risks. The latter implies that the operational parameters
must not cause accidents, such as kick-off and stuck pipes. The
multi-objective optimization algorithms and intelligent decision-
making strategies must be implemented with specific goals,
including optimizing the drilling rate, MSE, and drilling costs.
The algorithms must be fast and efficient to meet the demands
of real-time operation. Finally, a framework integrating all the
models and algorithms must be developed to perform the overall
optimization and intelligent decision making while drilling.

Integrating all the subsystems of the drilling process to perform
optimally is crucial for intelligent or autonomous drilling. Although
many studies have been conducted on model construction, frame-
work design, and system development, as shown in Table 16 [145–
160], research on overall optimization and intelligent decision-
making during drilling is still in the early stages.
2.8. Overview of the research status

Intelligent drilling and completion are now developing rapidly,
and the integration of AI with drilling and completion engineering
is deepening. Many studies have ranked particular models as best
by comparing the performance of ML, DL, and optimization meth-
ods in specific scenarios, and have even established hybrid models
to meet the needs of precision, efficiency, and systematic reason-
ing. The fusion of physics-based and data-driven models has
become a popular approach, which overcomes the limitations of
the mechanism model, improves the stability of the data model,
and reduce the interference of data noise. Common methods
include reconstructing the neural network topology with
mechanism knowledge, constructing loss functions under mecha-
Table 16
Overall optimization and intelligent decision-making of drilling process.

Authors/institute Scope Involved systems

Shishavan et al. [145] MPD Rock-breaking and hydrau

Ambrus et al. [146] Model building Rock-breaking and drill-st
Zhou et al. [147] Drilling

optimization
Rock-breaking and hydrau

NORCE [148–150] Autonomous
drilling

Includes rock-breaking, dr
hydraulic system

Texas A&M University [151,152] Drilling
simulator

Includes rock-breaking, dr
hydraulic system

University of Stavanger [153–155] Autonomous
drilling rig

—

Mayani et al. [156]
Mayani et al. [157]
Wanasinghe et al. [158]

Digital twin —

eDrilling [159] Business
software

Includes rock-breaking, dr
hydraulic system

DrillOps [160] Business
software

—
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nism constraints, and sharing and complementation of input data.
In the complex drilling process with multisystem coupling, the
single-objective optimization method has obvious limitations and
cannot achieve global optimization. According to the scenarios of
drilling and completion, the coupling of multiple process models
is realized with an optimization algorithm to realize multi-
objective optimization of the drilling process and global
optimization.

3. Prospects and challenges of intelligent drilling and
completion

Despite the rapid development of intelligent drilling and com-
pletion, challenges remain to be addressed. Future work on intelli-
gent drilling and completion should focus on data processing,
intelligent methods, modeling methods, and application require-
ments (Fig. 10).

3.1. Standards and methods for data processing

Drilling and completion data are multisource and multiscale,
and include micrometer-level formation pore structures and
kilometer-level geologic mechanisms, as well as dynamic data
from real-time monitoring and static data of formations and reser-
voirs. The data types are varied, and include numerical values, text,
and pictures. The dynamic integration of this information is a nec-
essary for the development of intelligent drilling and completion.
Monitoring information in complex environments, such as down-
holes and formations, has considerable noise, anomalies, and
vacancy values. Automated data governance methods and pro-
cesses are critical for data-driven modeling and optimization, and
data processing standards drive the application of data processing
methods.

3.2. Intelligent algorithms and techniques

While computer vision can be used to process image informa-
tion, it is also an important technology for digital twin visualiza-
tion. Digital twin visualization, with its hypothetical capabilities,
will effectively improve risk warnings and intelligent decision-
making. The knowledge graph also connects different business
scenarios, enhancing overall control over drilling and completion
business networks. The edge-cloud integrated computing
method will further release the potential of computing power for
Contents/innovation

lic system Combining ROP and BHP into a comprehensive controller for
MPD

ring system Modeling bit-rock interaction and drill-string dynamics
lic system Multi-objective optimization and decision-making combing ROP

and MPV
ill-string, and Autonomous decision-making system while drilling

ill-string, and Drilling simulator development

Designing a small-scale autonomous drilling rig and control
system
Architectures of drilling optimization, decision-making, and
control based on digital twin

ill-string, and Real-time modeling, monitoring, optimization, and visualization
of the drilling process
Real-time drilling risk monitoring, optimization, and decision-
making of the drilling process
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large-scale model operations and simulations, including digital
twins.

3.3. Intelligent modeling

Appropriate modeling methods can improve data utilization
and enhance model performance. Intelligent models incorporating
prior knowledge (e.g., physical laws and expert knowledge) can
guarantee accuracy and efficiency, and simultaneously improve
stability and portability. Modeling methods based on the fusion
of prior knowledge and big data are regarded as an important driv-
ing force in promoting the application of AI. Despite the volume of
drilling and completion data, there are many few-sample scenar-
ios, such as complex downhole conditions, that are difficult to
monitor and have few reliable data about drilling accidents. Few-
sample modeling can provide excellent model performance with
limited data. Uncertainty analysis of the few-sample problems is
helpful in understanding the nature of the problem. The coupling
of agents representing physical processes to achieve accurate char-
acterization and global optimization of drilling and completion
processes will become an essential requirement for intelligent dril-
ling and completion.

3.4. Intelligent application requirements

Interpretability and transferability of intelligent algorithms are
two critical problems in the application of AI. In combination with
real drilling and completion scenarios, interpretable and transfer-
able methods for intelligent models should be explored to form
unique models suitable for specific drilling and completion scenar-
ios. Furthermore, the development of reliable intelligent models in
business software can accelerate the development of intelligent
models.
4. Conclusions

Intelligent drilling and completion is regarded as a transforma-
tive technology and has become a hot spot or hub for development
in the oil and gas industry, significantly improving DE and reducing
drilling costs. In this review, seven intelligent scenarios or applica-
tion areas of AI techniques in drilling and completion engineering
are proposed, and the status of research in each of the scenarios
comprehensively reviewed. By combining the characteristics of
drilling and completion engineering and AI, key future research
areas of intelligent drilling and completion are proposed.

In the future, efforts should be focused on promoting the devel-
opment of intelligent drilling and completion in the following
areas: ① exploring automated data management methods and
standards; ② strengthening the research in intelligent methods,
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such as digital twins, computer vision, knowledge graphs, and rein-
forcement learning;③ developing new modeling methods, such as
the combination of data and mechanisms, few-sample learning,
uncertainty modeling, and multi-agent coupling; and ④ building
intelligent models that are interpretable and transferable. This
study has provided a systemic review of intelligent drilling and
completion, and is expected to spark research and establishment
of intelligent algorithms.

Acknowledgment

The authors gratefully acknowledge the support of the National
Key Research and Development Project of China
(2019YFA0708300), National Science Fund for Distinguished
Young Scholars of China (52125401), and National Natural Science
Foundation of China (L1924060).

Compliance with ethics guidelines

Gensheng Li, Xianzhi Song, Shouceng Tian, and Zhaopeng Zhu
declare that they have no conflict of interest or financial conflicts
to disclose.

Nomenclature

Abbreviations
5G The fifth generation mobile communication technology
AdaBoost Adaptive boosting
ABC Artificial bee colony
AC Acoustic time difference
ACO Ant colony optimization
ADNOC Abu Dhabi National Oil Company
AHP Analytic hierarchy process
AI Artificial intelligence
AICD Autonomous inflow control device
ANFIS Adaptive neuro-fuzzy inference system
ANN Artificial neural network
ARIMA Auto regressive integrated moving average
ARMA Auto-regressive and moving average model
ATC Analytical target cascading
BHA Bottom hole assembly
BHP Bottom hole pressure
BPNN Back propagation neural network
BQ Bond quality
BRNN Bayesian regularization neural network
BTS Brazilian tensile strength
CAI Cerchar abrasivity index
CART Classification and regression tree
CBL Cement bond logging
CNN Convolutional neural networks
COA Cuckoo optimization algorithm
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DE Drilling efficiency
DL Deep learning
DNN Deep neural networks
DS Differential search
DT Decision tree
ECD Equivalent circulating density
ELM Extreme learning machine
EMD Empirical mode decomposition
FCNN Fully convolutional neural network
FD Formation drillability
FL Fuzzy logic
FNN Functional neural network
FR Flow rate
FSCARET Automated feature selection from ‘‘caret”
FSQGA Fibonacci sequence based quantum genetic algorithm
GA Genetic algorithm
GBM Gradient boosting machine
GHMMs Gaussian hidden markov models
GR Gamma ray
GradBoost Gradient boosting
HI Hydraulic isolation
HS Harmony search
ICD Inflow control device
ICV Interval control valve
IGA Improved genetic algorithm
IoT Internet of Things
IPSO Improved particle swarm optimization
KNN K-nearest neighbor
LDA Linear discriminant analysis
LM Levenberg–Marquardt
LMR Linear multivariate regression
LR Logistic regression
LSTM Long short-term memory neural network
LWD Logging while drilling
MCM Minimum curvature method
MD Mud density
MedAE Median absolute error
ML Machine learning
MLP Multi-layer perceptron
MOC Multi-objective cellular
MOGA Multi-objective genetic algorithm
MPC Model predictive control
MPD Managed pressure drilling
MPV Mud pit volume
MRGC Multi-resolution graph-based clustering
MSE Mechanical specific energy
MW Mud weight
MWD Measurement while drilling
MVRA Multivariate regression analysis
NPV Net present value
PCA Principal component analysis
PID Proportional integral differential
PSO Particle swarm optimization
QDA Quadratic driscriminant analysis
RBF Radial basis function
RBFNN Radial basis function neural network
RF Random forest
RNN Recurrent neural network
ROA Rain optimization algorithm
ROP Rate of penetration
RPM Revolutions per minute
RR Ridge regression
RSS Rotary steerable system
SPP Stand pipe pressure
SVM Support vector machine
SVR Support-vector regression
SWOB Specific weight on bit
TOB Torque on bit
TVD True vertical depth
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UCS Unconfined compressive strength
VDL Variable density log
VSP Vertical seismic profile
WOB Weight on bit
XGBoost Extreme gradient boosting
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