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Antibiotic resistance, which is encoded by antibiotic-resistance genes (ARGs), has proliferated to become
a growing threat to public health around the world. With technical advances, especially in the popular-
ization of metagenomic sequencing, scientists have gained the ability to decipher the profiles of ARGs in
diverse samples with high accuracy at an accelerated speed. To analyze thousands of ARGs in a high-
throughput way, standardized and integrated pipelines are needed. The new version (v3.0) of the widely
used ARGs online analysis pipeline (ARGs-OAP) has made significant improvements to both the reference
database—the structured ARG (SARG) database—and the integrated analysis pipeline. SARG has been
enhanced with sequence curation to improve annotation reliability, incorporate emerging resistance
genotypes, and determine rigorous mechanism classification. The database has been further organized
and visualized online in the format of a tree-like structure with a dictionary. It has also been divided into
sub-databases for different application scenarios. In addition, the ARGs-OAP has been improved with
adjusted quantification methods, simplified tool implementation, and multiple functions with user-
defined reference databases. Moreover, the online platform now provides a diverse biostatistical analysis
workflow with visualization packages for the efficient interpretation of ARG profiles. The ARGs-OAP v3.0
with an improved database and analysis pipeline will benefit academia, governmental management, and
consultation regarding risk assessment of the environmental prevalence of ARGs.

� 2022 THE AUTHORS. Published by Elsevier LTD on behalf of Chinese Academy of Engineering and
Higher Education Press Limited Company. This is an open access article under the CC BY-NC-ND license

(http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

The discovery of antibiotics changed the world of clinical ther-
apeutics and has saved hundreds of millions of lives threatened by
infectious diseases. However, the misuse and abuse of antibiotics
subsequently led to global concern about antimicrobial resistance
(AMR) in the post-antibiotic era. Joint efforts from many countries
have been made to advance antibiotic stewardship and enhance
the surveillance of antibiotic-resistance genes (ARGs) [1,2]. Geno-
mic sequencing with increasing applications in ARG surveillance
is advantageous in high-throughput analysis and decoding the
genomic context of ARGs. With the evolution of sequencing tech-
nology and the AMR crisis threatening human health, there is a
growing need for reliable reference databases and bioinformatic
tools for the fast and accurate annotation, classification, and quan-
tification of ARGs using big data of DNA sequences [3].
The structured ARG (SARG) database, first published in 2016, is
one of the most popular ARG databases. It was constructed based
on the comprehensive antibiotic-resistance database (CARD) [4]
and the ARG database (ARDB) [5] to generate a collection of
4049 variants with a hierarchical structure of type-subtype-
sequence and a clear classification of each sequence [6]. ARG types
represent antibiotics against which the genes encoding proteins
are resistant (like the antibiotic/drug classes used in some studies),
while subtypes represent the genotypes of the genes (like the ARG
families used in some studies). Further expansion was conducted
on the SARG database to evolve it into v2.0 in 2018, which included
more curated ARG reference sequences from the National Center
for Biotechnology Information (NCBI) non-redundant (NR)
databasey through robust selection criteria such as sequence align-
ment and keyword matching. The ARGs online analysis pipeline
(ARGs-OAP) can be used for ARG annotation, classification, and
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Fig. 1. The ARGs-OAP v3.0 has been updated to include a new database, a polished
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quantification with two-step analysis. Its first step incorporates the
fast filtering of ARG sequences via Usearch [7], and the second step
uses the basic local alignment search tool (BLAST) for accurate clas-
sification [8]. Global attention has been given to the ARGs-OAP, and
the increasing number of users has motivated the continuous
improvement of this tool, leading to an update to v2.0 with the
deployment of SARGfam and the application of essential single-
copy marker genes in cell number quantification [9].

Continuous improvement of this analytic tool, the SARG-based
ARGs-OAP, is required to advance its performance and integration
with other downstream analyses. Thus, this study describes recent
updates to the ARGs-OAP v3.0, as shown in Fig. 1, which include
① a database extensively curated for reducing annotation bias
with a revised hierarchical structure;② upgraded annotation, clas-
sification, and quantification tools with increased coverage of ARGs
for environmental samples, and a new method of calculating ARG
abundance; and ③ improvement of the website for the integrative
in-depth analysis of ARGs and statistical visualizations.
pipeline, and webpages with multiple functions.
2. Methods

2.1. Database curation

Robust curation of all reference sequences was conducted using
in-house scripts, followed by manual validation referring to the lit-
erature,y molecular experts, other relevant databases, and NCBI
annotations. Through sequence alignment and keyword matching
for individual sequences, an accurate classification was obtained if
the alignment results matched the keyword searching. In detail, first,
ARGs for specific antibiotic types were curated according to the most
up-to-date knowledge, such as the terminology of tetracycline and
macrolide–lincosamide–streptogramin (MLS) resistance genes
[10,11]. Second, the name and classification of the ARG subtypes
were supplemented by other databases, including the CARD
(v3.2.4, downloaded on 27 July 2022) [12]. After manual filtration,
713 out of 4641 sequences from the CARD were included into the
SARG database, providing an updated collection of terms of ARG sub-
types (Table 1). Furthermore, the rest of the reference sequences in
SARG were reviewed individually according to their classification
in the published papers. Those sequences without available classifi-
cation of subtypes/types were removed to avoid potential mis-
annotation and false positives in quantification. Lastly, SARG data-
base alignment against the NCBI NR database (downloaded on 28
August 2022) was conducted to retrieve more reference sequences
followed by rigorous selection criteria [9].
2.2. Simulated datasets for evaluation of the ARGs-OAP v3.0

To evaluate the performance of the ARGs-OAP v3.0, simulated
datasets were generated from the Swiss-Prot database with cus-
tomized scripts [13]. Sequences with the keywords ‘‘antibiotic
resistance” in the Swiss-Prot database (downloaded on 20 April
2020) were treated as ARGs, while other sequences in the Swiss-
Prot database were treated as non-ARGs. The whole collection
was enumerated to produce k-mers of 50, 67, and 100 amino acid
(aa) protein sequences to represent metagenomic datasets with
read lengths of 150, 201, and 300 base pairs (bp). A gradient of cut-
offs (i.e., E-value, identity, and hit length ratio) were assessed when
applying the ARGs-OAP to the simulated datasets. The robustness
of the pipeline with different cutoffs was evaluated based on the
Matthews correlation coefficient (MCC), sensitivity, and precision
using the calculation methods summarized in the Appendix A.
y https://smile.hku.hk/ARGs/Indexing.

235
2.3. Datasets for the evaluation of different versions of the ARGs-OAP

To evaluate the changes in the ARG abundance and diversity
profiles introduced by the database update, quantification analyses
were conducted on 36 samples from seven different environmental
types, including four samples from river water, three samples from
sediment, four samples of anaerobic digested sludge (ADS) from
wastewater treatment plants (WWTPs), nine samples from WWTP
activated sludge (AS), two samples from WWTP effluent, two sam-
ples from WWTP influent, and 12 samples from livestock feces or
swine farm wastewater. For each environmental type, the abun-
dances of ARG types quantified from different metagenomes were
averaged to represent that environmental type.
2.4. Risk ranking of reference ARGs

The risk-ranking framework used for reference ARGs is based
upon the work by Zhang et al. [14], which classifies reference
sequences in the SARG database into four risk ranks (Ranks I, II,
III, and IV) by a decision tree according to three criteria. First, all
reference ARGs in the SARG v3.0 database were searched in global
metagenome collections (n = 1427, data obtained before 17
September 2022) and the Refseq genome collection (n = 256 788,
downloaded on 26 August 2022) using the default cutoff values.
Those reference sequences that could not be detected in any meta-
genome were ranked as ‘‘Unassessed.” Second, the prevalence of
ARGs in human-associated environments (including human feces,
cattle feces, swine feces, sewage, wastewater treatment facilities,
the agricultural field, industrial wastewater treatment facilities,
and mines) was compared against the ARGs abundance in non-
impacted environments (including marine water, natural water,
natural sediment, and natural soil) (Table S1 in Appendix A). Those
ARGs that were not found to be enriched (a cutoff of < 100 times) in
human-associated environments were categorized as ‘‘Rank IV.”
Third, among the ARGs enriched in human-associated environ-
ments, nonmobile ones judged by searching the Mobile Genetic
Elements (MGEs) database (Refseq plasmid database downloaded
on 4 April 2022) were categorized as ‘‘Rank III.” Fourth, among
the mobile and human-associated ARGs, those not carried by
pathogens were categorized as ‘‘Rank II.” Lastly, those reference
ARGs that met all three criteria, including being ① enriched in
human-associated environments, ② mobile, and ③ carried by
pathogens, were categorized as ‘‘Rank I,” which indicates the high-
est risk.

https://smile.hku.hk/ARGs/Indexing


Table 1
Counts of type/mechanism/subtype/sequence in the databases SARG v1.0/v2.2/v3.0-F and CARD v3.2.4.

Item Database

SARG v1.0 SARG v2.2 SARG v3.0-F CARD v3.2.4

Type 24 24 32 —
Mechanism — — 11 —
Subtype 1 208 1 244 2 842 —
Sequence 4 499 12 085 13 672 4 641

SARG v3.0-F: SARG v3.0 full version.
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2.5. Information technology

ARGs-OAP v1.0 [6] and v2.0 [9] were deployed based on the
Galaxy project [15]. In the updated version, the Galaxy project
was developed in situ with a customized Python Flask framework,
Vue.js framework, and Quasar framework, with supportive data-
sets generated by R-Studio. Database indexing with mass data
was supported by MySQL storage and visualized by the markmap
package.
y https://smile.hku.hk/ARGs/Indexing/riskranking.
3. Results and discussion

3.1. SARG database update

As in the previous two versions of SARG, the reference
sequences of ARGs in SARG v3.0 are organized in a hierarchical
structure (type–subtype–sequence), which is beneficial for the
top–down interpretation of the resistome in an environmental
sample, especially when applying the ARGs-OAP in the quantifica-
tion of both the phenotypes (ARG types) and genotypes (ARG
subtypes) of ARGs. In SARG v3.0, the resistance mechanisms
are identified to form a new structure with four layers (type–
mechanism–subtype–sequence). Six mechanism groups are
included: antibiotic target alteration, antibiotic target protection,
antibiotic target replacement, efflux pump, enzymatic inactivation,
and reduced permeability [16–26]. For some groups, the mecha-
nisms are further classified into subgroups. For example, the efflux
pump is further classified into five subgroups: adenosine triphos-
phate (ATP)-binding cassette (ABC) transporter; major facilitator
superfamily (MFS) transporter; multidrug and toxic compound
extrusion (MATE) transporter; resistance-nodulation-cell division
(RND) transporter; and small multidrug resistance (SMR) trans-
porter [24,25].

Moreover, in SARG v3.0, special ‘‘two-component” and ‘‘three-
component” tags are given to those ARG subtypes that have two-
component systems or three-component systems encoding antibi-
otic resistance. For example, a pair of genes conferring an efflux
pump (tetA(46) and tetB(46)) is required for tetracycline resistance
[27]. AcrEF-TolC is another example of a three-component system
from the subfamily of RND transporters, the function of which
requires a membrane fusion protein (AcrE), inner membrane trans-
porter (AcrF), and outer membrane factor (TolC) [28].

Moreover, the curation of the name list of ARG types and sub-
types has resulted in 1717 new ARG subtypes being added to the
SARG database, including 157 aminoglycoside, 230 beta-lactam,
35 chloramphenicol, 96 MLS, 99 multidrug, 106 quinolone, 73 van-
comycin, and other resistance subtypes (Table 1; Table S2 in
Appendix A). Eleven synonyms have been identified. In particular,
the SARG database now includes 127 more ARG subtypes in addi-
tion to those of CARD, including mdtL, SHV-112, SHV-39, and tetX1.
Manual curation of these subtype names has been conducted for
the SARG v3.0 database.

To summarize, 1425 sequences were removed from SARG v2.2
due to inconsistent classification into specific types or subtypes,
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and 3012 sequences were added, resulting in an updated database
SARG v3.0 full version (SARG v3.0-F) with 32 types, 2842 subtypes,
and 13 672 sequences (Table 1 and Table S1).

For better annotation and classification of ARGs using DNA
sequences of different lengths, SARG v3.0-L (a sub-database for
long-read annotation, n = 13 439) was constructed from SARG
v3.0-F by removing 233 sequences that evolved from mutations
or functioned when overexpressed, which were not suitable for
annotation based on a similarity search. Furthermore, SARG v3.0-
S (for short-read quantification, n = 12 746) was created as a
sub-database of SARG v3.0-L that excludes the 693 sequences
tagged with transcriptional regulators (including activators and
repressors) that cannot be correctly annotated using short reads.
The sub-database SARG 3.0-E (for express analysis, currently
n = 10 538) only includes environmentally prevalent SARG
sequences that have been detected at least once in a comprehen-
sive survey across diverse environments. Both SARG v3.0-S and
SARG v3.0-E are provided as reference databases in the ARGs-
OAP for the full or fast analysis of environmental metagenomic
short-read datasets using similarity search algorithms.
3.2. Database indexing platform

The structure of the SARG v3.0-F database is clearly displayed
on the ARGs-OAP website for users to retrieve information about
each gene and reference sequence and refer to any ARG of interest
among the 13 672 reference sequences.

Two formats have been adopted for indexing the SARG database
(Fig. 2). One is the hierarchical tree view, in which each tree is
rooted in one ARG type and then grown into different resistance
mechanisms, protein families, and ARG subtypes as branches.
The tree-structure indexing is a user-friendly visualization of the
hierarchical structure of the SARG database. The other display for-
mat is designed to archive each ontology in the SARG database
with comprehensive descriptions, similar to other databases such
as UniProt [29] and Pfam [30].

The most notable section of the ARGs-OAP indexing is the envi-
ronmental prevalence information on each ARG subtype, which is
summarized from the data mining results of over 1000 metage-
nomic datasets from various environmental samples (Table S1).
In addition, the 12746 reference sequences in SARG v3.0-S are
classified into risk Ranks I, II, III, and IV.y Based on our recently pub-
lished risk-ranking scheme [14], the risk Rank I ARGs claim the most
attention due to their high mobility across phylogenetic boundaries,
their wide dissemination under anthropogenic activities, and the
pathogenicity of their hosts. Thus, risk Rank I ARGs are highlighted
on the webpage in both the ‘‘environmental prevalence” and ‘‘se-
quence” sections in the dictionary. In general, ARG prevalence data
and the risk-ranking scheme provide a valuable reference for both
academia and government in understanding the dissemination of
ARGs and developing control strategies.

https://smile.hku.hk/ARGs/Indexing/riskranking


Fig. 2. A visual version of the SARG v3.0-F (n = 13 672) in two formats. (a) Trees of ARG types with a supported searching function; (b) archived information of each ontology
in the SARG database, including the relevant type, subtype, mechanism groups, subgroups, reference sequences, and environmental prevalence information. aadA:
aminoglycoside-3’’-adenyltransferase.
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3.3. Updates to the ARG quantification tool and visualization

The integrated tool for the annotation and quantification of
ARGs by leveraging the SARG database is termed the ARGs-OAP.y

It has been improved in version 3.0 to accurately quantify ARG abun-
dance from metagenomic datasets, with the following modified
equation:

Abundance ¼
Xn

i¼1
k� NiARG-like sequence � Liread=LiARGs reference sequence

Ncell number

� �
y https://smile.hku.hk/SARGs.
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where NiARG-like sequence is the number of ARG-like reads annotated
to one specific ARG reference sequence; Liread is the read length;
LiARGs reference sequence is the nucleotide sequence length of the corre-
sponding ARG reference sequence; and n is the number of mapped
ARG reference sequences belonging to that ARG type or subtype.
Ncell number is the cell number estimated either by mapping against
an essential single-copy marker gene database or by correction
from copy numbers of 16S ribosomal RNA (rRNA) sequences [9].
The parameter k equals 0.5 if the specific ARG reference sequence
is a two-component system, 0.33 if the specific ARG reference
sequence is a three-component system, and 1.0 for all ARGs other
than the above two categories.

In SARG v3.0, different subtypes of ARGs are tagged with differ-
ent k values, which are used to adjust the quantification. A total of

https://smile.hku.hk/SARGs
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3552 sequences are tagged as ‘‘three-component” systems with k
values of 0.33, because the synchronous occurrence of three genes
in this category as a group is required for genuine resistance and,
without the adjustment parameter of 0.33, the old quantification
method of counting every component as 1.0 will result in a three-
fold overestimation. Similarly, 65 sequences are tagged as ‘‘two-
component” systems with k values of 0.5, because the occurrence
of two genes in this category as a group leads to resistance; thus,
a single occurrence has been adjusted by a parameter of 0.5. This
modification will help reduce the bias in the quantification of a
few ARG types, including multidrug ARGs, MLS resistance genes,
and so forth. Those subtypes of ARGs whose k values are equal to
1.0 are not affected in the quantification process in the updated
formula.
Fig. 3. Workflows of the ARGs-OAP v3.0 platform for short reads. The query datasets can
integrated tools for visualization and interpretation. One example is the ‘‘geographical com
query sample and then uploading an input file, which is the mother table of the ARG abu
and a map that are generated based on the query sample and the archived database, w
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Moreover, the online analysis platform has been updated to a new
file management system that facilitates much more user-friendly
online analysis in many aspects (Fig. 3). First, the old versions of
the ARGs-OAP required local sample pretreatment. With the update,
users can choose to upload raw reads (via the webpage or FTP) and
then go through the quantification steps of the ARGs-OAP with just
one click. Second, the updated online pipelines provide multiple
downstream analyses after the above quantification using the
ARGs-OAP. Visualization packages have been integrated into the
ARGs-OAP and the downstream analysis tools to display the results
for better interpretation. In detail, short reads of environmental sam-
ples can be used as the query input for the ARGs-OAP analysis to clas-
sify ARGs and quantify ARG prevalence, generating abundance tables
of ARG types, subtypes, and variants. A dashboard is also available
be analyzed to quantify ARGs in an efficient and accurate way, followed by the use of
parison” package, whose interface requires selecting the environmental type of the
ndance after the analysis of the ARGs-OAP. The resulting profiles include a boxplot
hich contains 1427 samples from 13 types of habitats.



Fig. 4. Tools available on the platform of the ARGs-OAP v3.0 for long reads, including integron identification and plasmid classification. I-VIP: integron visualization and
identification pipeline.
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with summarized counts of detected ARGs and a bar chart of ARG
abundance (in the unit of copies of ARGs per cell).

The workflow of the downstream analyses, taking the geo-
graphical comparison analysis as an example, is demonstrated
and illustrated in Figs. 3 and 4. The whole package of downstream
analyses includes the following:

(1) A geographical comparison performed by importing an
abundance table of ARG types of samples from different locations
for benchmarking ARG pollution levels with a global collection of
data from the same type of habitat;

(2) ARG pollution source identification based on microbial
source tracking (MST) to identify the proportions of different
sources (including sewage, human feces, livestock feces, WWTPs,
the agricultural field, industrial WWTPs, mine, and natural
sources) contributing to ARGs in a sample of interests;

(3) An ordination analysis of a sample performed by referring to
the ARG profiles in a collection of various ecosystems to demon-
strate similarity and dissimilarity;

(4) The profile of four ranks regarding ARG risks in a sample of
interests.

In addition to a metagenomic analysis on short reads, there is a
growing application of long-read-based ARG annotation, which is
generated either from third-generation sequencing [31,32] or the
de novo assembly of short reads into contigs [33]. By referring to
the SARG database, long reads can easily be aligned to either pro-
tein or nucleotide reference sequences,y depending on the sequenc-
ing accuracy and the research scenarios, to annotate ARGs. The
genetic context can be further deciphered by MGE analysis by the
integron visualization and identification pipeline (I-VIP) for inte-
grons [34] or pipeline for plasmid classification (Plascad) for plas-
mids [35]. Identification of the colocalization of ARGs and MGEs
provides critical information for further exploration of potential hor-
izontal gene transfer across bacterial communities.
3.4. Evaluation of the performance of the ARGs-OAP v3.0

We evaluated the performance of the updated pipeline based on
the MCC, sensitivity, and precision by annotating ARGs in the sim-
ulated metagenomic datasets with the read lengths of 150, 201,
and 300 bp (Fig. 5; Fig. S1 in Appendix A). The evaluation results
revealed the excellent performance of the ARGs-OAP v3.0, which
y https://smile.hku.hk/ARGs/Indexing/download.

239
showed high precision and sensitivity for ARG identification in
three sets of environmental metagenomes when the recommended
cutoffs were applied (i.e., E-value: 1e�7; identity: 80%; hit length
ratio: 75%). False positives are always a concern when annotating
genes in complex samples. The ARGs-OAP has been demonstrated
to be of high quality, with a false-positive rate of less than 2%.

To further evaluate the performance, all three versions (v1.0,
v2.2, and v3.0) of the ARGs-OAP were applied to analyze 36 meta-
genome datasets of seven typical environmental sources repre-
senting diverse levels of anthropogenic impacts. The results
showed clear improvement using the updated database—that is,
increased ARG abundance (copies of ARGs per cell) and richness
(number of detected ARG subtypes) were found in all the studied
environmental samples with varying ARG levels.

As shown in Fig. 5(d), the application of SARG v3.0 changed ARG
detection in environments with different ratios, from �12.6% in
sewage to 28.8% in river water, compared with SARG v2.2. Samples
from natural environments (river water and sediment) were found
to have diverse detection improvement (4.7%–28.8%), while some
samples from wastewater treatment facilities (WWTP ADS, AS,
and effluent) were detected to have total abundances improved
in similar ratios (12.4%–15.9%), and other samples showed a
decrease of total abundance. Based on the Mann–Whitney test
(P < 0.05), significant differences were found in the total abun-
dance of ARGs in different environmental types, resulting in the
stratification of four levels, as follows (from high to low abun-
dance): livestock feces > sewage > wastewater treatment
facilities > natural samples. The stratification of the abundance
levels of ARGs remained the same, regardless of which version of
the database was applied.

The increased detection of ARGs in nature samples and WWTP
were furtherly confirmed by the extended detection richness (the
number of detected ARG subtypes) in these samples, while the
decrease of total abundances of ARGs in sewage and livestock feces
were attributed to the removal of ambiguous reference sequences
in the database, mainly multidrug resistance genes. Overall, SARG
v2.2 detected 736 subtypes (1244 were available in the database),
whereas SARG v3.0 detected 1019 subtypes. That is, the updated
database retrieved 283 more ARG subtypes that were present in
at least one sample from the seven environmental types and were
not detected using the previous versions (Table S3 in Appendix A).
The abundances of these newly retrieved subtypes, which included
aminoglycoside, beta-lactam, MLS, multidrug, polymyxin, and
other resistance types, ranged from 6.17 � 10�6 to 0.92 copies of

https://smile.hku.hk/ARGs/Indexing/download


Fig. 5. Evaluation of the updated databases and the pipeline for ARG annotation and quantification. (a) MCC, (b) sensitivity, and (c) precision were assessed when applying the
ARGs-OAP v3.0 with a gradient of cutoff values on simulatedmetagenomic datasets with 150 bp read length. The color gradients represent the values of (a) MCC, (b) sensitivity,
and (c) precisionwithin the range of 0–1.0. (d) A further evaluation usingmetagenomes fromdifferent environmentswas conducted by applying the three versions of ARGs-OAP.
For each environment, the bars indicate the reference databases used: (left) SARGv1.0; (middle) SARGv2.2; (right) SARGv3.0. TheARGswere quantified inunits of copies of ARGs
per cell. The percentage labels in the figures are the increased numbers of ARGs detected using SARG v3.0 compared with v2.2. BF: biofilm.
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ARGs per cell in the tested samples. The newly detected subtypes
with abundances of more than 0.4 copies of ARGs per cell included
lnuC and optrA from the resistant type MLS, and lnuH and fexB from
the resistant type florfenicol, indicating that these newly detected
subtypes would be covered after adding the novel reference genes
to SARG v3.0. Therefore, the updated database will improve detec-
tion coverage in the surveillance of ARGs in diverse environmental
samples. And at the meantime, the new database will facilitate
accurate prediction of ARGs by reducing false positives.

4. Conclusions

The ARGs-OAP was first released in 2016 and then updated in
2018. As described in this study, continued development has been
conducted on this analytical tool to achieve better performance in
studies on the environmental dimension of antibiotic resistance. In
the ARGs-OAP v3.0, improvements have been introduced in both
240
the database updates and the integration of different analytical
tools. First, the reference database SARG has been updated to
v3.0 to remove/add sequences and adjust the names of types and
subtypes according to the updated knowledge, add information
on mechanism families and subfamilies, and expand the coverage
through curation on the basis of other databases, such as CARD.
SARG v3.0-S and SARG v3.0-E, which exclude genes related to
mutation, repressors, and regulators, have been embedded in the
ARGs-OAP v3.0 as reference databases, while SARG v3.0-F is pub-
licly accessible for visualization through a tree structure and dic-
tionary form. Second, user-friendly workflows have been
developed with integrated tools starting from the ARGs-OAP with
follow-up analysis, including a risk-ranking scheme, geographical
comparison, MST, and similarity/dissimilarity analysis with other
ecosystems. Visualization has been implemented in the analysis
pipelines, which will facilitate data interpretation and effective
communication.
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