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Chronic hepatitis B virus (HBV) infection, which threatens global public health, is a major contributor to
liver-related morbidity and mortality. Examinations for liver diseases related to chronic HBV infection—
including laboratory tests, ultrasounds, computed tomography (CT), and liver biopsies—may take up
medical resources, particularly since they overlap in most instances. Thus, there is an urgent need to
establish an economical and effective diagnosis method in order to streamline the medical process for
HBV-related diseases. Using complex network models constructed based on clinical blood tests, we pro-
vide such a method by defining the novel measure of functional resilience to assess patients’ liver condi-
tions. By combining network models and dynamics, we discovered the pivotal items and their
corresponding thresholds, which can guide further research on preventing disease deterioration in crit-
ical states of these diseases. The macro-averaged precision of our method, functional resilience, is
84.74%, whereas the macro-averaged precision of physicians’ experience without assistance from imag-
ing or biopsy is 55.63%. From an economic perspective, our approach could save the equivalent of at least
30 USD per visit for most Chinese patients and at least 400 USD per visit for most US patients, compared
with general diagnostic methods. Globally, this will add to savings of at least 10.5 billion USD annually.
Our method can comprehensively evaluate the condition of patients’ livers and help avert the waste of
medical resources during the diagnosis of liver disease by reducing excessive imaging exams.

� 2023 THE AUTHORS. Published by Elsevier LTD on behalf of Chinese Academy of Engineering and
Higher Education Press Limited Company. This is an open access article under the CC BY license

(http://creativecommons.org/licenses/by/4.0/).
1. Introduction exceeds 8% in African and Southeast Asian nations. In 2019, there
According to data from the World Health Organization [1], 350
million people currently have chronic hepatitis B virus (HBV) infec-
tion, 25%–40% of which will eventually die of various related con-
ditions, such as liver cirrhosis (LC), acute-on-chronic liver failure
(ACLF), or hepatocellular carcinoma (HCC). More than one million
people die each year from HBV-related diseases. Up to two million
Americans may have chronic infections, according to a recent
report from the Institute of Medicine (IOM) on hepatitis and liver
cancer, and up to 75% may be unaware of their infection status
and show signs of late-stage disease [2]. The incidence of chronic
HBV infection ranges from 2% to 7% in the Middle East and Euro-
pean nations. In the North and South American nations, the inci-
dence of chronic HBV infection is less than 2%, whereas it
were approximately 86 million patients with chronic HBV infection
in China, with a high incidence of LC and liver cancer. Liver cancer
is China’s fifth most common cancer, accounting for 45% of all new
cancer cases and 47% of liver cancer-related deaths worldwide.
Therefore, the Chinese Center for Disease Control and Prevention
has proposed active prevention, active detection, standardized
treatment, and comprehensive control to address the harm caused
by HBV, with the goal of eliminating HBV in China by 2030.

The costs associated with diagnosing and treating chronic HBV
infection are high for both patients and healthcare systems [1,3,4].
More than one billion USD is spent annually on hospitalization
costs for HBV-related patients in the United States. In 2012, the
estimated annual direct medical expenses per patient at different
stages of chronic HBV infection were 4098 USD in Iran [5]. In China,
over 50 billion CNY is spent annually on hepatitis B diagnosis and
treatment. Incomplete statistics indicate that 20% of these costs are
related to over-examination, which has been a significant burden
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to patients in terms of financial losses and complicated disease
treatments. Moreover, physicians’ inadequate levels of professional
skills and experience may directly lead to misdiagnoses and
delayed treatment [6,7].

At present, hepatitis B serological markers—namely, HBV DNA
quantitative detection, serum alanine transaminase (ALT) concen-
tration, and the aspartate aminotransferase (AST) to platelet
(PLT) ratio index—are usually recommended to assess liver fibrosis
[8,9], especially in low-resource settings. However, these markers
are inadequate for comprehensively assessing liver function in
the three states of chronic hepatitis B (CHB), LC, and HCC. Due to
its limited sensitivity, serum alpha-fetoprotein (AFP) is no longer
recommended for diagnosing HCC according to most international
recommendations (indeed, in some guidelines, it is used in con-
junction with radiological characteristics) [10]; however, it is still
widely used in west Africa. Common imaging methods have disad-
vantages as well. Although ultrasound can dynamically reflect the
blood supply characteristics of lesions in real time, there are some
limits to ultrasound diagnosis, because the organs and gases in the
abdomen can cause interference. In addition, sonographers’ techni-
cal skills and personal judgment affect the accuracy of ultrasounds.
Computed tomography (CT) can accurately assess the adjacent
relationship between lesions and surrounding structures, but its
radiation can accumulate and be harmful to patients, and its soft
tissue resolution is low. Due to radiation absorption, physicians
do not advise patients to undergo repeated CT scans in a short per-
iod of time. Magnetic resonance imaging (MRI) scans can satisfy
multi-parameter and multi-directional imaging, and the use of
hepatocyte-specific contrast agents can improve its detection rate
and diagnostic accuracy in small HCC [11]. However, the drawback
of MRI is that the patient-compliance requirements are relatively
high, as the patient must remain in a fixed position for a specified
amount of time. Moreover, there are shortages of MRI equipment
and workforce in low- and middle-income countries, such as the
eastern Mediterranean region, due to high costs [12]. Liver biopsy,
another common diagnostic tool for liver disease, has possible
complications, including pain and bruising at the biopsy site,
bleeding for a long time, infection near the biopsy site, and acci-
dental injury to another organ, especially for patients with
advanced liver cancer who are not suitable for liver biopsy. To
summarize, all the methods mentioned above may cause financial
stress or physical harm to patients. Since blood tests are required
for all patient visits, a comprehensive evaluation method that inte-
grates blood test results is viable.

Numerous researchers have combined existing liver disease
detection methods with machine learning algorithms to produce
various liver disease diagnostic and prognostic models. Sazzadur
et al. [13] developed an efficient diagnosis system for patients with
chorionic liver infection using six distinct supervised machine
learning classifiers. They studied the performance of all classifiers
on patient information parameters and found that logistics regres-
sion (LR) provides the highest order precision of 75% based on the
F1 measure to predict liver disease, while a naive Bayes (NB) clas-
sifier provides the lowest precision of 53%. Owjimehr et al. [14]
presented an automatic region of interest (ROI) selection and hier-
archical classification method to differentiate between a normal
condition and the three stages of fatty liver—steatosis, fibrosis,
and cirrhosis. Based on Raman spectral differences between
healthy and hepatitis B-infected samples, Khan et al. [15] effec-
tively separated normal and diseased serum using a support vector
machine (SVM) algorithm, with a diagnostic accuracy of approxi-
mately 98% and a precision of approximately 97%. Deep learning
radiomics of elastography (DLRE) [16] is a method for assessing
hepatic fibrosis stages. In terms of predicting the stages of liver
fibrosis, DLRE outperforms both two-dimensional shear wave elas-
tography (2D-SWE) and biomarkers. However, distinguishing
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between the fibrosis stages F0–F1 and F2–F4 is relatively difficult
for DLRE, due to the fact that the heterogeneity of liver fibrosis is
more severe in > F2 than in � F3 and F4, which decreases the accu-
racy of DLRE. Using a supervised machine-learning algorithm, Ye
et al. [17] were the first to create a molecular signature capable
of classifying metastatic HCC patients; they also identified genes
relevant to metastasis and patient survival. The researchers found
that osteopontin functions as both a diagnostic marker and a
potential therapeutic target for metastatic HCC. Based on age,
sex, clinical data, and blood biomarkers of HBV- and hepatitis C
virus (HCV)-infected patients, Wong et al. [18] developed an HCC
ridge score from a ridge regression model, which outperformed
these common HCC risk scores in terms of a large area under the
receiver operating characteristic curve (AUC ROC 0.840).

It is arduous to capture the critical reversible states at which the
livers of patients exhibit fibrosis, precancerous lesions, or hepato-
carcinogenesis due to chronic inflammation, since most patients
have no symptoms during the early stage. Once patients progress
to cirrhosis or HCC, it is difficult—even with close surveillance
and treatment of these lesions—to improve survival rates.
Although a concerted effort has been made to address the deterio-
ration caused by liver diseases by studying antiviral medications
[19–24] and pathogenic genes [25–31], these methods cannot pro-
vide early warning for physicians and patients. Thus, how can we
infer whether patients are in a critical state from their basic clinical
tests and provide criteria to alert physicians?

In this work, we utilize the correlation between clinical test
items to develop complex network models for CHB, LC, and HCC
(Fig. 1), because every patient must undergo a blood test when
seeking medical care. From the perspective of a network, the liver
function status in CHB, LC, and HCC can be clearly described. In
addition, we provide the evolution dynamics of liver function
and utilize analytical techniques to evaluate the liver function of
patients. Our algorithmic approach leads to several key findings.
After defining a new measure we term functional resilience, we find
substantial variation in the functional resilience values of the CHB,
LC, and HCC states, which can be employed to diagnose liver dis-
ease. The macro-averaged precision of our method based on func-
tional resilience is 84.74%, whereas the macro-averaged precision
of physicians’ expertise without assistance from imaging and
biopsy is 55.63%. The macro-averaged recall of our method is
84.39% compared with that of physicians, at 55.45%. To balance
the impact of precision and recall, we use the F1-score to compare
the effectiveness of the two methods. Our method yields an F1-
score of 84.50%, which is substantially higher than that of physi-
cians’ expertise without imaging and biopsy assistance. Compared
with other standard methods, functional resilience is affordable
and will help physicians make clinical diagnoses, especially in
medically under-equipped countries and areas such as the West
Pacific region and Africa.

Another key finding of our work is that we can divide these
items into several groups according to patient status by means of
a community detection algorithm, rather than medical classifica-
tion. This result reflects the fact that the liver’s regulation function
varies with disease progress. Furthermore, through simulation, we
discover the critical conditions of state transition, including crucial
items and their critical values. Once the test results surpass the
corresponding conditions, patients may transition between phases,
which is irreversible.

2. Material and methods

2.1. Sample collection

Data was provided by the Department of Infectious Diseases and
Hepatobiliary Surgery, the First Affiliated Hospital of Xi’an Jiaotong
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University, Xi’an, Shaanxi Province, China. We collected data from
119 patients with mild or moderate CHB stage, 175 patients with
LC in either the compensated stage (10%; i.e., 17 patients in the com-
pensated stage) or decompensated phase (90%; where 148 patients
were in Child-Pugh class B and ten patientswere in Child-Pugh class
C) without hepatic encephalopathy, and 98 patients with HCCwith-
out metastasis (data is listed in Appendix A). The patients under-
went six essential clinical trials when they first came to the
hospital, including a complete blood count test, hepatitis B serologic
test, HBV DNA quantitative detection, liver panel, blood clotting
tests, and AFP tumor marker test. Here, it should be noted that we
only considered four items of the hepatitis B serologic test—that is,
hepatitis B surface antigen (HBsAg), hepatitis B surface antibody
(HBsAb), hepatitis B e-antigen (HBeAg), and hepatitis B e-antibody
(HBeAb), since the total hepatitis B core antibody is positive as long
as people have been infected with HBV. More specifically, only 25
imperative items are considered in this article, and each item is
divided into different levels according to the diagnostic criteria
treatment guidelines for liver diseases [32–34] and the Child-Pugh
score [35,36].

2.2. Functional network liver model

We assume that all patients whose data we collected are in
stable states. The data can be converted to two or four values
(Table S1 in Appendix A). Sequentially, the correlation coefficient
between two clinical items xi; xj

� �
is calculated as follows:

q xi; xj
� � ¼ cov xi; xj

� �
rxirxj

where cov xi; xj
� �

is the covariance between clinical items xi and xj,
and rxi and rxj are the standard deviations of clinical items xi and
xj, respectively. Therefore, the elements of the adjacency matrix A
follow

Aij ¼
1; ifq xi; xj

� � � 0:25
0; ifq xi; xj

� �
< 0:25

(
That is, the edge exists when Aij ¼ 1; otherwise, it does not

exist. Network models of CHB, LC, and HCC were built as shown
in Figs. 1(b)�(d), respectively.

2.3. Dynamics model and phase transition

We found two types of relationships between the items of the
tests: positive or negative correlation. If there is a positive correla-
tion between two items, an increase in one item will increase the
other. Conversely, if there is a negative correlation between two
items, an increase in one item will stimulate a drop in the other.
Given the positive and negative regulation relationships between
each pair of items, we can use a differential equation to simulate
dynamic changes between items. A neural network, as reported
in Ref. [37], can be used to recognize underlying relationships in
a set of data through a process that mimics the way the human
brain operates. The mechanism of information transfer among arti-
ficial neurons, as proposed in Refs. [38] and [39], can be captured
as follows:

dxi
dt

¼ I � xi
R
þ J1

2

XN
j¼1

bAij 1þ tanh n xj � a
� �� �� �

þ J2
2

XN
j¼1

A
�
ij 1� tanh n xj � a

� �� �� � ð1Þ

where a is the firing threshold, n pinpoints the slope of the sigmoid
function, I is the basal activity, R is the inverse of the death rate, and
176
J1 and J2 represent the excitation and inhibition strength, respec-

tively. bAij and A
�
ij are the active and suppressive adjacency matrix

of the neural network, respectively. Thus, the entire adjacency
matrix can be written as follows:

A ¼ bA þ A
�

ð2Þ
We borrowed the concept of the neural network and made a

few changes to the dynamics, as follows:

dxi
dt

¼ Ii � xi
Ri

þ Ji1
2

XN
j¼1

bAij 1þ tanh n xj � a
� �� �� �

þ Ji2
2

XN
j¼1

A
�
ij 1� tanh n xj � a

� �� �� � ð3Þ

where Ii is the self-change of node i, Ri is the inverse of the propor-

tion of node i returning to a normal range, and bAij and A
�
ij are the

positive and negative adjacency matrices of the network, respec-

tively. N is the number of nodes that are not isolated. Ji1 and Ji2 are
the excitation and inhibition strengths of node i. However, Ii and
Ri are unknown parameters and must be estimated.

Ji1 ¼
XN

j¼1
PijXN

i¼1

XN

j¼1
bAij

Ji2 ¼
XN

j¼1
QijXN

i¼1

XN

j¼1
A
�
ij

ð4Þ

where P and Q are the positive and negative correlation matrices,
respectively.

Replacing node j’s value xj with the sample average xh i, Eq. (3)
can be approximated as follows:

dxi
dt

� Ii � xi
Ri

þ Ji1
2

XN

j¼1
bAij 1þ tanhn xh i � að Þ½ �f g

þ Ji2
2

XN

j¼1
A
�
ij 1� tanhn xh i � að Þ½ �f g

¼ Ii � xi
Ri

þ Ji1
2
sþi 1þ tanhn xh i � að Þ½ �f g

þ Ji2
2
s�i 1� tanhn xh i � að Þ½ �f g

ð5Þ

where sþi ¼ PN
j¼1

bAij and s�i ¼ PN
j¼1A

�
ij are the positive and negative

degrees of node i, respectively. The hyperbolic tangent function
tanh xð Þ can be represented by the following:

tanh xð Þ ¼ ex � e�x

ex þ e�x
¼ 2

1þ e�2x � 1 ð6Þ

Thus, Eq. (5) can be written as follows:

dxi
dt

¼ Ii � xi
Ri

þ Ji1 � sþi
1þ e�2n xh i�að Þ þ

Ji2 � s�i � e�2n xh i�að Þ

1þ e�2n xh i�að Þ ð7Þ

where we let

f xi; sþi ; s
�
i

� � ¼ Ii � xi
Ri

þ Ji1 � sþi
1þ e�2n xh i�að Þ þ

Ji2 � s�i � e�2n xh i�að Þ

1þ e�2n xh i�að Þ ð8Þ

When the system reaches a steady state, Eq. (8) must satisfy

f xi; sþi ; s
�
i

� � ¼ 0 ð9Þ
From Eq. (9), the steady activity of an item i is

xi ¼ IiRi þ Ri � Ji1 � sþi
1þ e�2n xh i�að Þ þ

Ji2 � s�i � e�2n xh i�að Þ

1þ e�2n xh i�að Þ

#"
ð10Þ



Fig. 1. Disease development and network structure of CHB, LC, and HCC. (a) Phase transition diagrams between CHB, LC, and HCC due to chronic HBV infection, including the
situation of ACLF and death from HCC. Each blue ball represents a patient with the corresponding liver disease. When the ball crosses the peak, the patient undergoes a phase
transition to the next state. Functional resilience in the three states is calculated by xkh i ¼ 1

Nk

PNk
i¼1 exp � xk

i
�4

skh i

n o
, where k ¼ 1;2;3 corresponds to the three states (i.e., CHB, LC,

and HCC, respectively), skh i is the mean degree of the network in the state k, and Nk is the number of the non-isolated items in state k. (b–d) Networks of the clinical test items
of CHB, LC, and HCC are constructed. Different colors of the nodes represent their degrees, and the link thickness indicates the strength of the correlations between items. Red
lines indicate a negative correlation between items. (e–g) Three radar charts illustrating the topology structure of the corresponding networks.
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Since the limit lim
n!1

e�2n xh i�að Þ ¼ 0, Eq. (10) can be approximated

as follows:

xi ¼ IiRi þ Ri � Ji1 � sþi ð11Þ
The proportion of edges that represent negative correlations

between nodes, p, can be denoted as follows:

p ¼
PN

i¼1

PN
j¼1A

�
ijPN

i¼1

PN
j¼1Aij

¼
PN

i¼1

PN
j¼1A

�
ijPN

i¼1

PN
j¼1

bAij þ A
�
ij

� 	 ð12Þ

Since the sample mean xh i ¼ 1
N

PN
i¼1xi, we recouple Eq. (3) into

one dimension based on Eqs. (4), (11), and (12):

xh i ¼ IiRi þ Ri � J01 � sh i � 1� pð Þ ð13Þ

where Ji1 ¼
PN

i¼1

PN

j¼1
PijPN

i¼1

PN

j¼1
bAij

is the excitation strength of a network, and

sh i ¼
PN

i¼1

PN

j¼1
bAijþA

�
ij

� 	
N is the average degree of a network without

isolated nodes. Hence, setting n ¼ 2 and a ¼ �1, the unknown
parameters Ii and Ri are obtained by solving Eqs. (11) and (13)
simultaneously.

3. Results

3.1. Network construction and topology structure

Phase transition diagrams between CHB, LC, and HCC due to
chronic HBV infection was shown in Fig. 1(a). According to the cor-
relation of the blood parameters, we constructed the networks
depicted in Figs. 1(b)�(d) for CHB, LC, and HCC. In these three dis-
eases, the network densities are 0.3133, 0.3067, and 0.2533,
respectively. It is clear that the more severe the liver damage is,
the sparser the networks are. As the disease progresses, abnormal
liver tissues such as scars and cancer cells progressively supplant
normal liver cells, and the remaining normal cells are unable to
perform their original functions, resulting in a decline in liver func-
tion and a subsequent impact on other body functions. As a result,
the correlation between the respective blood indicators decreases,
leading to the disappearance of the connecting boundaries
between indicators. Using CHB as an illustration, the HBV primarily
causes inflammation in the patient’s liver. Therefore,
inflammation-related edges exist in the CHB network, such as the
edge between ALT and alkaline phosphatase (ALP). However, these
connected edges are absent from the LC network. This is due to the
fact that, in the cirrhosis state, liver inflammation is no longer the
primary cause of the deterioration of the patient’s condition;
rather, the cause is the progressive replacement of normal liver
cells with lesions, which are unable to maintain the various func-
tions of the liver. A comparison of the edges in the three networks
shows that the negative correlations colored in red between the
items of hepatitis B serology gradually lose connections with the
other items as the liver disease progresses. This means that hepati-
tis B serology loses its referential importance in the LC and HCC
states. Similarly, globulins (GLB) and thrombin time (TT) are iso-
lated in the LC and HCC states.

The proportions of the three radar charts also reflect the topo-
logical properties of the CHB, LC, and HCC networks (Figs. 1(e)�
(g)). In the CHB state, the average transitivity of the network is
0.6114 and the average path length is 2.1533, which shows
small-worldness. Similar to the CHB network, the LC network has
a small-world property, since its average transitivity and the aver-
age path length are 0.7298 and 1.8961, respectively. Small-
worldness also appears in the HCC network, but its average transi-
tivity and average path length are less than those of the other two
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diseases. Therefore, as patients’ liver disease develops from CHB to
LC, and then to HCC, the average path length decreases, and the
networks gradually become sparse. This is because, as the disease
worsens, the correlation between the items of medical tests grad-
ually weakens and the links are lost. Moreover, the links in the dif-
ferent networks appear, disappear, and reappear as the liver
function deteriorates. For example, the nine edges of the CHB net-
work related to three parameters, ALT, ALP, and gamma-glutamyl
transferase (GGT), do not exist in the LC network but reappear in
the HCC network. The reason for this phenomenon is that persis-
tent inflammation promotes cancer cell production by suppressing
immunosurveillance [40]. The specific changes are shown in Tables
S2 and S3 in Appendix A.

Finally, considering the degree of liver damage due to HBV
infection in the different states, we employed natural connectivity
[41] as a measurement to simulate an item losing correlations with
the other items. The result shows that, no matter how many items
become independent, the natural connectivity of the CHB network
is higher than those of the other two networks, while that of the
HCC network is the lowest. Hence, the network in the CHB state
is the most robust, whereas the HCC state has the most fragile net-
work (Section S1.4 in Appendix A).
3.2. Community detection

Usually, items from distinct clinical tests are separated into sev-
eral groups based on their functions. For example, AST, ALT, ALP,
and GGT reflect the severity of liver damage. The serum bilirubin
level, including the total bilirubin (TBIL), direct bilirubin (DBIL),
and indirect bilirubin (IDBIL), shows a liver’s catabolism. The total
protein test and blood clotting test measure a synthesis function of
the liver. Unlike the medical classification, we divide these items
according to different states by means of a community detection
algorithm, Infomap [42,43], which is one of the most effective algo-
rithms among non-overlapping community discovery problems. In
the CHB state, all the tests except hepatitis B serology belong to the
same group, since hepatic inflammation leads to coagulation disor-
ders and abnormal blood cells with the increase of serum HBV DNA
concentration, such that the items have a strong correlation within
this community (Fig. 2(a)). Moreover, the four items of hepatitis B
serology split naturally into two small communities according to
their name and interpretation. Conversely, the largest community
in the CHB network is divided into two groups in the LC and HCC
networks (Figs. 2(b) and (c)). Compared with their correlation with
other items, there are close bonds among HBV DNA, the items mea-
suring liver inflammation, and the liver tumor marker AFP. This is
because the continuous replication of HBV and the inefficiency of
the long-term antiviral treatments may eventually induce HCC.
The remaining nodes in the red circle—except for isolated nodes
and modules—display the liver’s regulation function.
3.3. Dynamics and network resilience

It is well known that the disease course of chronic HBV infection
involves a dynamic interaction between the virus and the host’s
self-regulation, which can be represented by changes in the liver
function. For example, as HBV continuously attacks a patient’s
liver, abnormal liver function results in prolonged clotting time,
leading to disorder of the coagulation system. In the state k, due
to the correlation between the nodes’ behavioral value, xki , and
the network average degree skh i, we transformed a behavioral
value into

x0i;k ¼ e
�

4�xk
i

skh i ð14Þ



Fig. 2. The non-overlapping community structure in the networks of (a) CHB, (b) LC, and (c) HCC. Different colors of circles in each graph represent different communities.
Red lines display the edges between communities, and black lines show connections between items in the same community. ALB: albumin; FIB: fibrinogen; APTT:
thromboplastin time; PT: prothrombin time; CHOL: cholesterol; WBC: white blood cell; RBC: red blood cell; HGB: hemoglobin.
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where k ¼ 1;2;3 corresponds to the three states (i.e., CHB, LC, and
HCC). Due to the correlation between blood test items, an increase
in one indicator may result in an increase or decrease in the associ-
ated indicators. In the immune clearance or inactive carrier phase of
CHB, the patient’s HBeAg is positive, HBV replication is active, HBV
DNA levels rise, and HBeAb is negative. Hepatitis B patients in
remission have positive HBeAb, diminished HBV duplication,
decreased HBV DNA, and negative HBeAg. Consequently, HBeAb
has a negative relationship with HBeAg and HBV DNA concentration
in the CHB network. Following the method introduced by Barzel
et al. [44], we compared various dynamic models with positive
and negative couplings. We found that the fitting error of the neural
network dynamics was the smallest. Neuronal connections are
179
modeled in neural networks as weights between nodes, as is well
known. A positive weight represents an excitatory connection,
while a negative weight represents an inhibitory connection. The
error tolerance of neural networks ensures that the correct output
can be obtained even if the input samples are inadequate or cor-
rupted. Based on their interconnected structure and connection
strength, neural network dynamics [38,39] simulate the process of
information transmission between neurons. Using neural network
dynamics, Baumann et al. [45] simulated reverberation effects and
polarization phenomena in social networks.

Therefore, we consider each test item to be a neuron in a neural
network, and each item correlation to be the excitation or inhibi-
tion regulation between neurons. In reality, the influence of each
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item on the others varies, so we assume that the parameters I;R; J1,
and J2 do not assume the same value during the fitting procedure.
The equation can be rewritten as follows:

dx0i;k
dt

¼ Ii;k �
x0i;k
Ri;k

þ Ji;k1
2

XNk

j¼1

bAk

ij 1þ tanh n x0j;k � a
� 	h in o

þ Ji;k2
2

XNk

j¼1

A
�k

ij 1þ tanh n x0j;k � a
� 	h in o

ð15Þ

where Nk is the number of nodes in state k, Ii;k and Ri;k are the

parameters that must be estimated in state k, Ji;k1 and Ji;k2 are the

excitation and inhibition strength of node i in state k, and bAk

ij and

A
�k

ij are the corresponding matrices in state k. Substituting Ii;k and
Ri;k into Eq. (3), we fitted the CHB, LC, and HCC networks with these
dynamics, to simulate the regulatory interactions between items.
Naturally, an item should not interact with any other item and
should be deleted if it has no correlation with the others. Therefore,
the items HBsAg, HBsAb, and GLB are deleted from the LC network,
since they are dependent on the other items. Similarly, HBsAg,
HBsAb, HBeAg, HBeAb, GLB, and TT are removed from the HCC net-
work. According to the patients’ clinical trial results and the trans-
formation of the data, we fitted the CHB, LC, and HCC networks with
these dynamics, to simulate the regulatory interactions between
items. The deviation between each item’s mean and simulated
value is shown as follows. For the CHB, LC, and HCC networks, the
Fig. 3. Dynamics fitting and network resilience in the (a) CHB, (b) LC, and (c) HCC states.
(b) LC, and (c) HCC, when the parameters n ¼ 2 and a ¼ �1. Red dots indicate the real val
networks against the random disappearance of correlations with a proportion f l . (e) Avera
the analytical solution in black). At a critical fraction f cl , the system undergoes a vertical
(f, g) Similar results are observed in the LC and HCC networks. (h) We tested the resilie
original value, simulating a global change in the physical conditions of patients. (i) Simila
LC state, even if physicians perform antiviral treatment on patients, the condition will stil
is minimal.
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sums of the absolute deviation of the fittings are 0.7440, 0.8120,
and 0.5136, respectively. The fitting errors for each item in different
states are minor and acceptable (Figs. 3(a)�(c)). This dynamics
model fits these three networks ideally, so it can be assumed to
align with the HBV ‘‘attack” dynamics.

Consider two types of perturbations that simulate loss and
weakness of correlation between items owing to persistent chronic
HBV infection. At first, we randomly removed edges from the net-
works (Fig. 3(d)), where the removal proportion is f l and found that
for a small proportion f l of link removal, the three systems still
maintain their resilience: each of them is stable at a corresponding
fixed point xH , in which the average score of all the items, xh i, is
high. However, when the perturbation exceeds a certain threshold
the straight line disappears suddenly, resulting in two stable fixed
points: the desired xH and an undesired state xL (Figs. 3(e)–(g)).
Under these conditions the three systems lose their resilience,
potentially transitioning to the undesired terminal stage. However,
the thresholds of the link perturbation intensity for the CHB, LC
and HCC networks are dissimilar, which means that the higher
the threshold of link loss is, the more resilient the network is.
Therefore, the CHB network is the most resilient when HBV attacks
patients’ livers since it remains resilient even after removing 85%
of its links. Conversely, losing no more than 80% of its links will
cause the HCC network to collapse. That is, the livers of patients
are completely dysfunctional in the terminal stage. As for global
weight loss, we decreased all weights on average to a fraction f w
of their original value (Fig. 3(h)). Then the resilience of the three
We fitted dynamics and estimated the unknown parameters Ii;k and Ri;k for (a) CHB,
ues of the items, and blue lines show the fitted errors. (d) We tested the resilience of
ge levels of test items in the CHB network vs f l across 100 realizations (we highlight
drop, where, in addition to the desired state (xH), an undesired state (xL) emerges.

nce of networks against decreasing correlations on average to a fraction f w of their
r simulations characterize the system’s response to global perturbations f w . (j) In the
l deteriorate. (k) Similarly, the efficiency of antiviral treatment for patients with HCC



Fig. 4. A comparison of the efficacy and total cost of different diagnosis methods. (a) Comparison of the precision, recall, and F1-scores of functional resilience vs physicians’
experience without assistance from imaging or biopsy. (b, c) Average minimum cost of different diagnosis processes for HBV-related diseases in China and the United States.

Table 1
Prices for typical clinical examination methods in China and the United States.

Examination method Price in China
(USD)

Price in the United States
(USD)

Complete blood count test 4.20–11.19 10–39
Liver panel 13.99–27.99 49–79
Blood clotting tests 13.99–27.99 7–200
HBV DNA quantitative

detection
13.99–83.96 16–232

Hepatitis B serologic test 3.50–41.98 11–90
AFP tumor marker test 4.20–13.99 16–85
Ultrasound for liver 8.40–27.99 200–650+
CT examination No less than 41.98 No less than 350
MRI examination No less than 69.97 No less than 600
Liver biopsy No less than 83.96 No less than 1500
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networks is gradually declining and then lost with strengthening
perturbations (Figs. 3(i)�(k)). In contrast to link loss, the process
of global weight reduction lacks intermediate fixed spots. In other
words, even if HBV ceaselessly undermines liver cells but do not
cause edges to break, patients still die from complete hepatic
dysfunction.
3.4. Validity and cost-efficiency of functional resilience

The mean of the behavioral values in different states, which we
term functional resilience, is defined as follows:
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xkh i ¼ 1
Nk

XNk

i¼1

x0i;k ð16Þ

Similar to the Child-Pugh score, Eq. (16) can be regarded as a
new way to distinguish patients’ stages and assess their condition.
Because there are existing fitting errors, the interval of the mean
xkh i in each state can be calculated as follows:

xlk; x
u
k

� � ¼ hxki � 1
Nk

XNk

i¼1

errik; hxki þ
1
Nk

XNk

i¼1

errik

" #

where errik is the fitting error of node i in state k. Therefore, the
three intervals in CHB, LC, and HCC are [0.4194, 0.5584), [0.4011,
0.4749], and (0.1353, 0.4292], respectively. We can use these as
the diagnosis criteria for patients with long-term HBV infection.
Although the average test results of a patient may belong to more
than one interval, the state of the patient can be determined by
the patient’s unique characteristics. For example, in the LC state,
patients will experience hypersplenism during the decompensation
period, resulting in the decrease of red blood cells (RBCs), white
blood cells (WBCs), and PLT. Since more than 70% of HCC patients
have a high serum concentration of AFP, we can discern patients
with HCC versus other diseases by means of the AFP. To compare
our method with physician diagnoses, we re-collected the blood
test data of 79 patients, including 19 cases of mild or moderate
CHB, 30 cases of decompensated LC, and 30 cases of HCC (the test
set is listed in Appendix A). We randomly selected 45 cases (15



Fig. 5. Critical states. (a) The peak of the phase transition graph shows a critical state, fibrosis, in patients (dark blue ball), which may develop into LC in the future if
treatment is not provided. (b) By setting several schemes to perturb items, we compared the tendency of each item with differences in the states of CHB and LC. Blue bars
show the difference in an item in the CHB and LC states (the other bars represent tendencies in different plans). As shown, they have the same signs. (c) We constructed a
possible network in the critical state. (The method is provided in Section S2.1 in Appendix A.) (d–i) The remaining two situations involving precancerous lesions are similar.
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for each disease) to create three dissimilar online questionnaires
with the same difficulty levely. We invited 218 physicians from dif-
ferent hospitals in hepatobiliary surgery, infection, gastroenterology,
or other departments to participate in the survey. Each physician
filled out a questionnaire at random.

Due to the similar sample sizes of the three diseases in the test
set, we can evaluate the efficacy of the method using the macro-
averaged precision and macro-averaged recall. As illustrated in
Fig. 4(a), the macro-averaged precision of our method, functional
resilience, is 84.74%, whereas the macro-averaged precision of
physicians’ experience without imaging or biopsy assistance in
y The links to the online questionnaires are https://www.wjx.cn/vj/wi7wVdE.aspx,
https://www.wjx.cn/vj/PnjzmtM.aspx, and https://www.wjx.cn/v j/YzgHzaA.aspx.
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identifying the three diseases is 55.63%. Similarly, the macro-
averaged recall of our method versus that of physicians’ experience
is 84.39% and 55.45%, respectively. To equalize the impact of preci-
sion and recall, we evaluate the efficacy of the two methods using
the F1-score. In comparison, the F1-score of our method is 84.50%,
which is significantly higher than physicians’ experience without
imaging or biopsy assistance. Therefore, our method is more accu-
rate than physicians’ experience.

According to the American Association for the Study of Liver
Diseases (AASLD) Practice Guidance, CHB is diagnosed when HBsAg
is positive for more than six months, serum HBV DNA is higher
than 20 000 IU∙mL�1 (lower values of 2000–20 000 IU∙mL�1 are fre-
quently observed in HBeAg-negative CHB), and there is persistent
or intermittent elevation in ALT or aspartate transaminase levels

https://www.wjx.cn/vj/wi7wVdE.aspx
https://www.wjx.cn/vj/PnjzmtM.aspx
https://www.wjx.cn/v


Table 2
Pivotal items and their critical conditions in the phase transitions between HBV-
related diseases.

The critical conditions of the
phase transition

Items Ranges

Critical conditions of the phase
transition from CHB to LC

RBC <4.5 � 1012 L�1

WBC Abnormal
Cholesterol (CHOL) Abnormal
TBIL > 34 lmol∙L�1

DBIL > 8 lmol∙L�1

IDBIL > 17.1 lmol∙L�1

Total protein (TP) < 65 g∙L�1

Albumin (ALB) < 40 g∙L�1

Prothrombin time (PT) > 14 s
Activated partial
thromboplastin time
(APTT)

Abnormal

Fibrinogen (FIB) Abnormal
Critical conditions of the phase

transition from LC to HCC
HBV DNA �20 IU∙mL�1

AST >40 U∙L�1

ALT >0
ALP >110 U∙L�1

GGT >60 U∙L�1

AFP >7 ng∙mL�1

Critical conditions of the phase
transition from CHB to HCC

RBC <4.5 � 1012 L�1

WBC Abnormal
ALP >110 U∙L�1

GGT >60 U∙L�1

CHOL Abnormal
IDBIL > 17.1 lmol∙L�1

TP <65 g∙L�1

ALB <40 g∙L�1

PT >14 s
APTT Abnormal
FIB Abnormal
AFP >200 ng∙mL�1

G. Hou, Y. Chen, X. Liu et al. Engineering 32 (2024) 174–185
[46]. Therefore, pertinent blood tests are performed on patients
seeking medical care. Since portal hypertension, whose indepen-
dent predictors are the diameter of fibrous septa and the size of
nodules, is an early clinical sign of liver cirrhosis progression
[47,48], physicians commonly recommend patients to undertake
additional imaging tests for LC. If the patient self-reports a family
history of liver cancer, or if the patient’s alpha-fetoprotein exceeds
200 g∙L�1 for more than eight weeks or 400 g∙L�1 for more than
four weeks during follow-up, the physician will usually recom-
mend imaging or a liver biopsy to determine whether there is a
space-occupying lesion. Although a biopsy has the potential to
establish an accurate diagnosis in a timely manner, the AASLD does
not recommend its routine use. This is because a biopsy carries the
risk of hemorrhage and tumor dissemination, as well as the possi-
bility that a negative result is due to the inability to obtain tissue
that is representative of the nodule, as opposed to a nodule that
is genuinely benign [33]. In general, the order of imaging used by
physicians is ultrasound, CT, contrast-enhanced CT, MRI, and
dynamic contrast-enhanced MRI. At the time of diagnosis or
follow-up, all hepatitis B patients should undergo at least one
imaging examination and blood tests. If the disease is complex, it
may be necessary to conduct multiple imaging investigations.

In contrast, according to our method, physicians can make clin-
ical decisions with 84.74% precision from blood tests alone. Indeed,
our method may not be able to distinguish an ambiguous state pre-
cisely, and the calculated indicators may fall in the range of multi-
ple diseases. A prominent example is HCC with a negative serum
AFP (< 20 ng∙mL�1). In China, about 30%–40% of HCC patients are
negative for serum AFP [49]. At this time, a single imaging test,
such as a CT or MRI, will be sufficient to corroborate the patient’s
diagnosis. Table 1 lists the cost of various routine examination
methods for CHB, LC, and HCC. Considering the case of HCC, inter-
national guidelines state that HCC diagnosis depends on particular
radiological findings using CT or MRI scans, as well as histopatho-
logical examination. Thus, a patient may undergo laboratory test-
ing, ultrasound, CT scan, and MRI or biopsy before diagnosis. As
shown in Figs. 4(b) and (c), without health insurance, a patient
would have to pay the equivalent of a minimum of 274.62 USD,
not including the cost of treatment, for testing alone. Under the
same circumstances, the patient would have to spend at least
2692.00 USD in the United States. Although medical insurance
can reimburse part of this cost, the part that patients need to pay
for themselves will generally still be a considerable financial bur-
den to the family. In contrast, using our approach, a patient can
receive an overview of their liver and an HCC diagnosis for as little
as the equivalent of 130.49 USD in China or 417.00 USD in the
United States through blood tests. In a situation with CHB or LC,
similar outcomes can be found. Compared with usual diagnostic
procedures, our method could save at least 30 USD equivalent
per visit for most Chinese patients or at least 400 USD per visit
for most American patients. This would add up to savings of at
least 10.5 billion USD yearly on a global scale. Therefore, our
method is cost-effective and can be employed in areas with limited
medical resources, making the investigation of diseases associated
with HBV easier.

3.5. Phase transition and critical state discovery

In the process of chronic HBV infection, patients with liver dis-
ease will not only experience ACLF or death but also encounter
phase transitions from the CHB to the LC state and then to the
HCC state, or directly from the CHB to the HCC state Fig. 5. During
these transitions, there are critical states of liver fibrosis and hep-
atocellular precancerous lesions that are controllable and even
reversible (Figs. 5(a), (d), and (g)). However, patients’ failure to per-
ceive fibrosis and precancerous lesions in time, due to a lack of
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symptoms, gives rise to the development of the diseases. To iden-
tify signs of the critical states, we can explore and predict them
through the network structures of CHB, LC and HCC, and the
dynamics of Eq. (3)

With attention, the behavior of a small part of the network
affects the whole system in a nonlinear way. Next, we established
several plans to simulate the deteriorating trends in a patient
with CHB that transitions into LC or HCC, or a patient with LC that
transitions into HCC. According to the different plans (Section S2.1
in Appendix A), the simulations for each situation were solved
using a fourth-order Runge-Kutta stepper (MATLAB function
ode45). We compared the difference in the test results between
different states to determine an optimal plan with a similar ten-
dency. When the test items reach the corresponding values, the
patient’s condition is deteriorating and may transition to the next
state in the future.

Table 2 provides the pivotal factors and their critical ranges
under different conditions. For example, in a case with a critical
status between CHB and LC, the patient has CHB that has already
progressed to liver fibrosis, which has a hazardous tendency to
become LC in the future when the patient’s test results for these
12 items reach the corresponding values (Fig. 5(b)). In addition,
the possible network structure of the fibrosis state has three iso-
lated nodes, which means that the patient’s HBsAg, HBsAb, and
HBeAb have the same results and do not have correlations with
the other items. Its network sparsity is between the networks of
the CHB and LC. The remaining two situations about precancerous
lesions are similar. In addition, the robustness of the critical net-
works is lower than those of the CHB, LC, and HCC networks; that
is, the critical networks are more vulnerable than the networks
before the transitions (see Fig. S4 in Appendix A).
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4. Conclusions and discussion

Our aim with this research was to assess the liver conditions of
patients with HBV, reduce the cost of diagnosis, and provide an
early warning of liver function deterioration. We described the
liver function status under the conditions of CHB, LC, and HCC from
a network perspective by constructing networks of 25 items based
on the patients’ blood tests. We then determined the evolution
dynamics of liver function and analyzed the liver function of
patients with CHB, LC, and HCC from an analytical standpoint. By
arbitrarily deleting links or altering their weights, we simulated
the process of chronic HBV infection progressively causing liver
dysfunction. Furthermore, we presented pivotal indications and
related thresholds of the critical states between CHB, LC, and
HCC by combining network structure and dynamics. These findings
have significant implications for HBV-related disease-prevention
research. When the key test items exceed the threshold, patients
may transition between states. Although the morphology of the
liver in a critical state is unknown, our results can inspire future
research.

In our model, we defined the new measure of functional resili-
ence and found that substantial variation in the functional resili-
ence values of patients in the CHB, LC, and HCC states can be
used to diagnose liver disease. Our method has a macro-averaged
precision of 84.74%, whereas the macro-averaged precision of
physicians’ expertise without the assistance of imaging or biopsy
to detect these three diseases is only 55.63%, according to our sur-
vey. The macro-averaged recall of our method is 84.39%, in com-
parison with that of physicians at 55.45%. Moreover, the F1-score
of our method is 84.50%, which is substantially higher than that
of clinicians’ experience without imaging or biopsy assistance. In
general, our procedure is more precise than physicians’ expertise.
Therefore, our approach can help primary physicians diagnose
HBV-related diseases based on only a few blood samples. By com-
bining the blood tests that patients typically receive, our method
can be utilized to diagnose HBV-related diseases and assist clini-
cians with qualitative and quantitative liver function assessments.
With the collection of only a small amount of blood, our method
allows physicians to gain an understanding of their patients’ condi-
tion that can provide a basis for therapy or referral, based on the
functional resilience of the liver. For patients with severe malnutri-
tion, prolonged coagulation time, or relatively large tumors, liver
function can be known only through blood testing, without requir-
ing liver puncture. From an economic perspective, our strategy
may result in savings of the equivalent of at least 30 USD per visit
for most Chinese patients and at least 400 USD per visit for most
American patients, compared with current diagnostic techniques.
A minimum of 10.5 billion USD will be saved yearly on a global
scale. At the same time, our method allows clinicians in low- or
middle-income nations, especially those in Africa, to examine a
patient’s liver function using the available blood testing equip-
ment, which will dramatically decrease these countries’ medical
expenditures for HBV diagnosis. Hence, our method can signifi-
cantly mitigate personal and national medical economic burdens.
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