
Engineering 6 (2020) 77–88
Contents lists available at ScienceDirect

Engineering

journal homepage: www.elsevier .com/ locate/eng
Research
Robotics—Article
Grasp Planning and Visual Servoing for an Outdoors Aerial Dual
Manipulator
https://doi.org/10.1016/j.eng.2019.11.003
2095-8099/� 2020 THE AUTHORS. Published by Elsevier LTD on behalf of Chinese Academy of Engineering and Higher Education Press Limited Company.
This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

⇑ Corresponding author.
E-mail address: prs@us.es (P. Ramon-Soria).
Pablo Ramon-Soria ⇑, Begoña C. Arrue, Anibal Ollero
Robotics, Vision, and Control Group, School of Engineering, University of Seville, Seville 41092, Spain
a r t i c l e i n f o

Article history:
Received 30 October 2018
Revised 10 March 2019
Accepted 26 March 2019
Available online 13 November 2019

Keywords:
Aerial manipulation
Grasp planning
Visual servoing
a b s t r a c t

This paper describes a system for grasping known objects with unmanned aerial vehicles (UAVs) pro-
vided with dual manipulators using an RGB-D camera. Aerial manipulation remains a very challenging
task. This paper covers three principal aspects for this task: object detection and pose estimation, grasp
planning, and in-flight grasp execution. First, an artificial neural network (ANN) is used to obtain clues
regarding the object’s position. Next, an alignment algorithm is used to obtain the object’s six-
dimensional (6D) pose, which is filtered with an extended Kalman filter. A three-dimensional (3D) model
of the object is then used to estimate an arranged list of good grasps for the aerial manipulator. The
results from the detection algorithm—that is, the object’s pose—are used to update the trajectories of
the arms toward the object. If the target poses are not reachable due to the UAV’s oscillations, the algo-
rithm switches to the next feasible grasp. This paper introduces the overall methodology, and provides
the experimental results of both simulation and real experiments for each module, in addition to a video
showing the results.

� 2020 THE AUTHORS. Published by Elsevier LTD on behalf of Chinese Academy of Engineering and
Higher Education Press Limited Company. This is an open access article under the CC BY-NC-ND license

(http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

The use of unmanned aerial vehicles (UAVs) for industrial appli-
cations is on the rise. UAVs are suitable for a wide range of appli-
cations that take place in inaccessible locations and are typically
dangerous to human operators, such as power-line inspection
[1,2], wind-turbine maintenance [3], the inspection of various
structures in facilities [4], and photogrammetry [5]. However,
these applications merely involve perceptive tasks. In recent years,
it has been demonstrated that aerial robots can effectively perform
manipulation tasks as well [6].

Aerial manipulation remains a challenging task, as it has extra
requirements; the platform is usually delicate and remains in an
unstable equilibrium in the air. In order to perform manipulation
tasks, it is necessary to provide the robot with various capabilities
such as perception, planning, and, in general, smart capabilities. It
is also necessary to equip the robot with the appropriate hardware
to perform the desired tasks. The purpose of introducing robots in
these applications is to provide a more efficient solution to prob-
lems, reduce costs (both time and money), and reduce decreases
in quality due to faults by human operators resulting from the
monotony of some of these tasks. Instead, the operator is given a
more important role that cannot be performed by robots.

Manipulation involves interaction with physical objects using
manipulators, and may include grasping objects, moving them, or
maintaining contact with a stiff object. In order to perform such
tasks, the robot needs to be able to detect and locate objects, as
well as analyze how to interact with the objects. In addition, in
order to perform such tasks, it is necessary to plan the actions
and movements of the manipulators and prevent them from collid-
ing with the environment and the platform itself.

To perform any manipulation task, it is first necessary to find
and track the object to be manipulated. Many computer vision
algorithms can be used for this task; these can be classified
depending on the application, computational resources, and sen-
sors used.

Region proposal algorithms for the monocular detection of
objects are commonly used. These algorithms can be based on sim-
ple color algorithms [7,8], features detection [9,10], or machine
learning. Novel algorithms use artificial neural networks (ANNs)
to detect pre-trained objects. ANNs have been exploited thanks
to the field of deep learning and the availability of powerful
graphics processing units (GPUs) that boost and parallelize ANNs.

http://crossmark.crossref.org/dialog/?doi=10.1016/j.eng.2019.11.003&domain=pdf
http://creativecommons.org/licenses/by-nc-nd/4.0/
https://doi.org/10.1016/j.eng.2019.11.003
http://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:prs@us.es
https://doi.org/10.1016/j.eng.2019.11.003
http://www.sciencedirect.com/science/journal/20958099
http://www.elsevier.com/locate/eng

78 P. Ramon-Soria et al. / Engineering 6 (2020) 77–88
The latest designs (SSD [11], RCNN [12], F-RCNN [13], Mask-RCNN
[14], and YOLO [15]) have overtaken most traditional object-
detection algorithms. However, detecting instances of objects in
color images is insufficient to performmanipulation tasks. It is also
necessary to analyze the three-dimensional (3D) information of the
object. With this purpose, recent research on deep neural networks
(DNNs) has extended ANNs to compute the six-dimensional (6D)
location of the objects as well [16].

Depth sensors such as Kinect or Intel RealSense devices can be
used to directly extract 3D information from the environment
[17,18]. However, these sensors usually have strict limitations in
outdoor environments, as they use infrared-structural light, which
is usually blinded outdoors. In contrast, passive stereo cameras
make it possible to compute a disparity map that can be used to
perform a pixel-wise triangulation of points, resulting in a point
cloud. This kind of device is usually less accurate than a depth
camera, but works well under almost any conditions. However,
as it is based on the visible light spectrum, the performance of this
device is poor under low-light conditions.

Image features can be used to accurately obtain the position of
objects in space [19–21]. These methods show good results and are
robust to occlusions. However, these algorithms may present prob-
lems if objects are texture-less or if they show reflections. Other
authors have used projective algorithms, which are based on geo-
metrical models that are projected onto the image in order to find
its position and orientation using monocular cameras [22].

In regards to the manipulation itself, robot manipulators have
been widely studied for a variety of applications. Mechanical and
mathematical models of robot hands and their interaction
with objects are a fundamental aspect of the analysis of robotic
manipulation. The vast number of combinations of object and hand
configurations makes this area of research challenging.

Miller et al. [23] proposed the use of primitive shapes that
approximate the object, thus facilitating the generation of grasps.
However, this method requires a simple object, and cannot be used
for more complex shapes. In Ref. [24], researchers proposed an algo-
rithm that approximates the shape of the objects to a set of planar
regions which are used to generate the contact points for the grasps.
More recent research has used machine learning methods to
generate better grasps; in these methods, the system is trained using
synthetic datasets [25–27] or reinforcement learning [28].

Other approaches use the data from sensors to create a proba-
bilistic model of the objects. In Refs. [29–31], researchers proposed
an algorithm that uses Gaussian processes for the reconstruction of
3D objects, which is known as Gaussian process implicit surfaces.

Once grasps are generated, theymust be evaluated. The quality of
grasps [32] can be analyzed according to their geometry, strength of
the fingers, and many other aspects. In the present work, we focus
on the common aspects, which are force closure, largest minimum
resisted wrench, and task-oriented quality metrics.

Marturi et al. [33] proposed an offline/online planner to control
an industrial robotic arm in order to cooperate with human
operators. The algorithm uses a pre-learned grasp planner (offline)
that generates a set of likely grasps. Later, the object’s pose is
detected online and the second planner generates a set of feasible
grasps according to the current state of the robot and the pose of
the object.

However, aerial manipulation is more challenging than ground
manipulation. For example, in aerial applications, both the robot
and the target objects are moving. Moreover, the arms’ dynamic
influences the aerial platform’s dynamic, compromising its stabili-
ty. Several publications [34,35] have studied a UAV’s stability and
control, coupled with its manipulators. In the present work, we
assume that the movements are not aggressive and the controller
is fast enough to compensate for the semi-static external forces
that the arms exert on the platform.
Furthermore, in order to actually perform the grasping task, it is
necessary to run a visual servoing algorithm to accurately move
the manipulators. Visual servoing, or vision-based control, can be
classified into two types depending on the data. If the algorithm
uses 3D positions, it is named position-based visual servoing
(PBVS) [36,37]; if the algorithm uses just 2D information from
images, it is named image-based visual servoing [37,38]. A third
option involves a combination of information—the so-called
‘‘hybrid algorithms.” This article proposes a PBVS method that
detects the position of the target object. A control law is designed
to reduce the position error of the end-effectors.

Aerial platforms need to locate themselves within the work
zone in order to control their position. A standard technique is to
use motion-capture (MOCAP) systems, to accurately locate UAVs
during research. These systems locate the robots at a high fre-
quency, which is very convenient when testing new technologies
and algorithms. Outdoors missions also require a precise and accu-
rate location for the robots. The global positioning system provides
a wide-ranging and extensive system for locating robots outdoors.
However, standard devices have unacceptable errors for manipula-
tion tasks. To solve this issue, our research group [39] proposed the
use of a total station at which information is fused with the inertial
measurement unit of the aerial robot in order to locate the robot
anywhere outdoors.

Aerial manipulators can be classified according to the configu-
ration of the arm. This work focuses on the use of serial manipula-
tors. Laiacker et al. [40] developed a helicopter equipped with an
industrial robotic arm to perform manipulations task. The current
increasing interest in aerial manipulation has led researchers to
place not one but two manipulators on the same platform in order
to allow it to perform dexterous manipulation with both hands.
Korpela et al. [41] proposed the use of a pair of manipulators to
turn valves in industrial environments. A dual manipulator
configuration [42] has been found to be very versatile for the
performance of manipulation tasks.

This article proposes the design of a complete aerial manipula-
tion system that includes the development of manipulators for the
UAV, a visual perception system to detect the objects to be
manipulated, and the visual servoing to guide the arms. This work
was carried out under the framework of AEROARMS (SI-1439/2015),
an EU-funded project. This project aims to develop a novel aerial
platform with dexterous manipulation capabilities to perform
inspection and maintenance tasks in industrial environments.

In this work, a mock-up model of a crawler robot that was
developed in the AEROARMS project is used as a use case for the
detection algorithm and grasping experiments. The same method-
ology can be applied to other objects.

The remainder of the article is organized as follows. Section 2
introduces the aerial manipulator system that has been developed
to perform the manipulation task. Section 3 describes the vision
algorithm used to detect, track, and locate the target object.
Section 4 shows the grasping and re-planning algorithm, which
takes into account the possible movement of both the robot and
the target. Section 5 describes the global procedure and the
designed state machine to execute the mission. Section 6 shows
an experimental analysis of the system, through actual grasping
experiments with the flying manipulator. Finally, Section 7
discusses the results and future steps for this research.
2. Aerial manipulator

Multirotors have been demonstrated to be practical solutions
for inspection and maintenance tasks [6]. Unlike fixed-wing air-
craft, multirotors can move freely in space and hover at a desired
position to perform any tasks.

Fig. 1. A photograph of the arms built in the multirotor.

P. Ramon-Soria et al. / Engineering 6 (2020) 77–88 79
In this project, a coplanar hexacopter was chosen to perform the
manipulation. This configuration has more stability and strength
than smaller multirotors, in order to meet the payload require-
ments to carry out the mission. Fig. 1 shows the platform used
for the experiments. The frame is a hexacopter that was designed
and built by DroneTools SL.y

The rest of the hardware, including the dual manipulators and
software, was designed and developed by the present authors at
the University of Seville.

The platform has a Pixhawk� autopilot that is responsible for the
robot’s flying control. At the bottom, an Intel NUC computer is
installed to run all the systems, from the vision algorithm to the con-
trol of the manipulators. Finally, an Intel RealSense camera is built in
to perceive the environment.

In order to perform manipulation, the multirotor is equipped
with a pair of arms. These arms have three-degree-of-freedom
(3-DoF) integrated and exchangeable end-effectors, which give
them four or six DoFs, depending on the application. Fig. 1 shows
the models of the arms with grippers as the end-effectors. Using
two manipulators instead of one is advantageous for various rea-
sons. For one thing, two manipulators make it possible to carry
out more complex manipulation tasks, as each arm can perform
a different operation. In addition, having two end-effectors (as
e.g., two grippers) makes the grasps more stable, because the
object can be held from two different sides. With just one gripper,
the grasps are more limited, as the gravity exerted on the center of
mass will be misaligned in many situations. Thus, the only stable
grasps are those located at the top of the object, if possible, which
limits the manipulation to objects that have handles on top.

The arms presented here have been released in the open-source
project called hecatonquirosyy, which aims for general-purpose,
cheap, and easy-to-use robotic arms. These arms are designed to
be lightweight, so relatively small UAVs can carry them. They are
3D printed, which reduces the overall cost of production, as the
material is relatively cheap and does not require post-processing,
allowing the arms to be assembled directly. The cost of a single
arm is about $150 USD (including the smart serial servos). The pro-
ject also provides an OpenRAVE-based wrapper for the kinematic
solvers and has support for simulation with robot operating system
(ROS) before actual experiments are performed.

Fig. 2(a) shows the kinematic reachability of the pair of arms,
which is used to estimate the appropriate position of the robot to
perform the manipulation tasks. Figs. 2(b) and (c) show the coordi-
nate frames defined for the robot, which are used to transform the
coordinates of the detected objects from the camera’s coordinates
to the arm’s coordinate system, to move the end-effectors.

As mentioned earlier, the UAV is equipped with an Intel Real-
Sense D435 device. This device was chosen due to its capability
to obtain reasonably accurate depth information outdoors. The
depth information is exploited by the visual algorithm to obtain
the 6D pose of the object for the manipulation process. This camera
also provides excellent quality for short distances, as it is able to
capture depth up close (up to 0.2 m), which makes it ideal for
hand-eye coordination in manipulation tasks in robotics.

To conclude, Table 1 summarizes the specifications of the com-
plete aerial system.
3. Object detection and pose tracking

This section describes the algorithm used to detect and track
the target object. Object detection is a challenging task. However,
y http://www.dronetools.es.
� https://pixhawk.org/.
yy https://github.com/bardo91/hecatonquiros/.
the use of deep learning techniques has revolutionized the way
in which perception is conceived. The proposed methodology com-
bines a convolutional neural network (CNN) with a random sample
consensus algorithm to detect the object and compute its pose for
the aerial manipulator. The algorithm is summarized in Fig. 3.

The algorithm is based on two stages. First, an object-detection
CNN is applied to produce object candidates. Then, an alignment
algorithm is used to compute the exact location of the target
object.

CNNs are widely used nowadays and provide solutions to many
difficult problems, as in the case of object detection. If the target
object is known, only a labeled database of images is needed to
train the network. However, these algorithms are heavy in mathe-
matical operations, albeit highly parallelizable. Thus, GPUs are usu-
ally used because they are specifically designed to perform parallel
operations efficiently. Some of the most used frameworks for this
purpose are TensorFlow [43] and Caffe [44]. These frameworks
provide an extensive ‘‘model zoo” with the implementation of
the newest networks, thus speeding up the testing and develop-
ment process. However, it is essential to consider that the final
algorithm will be carried out by the onboard computer in the
drone, which may have some limitations such as compute unified
device architecture (CUDA) compatibility. In Section 6, a compari-
son between different algorithms (F-RCNN, SSD, and YOLO) on
three different devices (a laptop computer with a GTX1070, a
Jetson TX1 by Nvidia, and an Intel NUC computer) is presented.

The CNN is fed with RGB images provided by the camera. As a
result, a set of candidate bounding boxes is obtained. The bounding
box with the highest probability is employed to crop both the RGB
and the depth images. These images are used to compute a local
point cloud, combining the information from the pictures and the
calibration matrices of the device. This colored point cloud is used
in the next stage.

In short, the use of the object-detection algorithm reduces the
search for the object during the alignment stage, decreasing the
searchable area by 50%, and possibly by as much as 80% if the
crawler represents a small fragment of the image.

At this point, a fragment of point cloud that contains the target
object is obtained. In order to locate the object, an alignment algo-
rithm is used. This algorithm filters the object from the back-
ground. A point cloud model of the crawler is provided to
perform an iterative closest points (ICP)-based algorithm [45,46],
which outputs the pose of the target. The ICP method uses all the
available information to enhance the alignment process. It includes
the 3D location of points (Eq. (1)), the normal information obtained

http://www.dronetools.es
https://pixhawk.org/
https://github.com/bardo91/hecatonquiros/

Fig. 2. Manipulators’ kinematic reachability and computer-aided design models for the online simulations and planning. (a) Kinematic reachability of the aerial manipulator;
(b) 6-DoF arms model in OpenRAVE and coordinate frames; (c) 4-DoF arms model in OpenRAVE and coordinate frames.

Table 1
Platform specifications.

Subsystem Characteristic Specification

Arms DoF 4 6
Maximum range ~500 mm ~580 mm
Maximum payload per arm ~500 g ~400 g
Mass per arm 632 g 663 g

UAV Mass (including arms) 3.75 kg
Maximum payload 1.5 kg
Detection range 2.5 m

80 P. Ramon-Soria et al. / Engineering 6 (2020) 77–88
from both the model and the scene (Eq. (2)), and the color data
(Eq. (3)). This information is used in the form of outlier rejections
during the selection process of points before the iterative calcula-
tion of the affine transformation.

Ddist ¼
ffi
x1 � x2ð Þ2

q
ð1Þ

where Ddist is the geometrical distance between any two points x1
and x2 of the point cloud.

Dnorm ¼ cos \ A1;A2ð Þ½ � ð2Þ
where Dnorm means the cosine of the angle between the normals A1

and A2; A1 and A2 are the normals of any two points x1 and x2 of a
point cloud, respectively.

Dcolor ¼ R1 � R2j j þ G1 � G2j j þ B1 � B2j j ð3Þ
where Dcolor means the absolute distance between the colors
assigned to any two points x1 and x2 of a point cloud; R, G, and B
are the values of the red, green, and blue channels, respectively.

It is worth noting that ICP algorithms are sensitive to the initial
conditions. For this reason, the pose computed in the previous
instant (k – 1) (k is the corresponding instant of the previous com-
puted cloud) is used to provide a good estimate for the algorithm.
This fact, together with the crop and clean of the input cloud,
Fig. 3. Scheme of the visual algorithm for the object detection and p
maximizes the probability of the algorithm converging to the cor-
rect solution.

Finally, the result of the algorithm is filtered by an extended
Kalman filter (EKF) [47,48]. The filter helps to reduce the noise in
the results and makes it possible to predict the relative speed of
the object, which is used to improve the object pose estimation.
A simple kinematic model was chosen to estimate the object’s
state.
4. Grasp planning

In order to make it possible to grasp the target object, a grasp
planning algorithm was developed, composed of the following
steps: First, a set of feasible grasps is generated, taking into account
the target’s shape; next, these grasps are arranged according to
their properties; finally, the best available grasp is chosen accord-
ing to the computed visual information at each instant. During the
grasping procedure, if the pose of the object makes the current
grasp unreachable, the planner chooses the closest best grasp.
4.1. Grasp generation

First, a set of possible contact points is generated on the surface
of the target object. Our approach is based on the grasp generation
algorithm described in Ref. [49]. This algorithm casts a set of rays
from a bounding box toward the target object. Each ray collides
once with the surface, and the surface normal is computed. An
example is shown in Fig. 4.

However, this methodology may fail to generate a feasible grasp
for objects with complex shapes. Fig. 5 shows an example of the
ray-tracing algorithm for a U-shaped object. It can be seen that if
the aperture of the gripper is smaller than the size labeled as ‘‘a”
in Fig. 5(b), then the object is ungraspable for the robot. However,
if the algorithm takes into account all the possible internal nooks of
the object’s surface, then the robot can grasp the object if the
ose estimation of the target object. EKF: extended Kalman filter.

Fig. 4. Example of the ray-tracing algorithm for contact point calculation. (a) The initial set of rays used to compute the grasp points; (b) the resulting grasp points computing
using the ray-tracing algorithm.

Fig. 5. Example of the use of the grasping algorithm for a non-convex object. (a) An isometric view of the rays crossing the object; (b) the front view. Red lines represent the
rays used to trace the possible grasp points.

P. Ramon-Soria et al. / Engineering 6 (2020) 77–88 81
aperture of the gripper is larger than the sizes labeled as ‘‘b” or ‘‘d”
in Fig. 5(b).

In general terms, let p be a single ray passing through an object.
The number of collisions of p with a mesh is Mcollisions = Mfolds � 2;
thus, the number of combinations of opposite contact points that
might generate a grasp are

Mgrasps ¼
XMfolds

j ¼ 1

j ð4Þ

where Mgrasps is the number of possible grasps; Mfolds corresponds
to the folds intersected by the ray; j is the internal loop variable
of the SUM operator.

This generation of contact point candidates may be time inten-
sive if the mesh of the object is too complicated. In order to speed
up this step of the algorithm, the contact points generated are
stored in a binary file so they can be reused in any mission if the
object is the same. Once this ray tracing is performed, the untrans-
formed results are stored in a database; if the same object or a dif-
ferent instance of the same object is grasped later, this database is
recovered, thus avoiding all the ray-tracing computations.

The set of contact points is then used to generate candidate
grasps. The grasps are sampled in an internal simulator according
to the pose of the object relative to the aerial manipulator. The
algorithm computes the reachability for each grasp, the possible
collisions between the manipulator and the target object, and the
quality of each grasp. First, each arm samples all the possible can-
didate solutions to generate a list of feasible grasps for each arm.
Next, all the feasible grasps are tested in pairs to obtain a list of
dual grasps. The quality of these grasps is analyzed in terms of
force closure and largest minimum resisted wrench, as described
in Ref. [32]. All these grasps are then stored to be used during
the planning process.
4.2. Planning, servoing, and grasping

Once the list of grasps is arranged, the best grasp is chosen
based on the current relative target object pose. This is the closest
and most stable grasp for the dual manipulator. Before grasping,
the arms are sent to a pre-catch position; this prevents the
manipulators from performing large and dangerous movements,
as it is crucial to prevent the manipulators from colliding with
the flying components of the robot.

Let it be a multi-link robot manipulator L specified by the scalar
variablesH = h1, . . ., hi describing the states of its joints. The end of
each link of the body has a certain position S = s1, . . ., si, some of
which are the so-called end-effectors. These positions can be
described using the Denavit–Hartenberg (DH) formulation [50] as
a chain of transformations between the joints of the manipulator
and computed by a set of parameters DHi = {ai, ai, di, ui}; ai means
the angle between the z axis of the joints, ai is the distance between
the joints along the x axis of the first joint, di is the distance
between two joints along the z axis of the first joint, ui is the angle
along the z axis of the first joint between the x axis of the joints.
Each DHi element is a matrix that transforms between link (i – 1)
to i; that is, it performs forward kinematics (FK).

The purpose is to obtain a set of adequate joints H that places
the end-effectors on a target location Tr; that is, to perform inverse
kinematics. This problem has been widely studied. Unfortunately,
there is no straightforward solution in most situations. Iterative
methods [51] and sampling methods [52] are perfectly suited to
this problem. FK are given by functions H ´ S (H) that are

82 P. Ramon-Soria et al. / Engineering 6 (2020) 77–88
RN´ R6, which describes FK from an N dimensional space to the 6D
space composed by the position and orientation of the end-effector
of the manipulator. These functions can be linearly approximated
using Jacobian matrices (J(H)) close to the current joint state H.
The velocities can be expressed as follows:

_S Hð Þ ¼ J Hð Þ _H ð5Þ
where S(H) represents the position of the end effector in terms of
the joint space H.

J Hð Þ ¼ dsm
dhn

� �
m;n

ð6Þ

where d is the partial derivative operator, hn is an specific joint of
the joint space, sm is the position of them link,m and n are the index
iterators over the variables to define the complete Jacobian matrix
J(H).

The final purpose is to guide the arms toward the target grasps
using the visual information from the sensors. In this work, a
Jacobian damped-least square (DLS) gradient descent method
[53,54] is applied to ensure the convergence of the arms toward
the target position. This method has been shown to be more robust
to inverse and pseudoinverse methods [54] near to instabilities and
singularities in the Jacobian matrices. Let XK and QK be the target
position of orientation for the end-effector given by the grasp plan-
ning and updated by the vision algorithm. The aim is to update the
manipulator’s pose by updating its joints.

The DLS proceeds as follows: Eqs. (7) and (8) are computed
based on the current state of the robot and the target pose of the
end-effector; next, Eq. (9) is used to compute a vector that contains
an increment in the joint values of the robot that allows the end-
effector to move toward the target pose.

error ¼ Xtarget � XK

Q target � QK

�
ð7Þ

where Xtarget and Qtarget are the target positions for the end-
effectors; XK and QK are the target position and orientation of the
end-effector at instant K.

Jc ¼
JX
JQ

" #
ð8Þ

where Jc, JX, and JQ are the corresponding position and orientation
Jacobians at the current state.

DH ¼ JTc HKð Þ � Jc HKð Þ þ k2 � I
h i�1

� error ð9Þ

where HK represents the arm angles of the current joints; k is the
damping coefficient to reduce the issues related to the inversion
of the matrix. k must be large enough to ensure that the algorithm
behaves adequately close to singularities, but not too large to grant
a good convergence rate. I means an identity matrix with the size of
Jc . These are calculated based on the position of the target object,
which is computed in the vision module.

Furthermore, working with a pair of manipulators requires
additional constraints. The principal constraint is the need to avoid
collisions with itself and with other objects. However, checking the
collisions of any non-convex object is not trivial. The use of a con-
vex hull is advantageous in some situations, as it can be used to
check them. However, this simplification can be rough in some
applications. Modern approaches split the objects into a set of con-
vex hulls [55,56]. This results in a more accurate solution while
preserving the advantages and mathematical simplifications of
working with convex hulls. In the present work, the implementa-
tion given by OpenRAVE is used [57], which integrates these fast
methodologies.
Finally, it is possible that due to the oscillations of the aerial
robot, or if the target object is mobile, the best grasp may became
unreachable. The algorithm continuously measures the quality of
the current grasp against the database of grasps in a separate thread,
in order to overcome this issue. If the grasp became unreachable or
unfeasible, the algorithm switches to a new best option.
5. State machine and complete mission

The work presented in this paper covers the process starting
from the take-off of the UAV from the platform until its landing
after grasping the target object. Such a complete mission requires
a sophisticated system design. The system is composed of five
modules, as shown in Figs. 6 and 7. Each module is responsible
for a single task in the UAV. In order to simplify the development
process, communication between modules is carried out by ROS
[58]. In this section, each module is initialized in an idle state that
is triggered by a global signal start.

Fig. 6(a) shows the global state machine, which is responsible
for the global behavior of the mission. It is composed of three
states: approaching, grasping, and homing. Approaching triggers
the take_off signal and waits until the UAV has taken off. After that,
the global state machine sends the approaching signal, which car-
ries an initial waypoint, to the UAV’s controller, close to the target
object. Once the UAV is in the target position, it holds until the tar-
get object is found (found signal). Then the state machine switches
to the grasping state, in which the visual servoing comes into
action to grasp the target. Once the object is grasped, the state
machine switches to the homing state, which ends when the
UAV lands.

Fig. 6(b) shows the state machine of the UAV’s controller, which
consists of six states. It starts with idle. Once the UAV takes off, it
keeps hovering until the next signal. If the global state machine
sends an approaching signal, the UAV control state machine
switches to the waypoint state and moves the UAV to a target posi-
tion. If the object is found, it then switches to the tracking state.
The tracking module is responsible for checking if the target object
is in a reasonable position to be grasped. If so, it sends the near sig-
nal. This state finishes when the object is either lost or grasped.

Fig. 7(a) shows the vision state machine, which has the simplest
structure. This state machine continuously runs the vision algo-
rithm in order to detect the target object and compute its pose.
When the object is found and its pose is computed, the state
machine publishes that information together with the found sig-
nal. If the object is lost, then the lost signal is sent to cause the
appropriate effect.

Fig. 7(b) shows the state machine of the grasp planner module,
which is responsible for computing the appropriate grasps of the
object. It also runs the servoing algorithm to compute the desired
joints of the arms according to the target grasp. It starts by estimat-
ing the arranged list of grasps. Later, if the object is close, within
the range of the arms, the state machine switches to the servoing
state, in which the visual servoing publishes the target joints for
the arms. As mentioned in Section 4, the arms are not sent directly
to the grasping pose. Instead, they are sent to a position close to it,
called the ‘‘approaching pose.” Once the arms are in the approach-
ing position, the state machine toggles to the grasping state in
which the arms move quickly toward the object and grasp it.

Finally, Fig. 7(c) shows the arms controller state machine. The
manipulator controller is responsible for publishing information
about the manipulators and providing the interface for moving
them. It also limits the speed and trajectories of the arms to ensure
that they are safe. An emergency stop (E_S) state has been placed
to stop the arms externally for the sake of security. Emergency stop
also causes the UAV to keep hovering to prevent it from crashing.

Fig. 6. First two submodules of the system. (a) Global state machine; (b) UAV control state machine.

Fig. 7. First three submodules of the system. (a) Vision state machine; (b) grasp planner state machine; (c) arms controller state machine.

P. Ramon-Soria et al. / Engineering 6 (2020) 77–88 83
6. Experiments

This section begins by describing the experiments that were
performed to evaluate and validate the system and algorithms.
Next, a set of experiments are described and discussed to show
the performance of the system in carrying out aerial manipulation
tasks. As mentioned earlier, this work focuses on grasping a craw-
ler robot that was developed during the project AEROARMS, and
that is used for pipe inspection in factories. However, the algorithm
can be used equally well for any object, as neither the vision algo-
rithm nor the planning process have any particular restriction to
this particular object. A summary video of the experiments can
be found.y
y https://youtu.be/nXYlzqwM8kA.
6.1. System evaluation

As described in Section 3, an object-detection CNN is used in the
first stage of the vision algorithm to detect the object. This provides
a good initial solution for the alignment algorithm, which is more
computationally expensive.

Three CNNs were tested in three different devices to choose the
best option that fits the system requirements for the manipulation
task and the payload limitations of the aerial manipulator. The
specific CNNs tested were F-RCNN, SSD300, and YOLO (tiny YOLO
v2). These were tested in the following three devices: a laptop with
a GTX1070, a Jetson TX1, and an Intel NUC with an iris GPU. The
first two devices have CUDA capabilities, as they have Nvidia GPUs.
However, the third device cannot use common frameworks due to
a lack of CUDA compatibility. Table 2 summarizes the average
computational times of the different detection algorithms in the
different devices. As the Intel NUC is not CUDA compatible, only

https://youtu.be/nXYlzqwM8kA

Fig. 8. Different samples of the grasp planning process.

84 P. Ramon-Soria et al. / Engineering 6 (2020) 77–88
the YOLO was evaluated. To be specific, an OpenCL implementation
of the YOLO has been used.y

It can be clearly seen that the performance on the laptop over-
takes the results of the other devices. However, due to the strict
payload limitations, only the other two devices can be considered
when operating with UAVs. At first, the YOLO runs a bit faster in
the Jetson TX1 device. However, the central processing unit
(CPU) capabilities of the Intel NUC computer strongly overtake
those of the Jetson. As the whole system requires many processes
from the rest of algorithms, the Intel NUC platform was selected.

The main benefit of the region proposal algorithm (the CNN) is
that it drastically reduces the size of the cloud to be used in the
alignment process (within 50% and 80%). It has a double improve-
ment in that it decreases the computational time of this step,
while also allowing the algorithm to converge a good solution;
as gradient descent algorithms are usually sensitive to outliers
and initial conditions, this improves convergence to the
minimum.

Once the object is detected and its pose is estimated, the algo-
rithm performs the grasp planning process described in Section 4.
This process can be split into three stages. The first stage is the
computation of contact points; this process can be pre-
computed, as it only depends on the resolution chosen for the algo-
rithm and the model of the object. The second stage is the compu-
tation of feasible grasps for each arm separately. Table 3
summarizes the average computation times for each stage for
various objects. Finally, the grasps are taken in pairs to arrange
them by their quality metrics. The second column evaluates the
time spent in the generation of the initial set of contact points.
The grid resolution is the distance between the initial set of rays
used during the ray tracing evaluation as described in Section 4.1.
The third column shows the time spent evaluating the feasibility of
the grasps generated in the previous step. Eventually, the fourth
column shows the time spent evaluating the quality of the grasps.

In order to prevent the arms from colliding with any part of the
aerial platform, a safe volume is left above the shoulders of the
arms. This volume corresponds to the flying parts of the robot,
which must never be collided with. For safety reasons, this volume
is taken into account in the planning process and during the servo-
ing algorithm.

Fig. 8 shows a sequence of the online simulations run in Open-
RAVE for the grasp planning process. Afterwards, the set of feasible
grasps is stored for later use during the re-planning stage.
y https://github.com/ganyc717/Darknet-On-OpenCL.

Table 3
Computational times per mesh faces for grasp planning process.

Coumputer CP generation
(grid resolution 0.015 mm) (s)

Feasibility
(per grasp) (s)

Quality
(per grasp) (s)

Laptop 0.407 0.0072 0.0051
Jetson TX1 2.534 0.0113 0.0100
Intel NUC 0.417 0.0077 0.0506

CP: contact point.

Table 2
Computational time in seconds of the different algorithms in the tested devices.

Computer F-RCNN (s) SSD (s) YOLO (s)

Laptop 0.067 0.027 0.0103
Jetson TX1 0.470 0.113 0.0510
Intel NUC — — 0.0530
6.2. Simulated and test-bench experiments

In order to verify the performance of the arms and their control
before the actual experiments, a set of simulations was carried out.
The pose of the objects to be grasped was given with a certain
noise. These objects were then animated to stress the arm servoing
algorithm. Three objects were shown with different shapes. How-
ever, any other object can be chosen at this stage, as the algorithm
is capable of computing a grasp for any mesh.

Fig. 9 shows a sequence of snapshots of the simulated experi-
ments to demonstrate the reachability of the arms in different
situations. In these simulation experiments, the algorithm pro-
ceeds as in the real experiments, but the pose of the object is pro-
vided by the simulator, with a certain level of noise. First, the
algorithm computes a set of feasible grasps, as described in
Section 4.1. Next, according to the position of the object, it chooses
the best grasp and guides the arm toward the object, as described
in Section 4.2. Once the arms are close to the grasping poses, the
system sends a signal to close the gripper.

The purpose of these experiments was to demonstrate that
regardless of the vision, the algorithm is able to handle different
objects and shapes. It generates a set of feasible grasps and dynami-
cally chooses the best option based on the estimation of the object
pose.

Before the real flights, the complete system—including the
vision—was tested on a test-bench (Fig. 10), where the aerial
manipulator was placed in a fixed structure and the target object
was moved.

6.3. Flying experiments

This section describes the experiments that were carried out to
demonstrate the performance of the system in real environments.
For these experiments, a mock-up of a crawler robot was 3D
printed. Two different setups were prepared. In the first setup,
which was indoors, the UAV performed a completely autonomous
operation, thanks to the position obtained by a MOCAP system. The
second setup was intended to test the system outdoors. In both
experiments, the 4-DoF gripper was chosen, as it is stronger than
the 6-DoF version.

https://github.com/ganyc717/Darknet-On-OpenCL

Fig. 9. Samples of simulation tests with different objects at different times.

Fig. 10. Testing the complete system at the indoor test-bench. (a) The camera view
and the 2D detection of the crawler mock-up; (b) the 3D virtualization of the robot,
including the estimated position of the crawler and the target grasps; (c) a third-
view of the experiment.

P. Ramon-Soria et al. / Engineering 6 (2020) 77–88 85
The first key module is the vision system, which computes the
pose of the object to be grasped for the grasp planning, feeds the
arms module for the servoing, and provides a reference position
for the UAV. Fig. 11 shows the results of the algorithm.
Fig. 11 (a) shows the result of the object detection in the RGB
image using the CNN. Fig. 11(b) shows the fragment of the point
Fig. 11. Object detection and pose estimation results. (a) A bound box resulting from YO
and a coordinate frame.
cloud computed using the depth image and the estimation of the
object’s pose from the alignment algorithm, filtered by the Kalman
filter. The pose estimation is highlighted with an overlaid red point
cloud and a coordinate system, as shown in the figure.

Fig. 12 shows the estimation of the object’s pose from the vision
system against the ground truth using a MOCAP system. The esti-
mation shows an average of the root mean square error (RMSE)
smaller than 0.02 m. This accuracy is fundamental to ensure that
the robot can perform the grasp tasks. Larger errors in the estima-
tion of the localization of the robot would be problematic, causing
the robot to miss the grasp and even collide with the environment.

Fig. 13 shows an additional experiment for testing the visual
detection module. In this experiment, the mock-up was moved
along a pipe. The position of both the UAV and the crawler was
measured by the vision system and a MOCAP system.

The accuracy of the system was tested firstly indoors in a con-
trolled environment with a MOCAP system. The mission started
with the UAV taking off; the UAV then performed the pipeline
maneuver explained in Section 5. Fig. 14 provides a snapshot of
the experiment.

Fig. 15 shows the values of the joints during two visual servoing
tests. The dashed line corresponds to the target joints and the solid
line corresponds to the actual joints values. The figure shows how
the system switches to a new grasp when the previous grasp
becomes unreachable.

Finally, Fig. 16 provides a photograph of the outdoors experi-
mental test-bench. In this experiment, the UAV flew while being
tied to a structure with a safety rope, for safety reasons. The
LO; (b) the fragment of cloud and the pose estimation as an overlaid red-dots model

Fig. 12. Estimated pose of the crawler versus the ground truth in the UAV’s
coordinate system. (a) Estimated distance from the camera vs. ground truth in
the X axis; (b) estimated distance from the camera vs. ground truth in the Y axis;
(c) estimated distance from the camera vs. ground truth in the Z axis.

Fig. 13. Trajectory of the UAV and estimated position of the crawler measured by
the vision system in global coordinates (solid lines) and ground truth (dashed lines).
(a) 3D trajectory of the UAV and the crawler during a moving experiment;
(b) estimated position vs. real position of the crawler using the visual estimation in
each of the axis.

Fig. 14. Indoor autonomous mission using the MOCAP system.

86 P. Ramon-Soria et al. / Engineering 6 (2020) 77–88
photograph shows the point of view of the robot while grasping
the mock-up of the crawler. This experiment demonstrated that
the perception algorithm works outdoors using the RealSense
Depth camera, regardless of the sunlight conditions.

7. Conclusions

This paper presents a complete system for performing manipu-
lation operations with an aerial platform. Integrating two manipu-
lators, instead of just one, makes it possible to grasp larger and
more complex objects. In addition, having two manipulators helps
the UAV to cancel fluctuations due to external disturbances and
even choose grasps that are more stable because they enclose the
center of mass. Both qualitative and quantitative experimental
data have been provided in order to demonstrate that the system
is capable of performing grasping operations.

The average RMSE of the vision system is lower than 0.02 m.
The use of object-detection networks has been shown to be highly
beneficial for the speed of the pose estimation. The main limita-
tions come from the available onboard devices. Most state-of-
the-art CNNs have been tested and designed to be used in powerful
computers, which makes it challenging to integrate them in aerial
platforms. However, after the analysis in Section 6, the chosen
algorithm provided fair enough results for the mission. The next
step will include the estimation of object pose in the neuronal
network.
It has been demonstrated in several environments that the sys-
tem is able to operate and grasp the target object. In addition, these
results have been supported with simulated objects in order to
prove that the grasp planning algorithm is able to plan manipula-
tion tasks with other shapes. The vision system has been tested
under low-light conditions as well as outdoors under direct sun-
light. The algorithm ran correctly under both illumination
conditions.
Acknowledgement

This work was carried out in the framework of the AEROARMS
(SI-1439/2015) EU-funded project and the national project
ARMEXTENDED (DPI2017-89790-R).

Fig. 15. Joints values during the experiments (in radians). At first, the arms follow the grasp target. After a certain point, the object rotates, so the system switches to another
feasible grasp.

Fig. 16. Outdoor autonomous test with a safety rope.

P. Ramon-Soria et al. / Engineering 6 (2020) 77–88 87
Compliance with ethics guidelines

Pablo Ramon-Soria, Begoña C. Arrue, and Anibal Ollero declare
that they have no conflict of interest or financial conflicts to
disclose.

References

[1] Pouliot N, Richard PL, Montambault S. Linescout technology opens the way to
robotic inspection and maintenance of high-voltage power lines. IEEE Power
Energy Technol Syst J 2015;2(1):1–11.

[2] Matikainen L, Lehtomäki M, Ahokas E, Hyyppä J, Karjalainen M, Jaakkola A,
et al. Remote sensing methods for power line corridor surveys. ISPRS J
Photogramm Remote Sens 2016;119:10–31.

[3] Wang L, Zhang Z. Automatic detection of wind turbine blade surface cracks
based on UAV-taken images. IEEE Trans Ind Electron 2017;64(9):7293–303.

[4] Almadhoun R, Taha T, Seneviratne L, Dias J, Cai G. A survey on inspecting
structures using robotic systems. Int J Adv Robot Syst 2016;13(6):
1729881416663664.

[5] Reinoso JF, Gonçalves JE, Pereira C, Bleninger T. Cartography for civil
engineering projects: photogrammetry supported by unmanned aerial
vehicles. Iran J Sci Technol Trans Civ Eng 2018;42(1):91–6.

[6] Ruggiero F, Lippiello V, Ollero A. Aerial manipulation: a literature review. IEEE
Robot Automat Lett 2018;3(3):1957–64.

[7] Gevers T, Smeulders AWM. Color-based object recognition. Pattern Recognit
1999;32(3):453–64.
[8] Bruce J, Balch T, Veloso M. Fast and inexpensive color image segmentation for
interactive robots. In: Proceedings of 2000 IEEE/RSJ International Conference
on Intelligent Robots and Systems; 2000 Oct 31–Nov 5; Takamatsu, Japan. New
York: IEEE; 2000. p. 2061–6.

[9] Lowe DG. Object recognition from local scale-invariant features. In:
Proceedings of the 7th IEEE International Conference on Computer Vision;
1999 Sep 20–25; Corfu, Greece. New York: IEEE; 1999. p. 1150–7.

[10] Zhou H, Yuan Y, Shi C. Object tracking using SIFT features and mean shift.
Comput Vis Image Underst 2009;113(3):345–52.

[11] Liu W, Anguelov D, Erhan D, Szegedy C, Reed S, Fu C, et al. SSD: single shot
multibox detector. 2015. arXiv:1512.02325.

[12] Girshick R, Donahue J, Darrell T, Malik J. Rich feature hierarchies
for accurate object detection and semantic segmentation. In: Proceedings of
the 2014 IEEE Conference on Computer Vision and Pattern Recognition; 2014
Jun 23–28; Washington, DC, USA. New York: IEEE; 2014. p. 580–7.

[13] Ren S, He K, Girshick R, Sun J. Faster R-CNN: towards real-time object detection
with region proposal networks. 2015. arXiv:1506.01497.

[14] He K, Gkioxari G, Dollár P, Girshick R. Mask R-CNN. 2017,
arXiv:1703.068702017.

[15] Redmon J, Farhadi A. YOLOv3: an incremental improvement. 2018.
arXiv:1804.02767.

[16] Xiang Y, Schmidt T, Narayanan V, Fox D. PoseCNN: a convolutional neural
network for 6D object pose estimation in cluttered scenes. 2018.
arXiv:1711.00199.

[17] Rai A, Patchaikani PK, Agarwal M, Gupta R, Behera L. Grasping region
identification in novel objects using Microsoft kinect. In: Proceedings of 19th
International Conference on Neural Information Processing; 2012 Nov 12–15;
Doha, Qatar. Berlin: Springer; 2012. p. 172–9.

[18] Lysenkov I, Eruhimov V, Bradski G. Recognition and pose estimation of rigid
transparent objects with a Kinect sensor. In: Roy N, Newman P, Srinivasa S,
editors. Robotics: science and systems VIII. Cambridge: MIT Press; 2013. p.
273–80.

[19] Gordon I, Lowe DG. What and where: 3D object recognition with accurate
pose. In: Ponce J, Hebert M, Schmid C, Zisserman A, editors. Toward category-
level object recognition. Berlin: Springer; 2006. p. 67–82.

[20] Collet A, Berenson D, Srinivasa SS, Ferguson D. Object recognition and full pose
registration from a single image for robotic manipulation. In: Proceedings of
the 2009 IEEE International Conference on Robotics and Automation; 2009
May 12–17; Kobe, Japan. New York: IEEE; 2009. p. 48–55.

[21] Ramon Soria P, Arrue BC, Ollero A. Detection, location and grasping objects
using a stereo sensor on UAV in outdoor environments. Sensors 2017;17
(1):103.

[22] Marchand E, Bouthemy P, Chaumette F, Moreau V. Robust real-time visual
tracking using a 2D-3D model-based approach. In: Proceedings of the 7th IEEE
International Conference on Computer Vision; 1999 Sep 20–27; Kerkyra,
Greece. New York: IEEE; 1999. p. 262–8.

[23] Miller AT, Knoop S, Christensen HI, Allen PK. Automatic grasp planning using
shape primitives. In: Proceedings of 2003 IEEE International Conference on
Robotics and Automation; 2003 Sep 14–19; Taipei, China. New York: IEEE;
2003. p. 1824–9.

[24] Xue Z, Xia S, Dillmann R. An efficient grasp planning algorithm based on
decomposition of grasp regions. In: Proceedings of 12th IEEE-RAS International

http://refhub.elsevier.com/S2095-8099(19)30865-3/h0005
http://refhub.elsevier.com/S2095-8099(19)30865-3/h0005
http://refhub.elsevier.com/S2095-8099(19)30865-3/h0005
http://refhub.elsevier.com/S2095-8099(19)30865-3/h0010
http://refhub.elsevier.com/S2095-8099(19)30865-3/h0010
http://refhub.elsevier.com/S2095-8099(19)30865-3/h0010
http://refhub.elsevier.com/S2095-8099(19)30865-3/h0015
http://refhub.elsevier.com/S2095-8099(19)30865-3/h0015
http://refhub.elsevier.com/S2095-8099(19)30865-3/h0020
http://refhub.elsevier.com/S2095-8099(19)30865-3/h0020
http://refhub.elsevier.com/S2095-8099(19)30865-3/h0020
http://refhub.elsevier.com/S2095-8099(19)30865-3/h0025
http://refhub.elsevier.com/S2095-8099(19)30865-3/h0025
http://refhub.elsevier.com/S2095-8099(19)30865-3/h0025
http://refhub.elsevier.com/S2095-8099(19)30865-3/h0030
http://refhub.elsevier.com/S2095-8099(19)30865-3/h0030
http://refhub.elsevier.com/S2095-8099(19)30865-3/h0035
http://refhub.elsevier.com/S2095-8099(19)30865-3/h0035
http://refhub.elsevier.com/S2095-8099(19)30865-3/h0040
http://refhub.elsevier.com/S2095-8099(19)30865-3/h0040
http://refhub.elsevier.com/S2095-8099(19)30865-3/h0040
http://refhub.elsevier.com/S2095-8099(19)30865-3/h0040
http://refhub.elsevier.com/S2095-8099(19)30865-3/h0045
http://refhub.elsevier.com/S2095-8099(19)30865-3/h0045
http://refhub.elsevier.com/S2095-8099(19)30865-3/h0045
http://refhub.elsevier.com/S2095-8099(19)30865-3/h0050
http://refhub.elsevier.com/S2095-8099(19)30865-3/h0050
http://refhub.elsevier.com/S2095-8099(19)30865-3/h0060
http://refhub.elsevier.com/S2095-8099(19)30865-3/h0060
http://refhub.elsevier.com/S2095-8099(19)30865-3/h0060
http://refhub.elsevier.com/S2095-8099(19)30865-3/h0060
http://refhub.elsevier.com/S2095-8099(19)30865-3/h0070
http://refhub.elsevier.com/S2095-8099(19)30865-3/h0070
http://refhub.elsevier.com/S2095-8099(19)30865-3/h0085
http://refhub.elsevier.com/S2095-8099(19)30865-3/h0085
http://refhub.elsevier.com/S2095-8099(19)30865-3/h0085
http://refhub.elsevier.com/S2095-8099(19)30865-3/h0085
http://refhub.elsevier.com/S2095-8099(19)30865-3/h0090
http://refhub.elsevier.com/S2095-8099(19)30865-3/h0090
http://refhub.elsevier.com/S2095-8099(19)30865-3/h0090
http://refhub.elsevier.com/S2095-8099(19)30865-3/h0090
http://refhub.elsevier.com/S2095-8099(19)30865-3/h0095
http://refhub.elsevier.com/S2095-8099(19)30865-3/h0095
http://refhub.elsevier.com/S2095-8099(19)30865-3/h0095
http://refhub.elsevier.com/S2095-8099(19)30865-3/h0100
http://refhub.elsevier.com/S2095-8099(19)30865-3/h0100
http://refhub.elsevier.com/S2095-8099(19)30865-3/h0100
http://refhub.elsevier.com/S2095-8099(19)30865-3/h0100
http://refhub.elsevier.com/S2095-8099(19)30865-3/h0105
http://refhub.elsevier.com/S2095-8099(19)30865-3/h0105
http://refhub.elsevier.com/S2095-8099(19)30865-3/h0105
http://refhub.elsevier.com/S2095-8099(19)30865-3/h0110
http://refhub.elsevier.com/S2095-8099(19)30865-3/h0110
http://refhub.elsevier.com/S2095-8099(19)30865-3/h0110
http://refhub.elsevier.com/S2095-8099(19)30865-3/h0110
http://refhub.elsevier.com/S2095-8099(19)30865-3/h0115
http://refhub.elsevier.com/S2095-8099(19)30865-3/h0115
http://refhub.elsevier.com/S2095-8099(19)30865-3/h0115
http://refhub.elsevier.com/S2095-8099(19)30865-3/h0115
http://refhub.elsevier.com/S2095-8099(19)30865-3/h0120
http://refhub.elsevier.com/S2095-8099(19)30865-3/h0120

88 P. Ramon-Soria et al. / Engineering 6 (2020) 77–88
Conference on Humanoid Robots; 2012 Nov 29–Dec 1; Osaka, Japan. New
York: IEEE; 2012. p. 686–91.

[25] Song D, Huebner K, Kyrki V, Kragic D. Learning task constraints for robot
grasping using graphical models. In: Proceedings of 2010 IEEE/RSJ
International Conference on Intelligent Robots and Systems; 2010 Oct 18–
22; Taipei, China. New York: IEEE; 2010. p. 1579–85.

[26] Saxena A, Driemeyer J, Ng AY. Robotic grasping of novel objects using vision.
Int J Robot Res 2008;27(2):157–73.

[27] Morrison D, Corke P, Leitner J. Closing the loop for robotic grasping: a realtime,
generative grasp synthesis approach. 2018. arXiv:1804.05172.

[28] Baier-Lowenstein T, Zhang J. Learning to grasp everyday objects using
reinforcement-learning with automatic value cut-off. In: Proceedings of
2007 IEEE/RSJ International Conference on Intelligent Robots and Systems;
2007 Oct 29–Nov 2; San Diego, CA, USA. New York: IEEE; 2007. p. 1551–6.

[29] Dragiev S, Toussaint M, Gienger M. Gaussian process implicit surfaces for
shape estimation and grasping. In: Proceedings of 2011 IEEE International
Conference on Robotics and Automation; 2011 May 9–13; Shanghai,
China. New York: IEEE; 2011. p. 2845–50.

[30] Björkman M, Bekiroglu Y, Högman V, Kragic D. Enhancing visual perception of
shape through tactile glances. In: Proceedings of 2013 IEEE/RSJ International
Conference on Intelligent Robots and Systems; 2013 Nov 3–7; Tokyo,
Japan. New York: IEEE; 2013. p. 3180–6.

[31] Martens W, Poffet Y, Ramón Soria P, Fitch R, Sukkarieh S. Geometric priors for
Gaussian process implicit surfaces. IEEE Robot Autom Lett 2017;2(2):373–80.

[32] Roa MA, Suárez R. Grasp quality measures: review and performance. Autono
Robots 2015;38(1):65–88.

[33] Marturi N, Kopicki M, Rastegarpanah A, Rajasekaran V, Adjigble M, Stolkin R,
et al. Dynamic grasp and trajectory planning for moving objects. Autono
Robots 2019;43(5):1241–56.

[34] Ruggiero F, Trujillo MA, Cano R, Ascorbe H, Viguria A, Peréz C, et al. A
multilayer control for multirotor UAVs equipped with a servo robot arm. In:
Proceedings of 2015 IEEE International Conference on Robotics and
Automation; 2015 May 26–30; Seattle, WA, USA. New York: IEEE; 2015. p.
4014–20.

[35] Suarez A, Jimenez-Cano AE, Vega VM, Heredia G, Rodríguez-Castaño A, Ollero
A. Lightweight and human-size dual arm aerial manipulator. In: Proceedings of
2017 International Conference on Unmanned Aircraft Systems; 2017 Jun 13–
16; Miami, FL, USA. New York: IEEE; 2017. p. 1778–84.

[36] Hutchinson S, Hager GD, Corke PI. A tutorial on visual servo control. IEEE Trans
Robot Autom 1996;12(5):651–70.

[37] Chaumette F, Hutchinson S. Visual servo control. I. basic approaches. IEEE
Robot Autom Mag 2006;13(4):82–90.

[38] Kim S, Seo H, Choi S, Kim HJ. Vision-guided aerial manipulation using a
multirotor with a robotic arm. IEEE/ASME Trans Mechatron 2016;21
(4):1912–23.

[39] Prada Delgado J, Ramon Soria P, Arrue BC, Ollero A. Bridge mapping for
inspection using an UAV assisted by a total station. In: Ollero A, Sanfeliu A,
Montano L, Lau N, Cardeira C, editors. Robot 2017: third Iberian robotics
conference. Cham: Springer; 2018. p. 309–19.

[40] Laiacker M, Huber F, Kondak K. High accuracy visual servoing for aerial
manipulation using a 7 degrees of freedom industrial manipulator. In:
Proceedings of 2016 IEEE/RSJ International Conference on Intelligent Robots
and Systems; 2016 Oct 9–14; Daejeon, South Korea. New York: IEEE; 2016. p.
1631–6.
[41] Korpela C, Orsag M, Oh P. Towards valve turning using a dual-arm aerial
manipulator. In: Proceedings of 2014 IEEE/RSJ International Conference on
Intelligent Robots and Systems; 2014 Sep 14–18; Chicago, IL, USA. New
York: IEEE; 2014. p. 3411–6.

[42] Suarez A, Heredia G, Ollero A. Design of an anthropomorphic, compliant, and
lightweight dual arm for aerial manipulation. IEEE Access 2018;6:29173–89.

[43] Abadi M, Agarwal A, Barham P, Brevdo E, Chen Z, Citro C, et al. TensorFlow:
large-scale machine learning on heterogeneous distributed systems. 2016.
arXiv:1603.04467.

[44] Jia Y, Shelhamer E, Donahue J, Karayev S, Long J, Girshick R, et al. Caffe:
convolutional architecture for fast feature embedding. 2014. arXiv:1408.5093.

[45] Rusinkiewicz S, Levoy M. Efficient variants of the ICP algorithm. In:
Proceedings of Third International Conference on 3-D Digital Imaging and
Modeling; 2001 May 28–Jun 1; Quebec City, QC, Canada. New York: IEEE;
2001. p. 145–52.

[46] Men H, Gebre B, Pochiraju K. Color point cloud registration with 4D ICP
algorithm. In: Proceedings of 2011 IEEE International Conference on Robotics
and Automation; 2011 May 9–13; Shanghai, China. New York: IEEE; 2011. p.
1511–6.

[47] Liu W, Hu J, Fang Y, Shao Q, Zheng K, Zhu GN. Real time pose estimation based
on extended Kalman filter for binocular camera. In: Proceedings of 2016 Asia-
Pacific Conference on Intelligent Robot Systems; 2016 Jul 20–22; Tokyo,
Japan. New York: IEEE; 2016. p. 142–6.

[48] Hajimolahoseini H, Amirfattahi R, Khorshidi S. Real-time pose estimation and
tracking of rigid objects in 3D space using extended Kalman filter. In:
Proceedings of 2014 22nd Iranian Conference on Electrical Engineering; 2014
May 20–22; Tehran, Iran. New York: IEEE; 2014. p. 1545–9.

[49] Diankov R. Automated construction of robotic manipulation programs
[dessertation]. Pittsburgh: Carnegie Mellon University; 2010.

[50] Barrientos A, Peñín LF, Balaguer C, Aracil R. Fundaments in Robotics. New
York: McGraw Hill; 1997.

[51] Goldenberg A, Benhabib B, Fenton R. A complete generalized solution to the
inverse kinematics of robots. IEEE J Robot Autom 1985;1(1):14–20.

[52] Courty N, Arnaud E. Inverse kinematics using sequential monte carlo methods.
In: Perales FJ, Fisher RB, editors. Articulated motion and deformable
objects. Berlin: Springer; 2008. p. 1–10.

[53] Wampler CW, Leifer LJ. Applications of damped least-squares methods to
resolved-rate and resolved-acceleration control of manipulators. J Dyn Sys
Meas Control 1988;110(1):31–8.

[54] Buss SR. Introduction to inverse kinematics with Jacobian transpose,
pseudoinverse and damped least squares methods. IEEE J Robot Autom
2004;17(1–19):16.

[55] Ghosh M, Amato NM, Lu Y, Lien JM. Fast approximate convex decomposition
using relative concavity. Comput Aided Des 2013;45(2):494–504.

[56] Mamou K, Ghorbel F. A simple and efficient approach for 3D mesh
approximate convex decomposition. In: Proceedings of 2009 16th IEEE
International Conference on Image Processing; 2009 Nov 7–10; Cairo,
Egypt. New York: IEEE; 2009. p. 3501–4.

[57] Diankov R, Kuffner J. OpenRAVE: a planning architecture for autonomous
robotics. Pittsburgh: Robotics Institute; 2008.

[58] Quigley M, Gerkey B, Conley K, Faust J, Foote T, Leibs J, et al. ROS: an open-
source robot operating system. In: Proceeding of IICRA Workshop on Open
Source Software; 2009 May 12–17; Kobe, Japan. New York: IEEE; 2009. p.
1–6.

http://refhub.elsevier.com/S2095-8099(19)30865-3/h0120
http://refhub.elsevier.com/S2095-8099(19)30865-3/h0120
http://refhub.elsevier.com/S2095-8099(19)30865-3/h0125
http://refhub.elsevier.com/S2095-8099(19)30865-3/h0125
http://refhub.elsevier.com/S2095-8099(19)30865-3/h0125
http://refhub.elsevier.com/S2095-8099(19)30865-3/h0125
http://refhub.elsevier.com/S2095-8099(19)30865-3/h0130
http://refhub.elsevier.com/S2095-8099(19)30865-3/h0130
http://refhub.elsevier.com/S2095-8099(19)30865-3/h0140
http://refhub.elsevier.com/S2095-8099(19)30865-3/h0140
http://refhub.elsevier.com/S2095-8099(19)30865-3/h0140
http://refhub.elsevier.com/S2095-8099(19)30865-3/h0140
http://refhub.elsevier.com/S2095-8099(19)30865-3/h0145
http://refhub.elsevier.com/S2095-8099(19)30865-3/h0145
http://refhub.elsevier.com/S2095-8099(19)30865-3/h0145
http://refhub.elsevier.com/S2095-8099(19)30865-3/h0145
http://refhub.elsevier.com/S2095-8099(19)30865-3/h0150
http://refhub.elsevier.com/S2095-8099(19)30865-3/h0150
http://refhub.elsevier.com/S2095-8099(19)30865-3/h0150
http://refhub.elsevier.com/S2095-8099(19)30865-3/h0150
http://refhub.elsevier.com/S2095-8099(19)30865-3/h0155
http://refhub.elsevier.com/S2095-8099(19)30865-3/h0155
http://refhub.elsevier.com/S2095-8099(19)30865-3/h0160
http://refhub.elsevier.com/S2095-8099(19)30865-3/h0160
http://refhub.elsevier.com/S2095-8099(19)30865-3/h0165
http://refhub.elsevier.com/S2095-8099(19)30865-3/h0165
http://refhub.elsevier.com/S2095-8099(19)30865-3/h0165
http://refhub.elsevier.com/S2095-8099(19)30865-3/h0170
http://refhub.elsevier.com/S2095-8099(19)30865-3/h0170
http://refhub.elsevier.com/S2095-8099(19)30865-3/h0170
http://refhub.elsevier.com/S2095-8099(19)30865-3/h0170
http://refhub.elsevier.com/S2095-8099(19)30865-3/h0170
http://refhub.elsevier.com/S2095-8099(19)30865-3/h0175
http://refhub.elsevier.com/S2095-8099(19)30865-3/h0175
http://refhub.elsevier.com/S2095-8099(19)30865-3/h0175
http://refhub.elsevier.com/S2095-8099(19)30865-3/h0175
http://refhub.elsevier.com/S2095-8099(19)30865-3/h0180
http://refhub.elsevier.com/S2095-8099(19)30865-3/h0180
http://refhub.elsevier.com/S2095-8099(19)30865-3/h0185
http://refhub.elsevier.com/S2095-8099(19)30865-3/h0185
http://refhub.elsevier.com/S2095-8099(19)30865-3/h0190
http://refhub.elsevier.com/S2095-8099(19)30865-3/h0190
http://refhub.elsevier.com/S2095-8099(19)30865-3/h0190
http://refhub.elsevier.com/S2095-8099(19)30865-3/h0195
http://refhub.elsevier.com/S2095-8099(19)30865-3/h0195
http://refhub.elsevier.com/S2095-8099(19)30865-3/h0195
http://refhub.elsevier.com/S2095-8099(19)30865-3/h0195
http://refhub.elsevier.com/S2095-8099(19)30865-3/h0200
http://refhub.elsevier.com/S2095-8099(19)30865-3/h0200
http://refhub.elsevier.com/S2095-8099(19)30865-3/h0200
http://refhub.elsevier.com/S2095-8099(19)30865-3/h0200
http://refhub.elsevier.com/S2095-8099(19)30865-3/h0200
http://refhub.elsevier.com/S2095-8099(19)30865-3/h0205
http://refhub.elsevier.com/S2095-8099(19)30865-3/h0205
http://refhub.elsevier.com/S2095-8099(19)30865-3/h0205
http://refhub.elsevier.com/S2095-8099(19)30865-3/h0205
http://refhub.elsevier.com/S2095-8099(19)30865-3/h0210
http://refhub.elsevier.com/S2095-8099(19)30865-3/h0210
http://refhub.elsevier.com/S2095-8099(19)30865-3/h0225
http://refhub.elsevier.com/S2095-8099(19)30865-3/h0225
http://refhub.elsevier.com/S2095-8099(19)30865-3/h0225
http://refhub.elsevier.com/S2095-8099(19)30865-3/h0225
http://refhub.elsevier.com/S2095-8099(19)30865-3/h0230
http://refhub.elsevier.com/S2095-8099(19)30865-3/h0230
http://refhub.elsevier.com/S2095-8099(19)30865-3/h0230
http://refhub.elsevier.com/S2095-8099(19)30865-3/h0230
http://refhub.elsevier.com/S2095-8099(19)30865-3/h0235
http://refhub.elsevier.com/S2095-8099(19)30865-3/h0235
http://refhub.elsevier.com/S2095-8099(19)30865-3/h0235
http://refhub.elsevier.com/S2095-8099(19)30865-3/h0235
http://refhub.elsevier.com/S2095-8099(19)30865-3/h0240
http://refhub.elsevier.com/S2095-8099(19)30865-3/h0240
http://refhub.elsevier.com/S2095-8099(19)30865-3/h0240
http://refhub.elsevier.com/S2095-8099(19)30865-3/h0240
http://refhub.elsevier.com/S2095-8099(19)30865-3/h0245
http://refhub.elsevier.com/S2095-8099(19)30865-3/h0245
http://refhub.elsevier.com/S2095-8099(19)30865-3/h0250
http://refhub.elsevier.com/S2095-8099(19)30865-3/h0250
http://refhub.elsevier.com/S2095-8099(19)30865-3/h0255
http://refhub.elsevier.com/S2095-8099(19)30865-3/h0255
http://refhub.elsevier.com/S2095-8099(19)30865-3/h0260
http://refhub.elsevier.com/S2095-8099(19)30865-3/h0260
http://refhub.elsevier.com/S2095-8099(19)30865-3/h0260
http://refhub.elsevier.com/S2095-8099(19)30865-3/h0265
http://refhub.elsevier.com/S2095-8099(19)30865-3/h0265
http://refhub.elsevier.com/S2095-8099(19)30865-3/h0265
http://refhub.elsevier.com/S2095-8099(19)30865-3/h0270
http://refhub.elsevier.com/S2095-8099(19)30865-3/h0270
http://refhub.elsevier.com/S2095-8099(19)30865-3/h0270
http://refhub.elsevier.com/S2095-8099(19)30865-3/h0275
http://refhub.elsevier.com/S2095-8099(19)30865-3/h0275
http://refhub.elsevier.com/S2095-8099(19)30865-3/h0280
http://refhub.elsevier.com/S2095-8099(19)30865-3/h0280
http://refhub.elsevier.com/S2095-8099(19)30865-3/h0280
http://refhub.elsevier.com/S2095-8099(19)30865-3/h0280
http://refhub.elsevier.com/S2095-8099(19)30865-3/h0285
http://refhub.elsevier.com/S2095-8099(19)30865-3/h0285
http://refhub.elsevier.com/S2095-8099(19)30865-3/h0290
http://refhub.elsevier.com/S2095-8099(19)30865-3/h0290
http://refhub.elsevier.com/S2095-8099(19)30865-3/h0290
http://refhub.elsevier.com/S2095-8099(19)30865-3/h0290

	Grasp Planning and Visual Servoing for an Outdoors Aerial Dual Manipulator
	1 Introduction
	2 Aerial manipulator
	3 Object detection and pose tracking
	4 Grasp planning
	4.1 Grasp generation
	4.2 Planning, servoing, and grasping

	5 State machine and complete mission
	6 Experiments
	6.1 System evaluation
	6.2 Simulated and test-bench experiments
	6.3 Flying experiments

	7 Conclusions
	ack14
	Acknowledgement
	Compliance with ethics guidelines
	References

