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Remote sensing technology has long been used to detect and map crop diseases. Airborne and satellite
imagery acquired during growing seasons can be used not only for early detection and within-season
management of some crop diseases, but also for the control of recurring diseases in future seasons.
With variable rate technology in precision agriculture, site-specific fungicide application can be made
to infested areas if the disease is stable, although traditional uniform application is more appropriate
for diseases that can spread rapidly across the field. This article provides a brief overview of remote sens-
ing and precision agriculture technologies that have been used for crop disease detection and manage-
ment. Specifically, the article illustrates how airborne and satellite imagery and variable rate
technology have been used for detecting and mapping cotton root rot, a destructive soilborne fungal
disease, in cotton fields and how site-specific fungicide application has been implemented using prescrip-
tion maps derived from the imagery for effective control of the disease. The overview and methodologies
presented in this article should provide researchers, extension personnel, growers, crop consultants, and
farm equipment and chemical dealers with practical guidelines for remote sensing detection and effec-
tive management of some crop diseases.

� 2020 THE AUTHOR. Published by Elsevier LTD on behalf of Chinese Academy of Engineering and
Higher Education Press Limited Company. This is an open access article under the CC BY-NC-ND license

(http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Any disease that causes enough morphological and physiologi-
cal changes in crop plants can be a good candidate for remote sens-
ing detection. As an early example from the late 1920s, an ordinary
film-based camera was used from an airplane to capture aerial
photographs of cotton fields that were infested by cotton root
rot, a soilborne disease caused by the fungus Phymatotrichopsis
omnivore [1]. Stimulus for more applications of aerial photography
for crop disease detection occurred after extensive experiments to
examine spectral reflectance characteristics of healthy and
stressed crops and to determine optimum film and camera
parameters for identifying and differentiating certain cereal crop
diseases [2]. Since then, numerous studies had been conducted
on the use of aerial photography for identifying crop diseases that
could be generally grouped into four major types: airborne, insect-
borne, seed-borne, and soilborne [3,4]. Although film-based aerial
photography is no longer used today, it was a primary remote
sensing tool until satellite imagery and airborne imaging systems
became more widely available.

Airborne imaging systems with multispectral and hyperspectral
cameras have been used for detecting mapping crop diseases for a
few decades. The feasibility of airborne color-infrared (CIR) videog-
raphy was demonstrated for detecting Phymatotrichum root rot in
cotton [5] and root-knot nematodes in kenaf [6]. Airborne digital
multispectral imagery was evaluated for detecting Phytophthora
foot rot in citrus orchards [7], mapping late blight in tomato fields
[8], and mapping cotton root rot in cotton fields [9]. Airborne
hyperspectral imagery was evaluated for identifying yellow rust
in wheat [10], grapevine leafroll virus [11], and yellow leaf curl
on tomatoes [12]. Aerial multispectral and hyperspectral imaging
techniques were used for detecting citrus greasy spot [13], cotton
root rot [14], and huanglongbing or citrus greening [15,16].

Satellite imagery has also been evaluated for mapping crop
diseases. Landsat imagery, even with 30 m spatial resolution, was
able to map severe infestations of the take-all disease in wheat
[17]. Advances in satellite sensors have greatly improved image
spatial resolution. QuickBird satellite imagery was used for
detecting powdery mildew and leaf rust in winter wheat, and high
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accuracies were achieved with severe infections at late growth
stages [18]. QuickBird imagery was also used to map and identify
basal stem rot in oil palms [19]. SPOT 6 satellite imagery was used
for mapping powdery mildew in winter wheat in multiple regions
[20]. The feasibility of WorldView-2 satellite imagery for the detec-
tion of huanglongbing was examined [21]. More recently,
unmanned aircraft systems have been evaluated for the detection
of crop diseases such as citrus greening [22], Flavescence dorée
grapevine disease [23], and root rot in alfalfa [24].

Although both airborne and satellite images have been success-
fully used to detect and map many crop diseases, early detection is
still a challenge. In most cases, by the time remote sensing imagery
can reveal any disease symptoms, damage may have already been
done to the crop. This delayed detection may be early enough to
reduce further damage with certain measures for some crops; for
others, it may be too late to stop the infection for the current grow-
ing season. For example, once the plant is infected with cotton root
rot, it will die within days. In fact, remote sensing has commonly
been used to estimate the extent and severity of the damage
caused by disease. Moreover, imagery obtained in the current
growing season can be used for the management of recurring
diseases, such as cotton root rot, in future growing seasons.

Fungicides are widely used for disease control to reduce crop
yield loss and quality degradation. Uniform fungicide application
has been commonly used, since many diseases tend to spread
quickly across the field. However, site-specific and variable rate
application can be more effective for the management of some
diseases that are stable either within the season or across different
seasons. If a disease tends to occur in similar areas within the field
across different seasons, site-specific application can be made
before the initiation of the disease, based on infestation maps from
previous years. Cotton root rot is one such disease that has affected
the cotton industry for over a century.

The US Department of Agriculture’s Aerial Application Technol-
ogy Research Unit in College Station, Texas, started to collect aerial
imagery to monitor the distribution and severity of cotton root rot
in south Texas in 2000 and in central Texas in 2010. Images from
2000–2002 and 2010–2017 have shown that this disease tends
to occur in similar areas within fields across different years [25].
The recurrent pattern of the disease provides strong evidence for
the usefulness of imagery for creating prescription maps. There-
fore, a three-year field study was conducted to demonstrate how
to implement site-specific fungicide application using historical
imagery and variable rate technology [26].

The rest of this article uses cotton root rot as an example to
illustrate how remote sensing and precision agriculture technolo-
gies can be used for the detection and site-specific management
of this disease. Specifically, image selection and acquisition, pre-
scription map creation, variable rate application, and performance
evaluation are discussed so that the methodologies can be directly
used or modified for similar crop diseases.
2. Image selection and acquisition

Both airborne and satellite imagery can be used to map cotton
root rot infestations [9,14]. Airborne imagery has fine pixel size,
but its availability varies by location and time of year. High-
resolution satellite imagery is another important image source
because of its short revisit time and large ground coverage. Landsat
imagery is free, but the spatial resolution is too low for accurately
mapping smaller infestations. Satellite imagery with a pixel size
of 5 m or less would be more appropriate. There are a number of
such satellite sensors, including GeoEye-1, Pleiades, WorldView-3
and -4, and GaoJing-1. If such imagery is not available or is
too expensive for the fields under investigation, imagery with
resolutions of 5–10 m, such as RapidEye, SPOT 6 and 7, and
Sentinel-2, can be used.

Three airborne multispectral imaging systems (three-camera,
four-camera, and two-camera) and one satellite sensor (Geoeye-
1) were used for image acquisition for the cotton root rot project
over the years. The three-camera imaging consisted of three digital
cameras with visible to near-infrared (NIR) sensitivity to obtain 8
bit images with 1024 � 1024 pixels [27]. The three cameras were
filtered in the green (560 ± 5) nm, red (630 ± 5) nm, and NIR
(851 ± 6) nm bands, respectively. The four-camera imaging system
consisted of four digital cameras to capture 12 bit imagery with
2048 � 2048 pixels in four spectral bands with a bandwidth of
40 nm and center wavelengths of 450, 550, 650, and 830 nm,
respectively [28].

The two-camera system consisted of two identical consumer-
grade Nikon D810 cameras with a pixel array of 7360 � 4912.
The first camera was used to obtain normal red–green–blue
(RGB) images, while the second camera was modified to capture
NIR images by replacing the original NIR blocking filter with an
830 nm long-pass filter. A Cessna 206 airplane was used for image
acquisition at altitudes of approximately 3050 m above ground
level. All airborne images were taken between 1000 and 1500 h.
Pixel size was 1.3, 1.0, and 0.8 m for the three-, four-, and two-
camera systems, respectively. The GeoEye-1 satellite image had a
spatial resolution of 2 m and a pixel depth of 11 bit, and contained
three visible bands (RGB) and one NIR band. All the airborne and
satellite imagery was rectified to the Universal Transverse Merca-
tor coordinate system.

Fig. 1 [25] presents two airborne CIR images taken from a
102 hm2 cotton field in south Texas toward the end of the growing
seasons in 2001 and 2011, respectively. Non-infested areas have a
reddish color, while infested areas exhibit a greenish or light blue
tone. Cotton root rot infestations can be readily differentiated from
healthy plants on the CIR images. Although there were some differ-
ences in infestations between the two years, the overall patterns of
the infestations were similar. Image classification results showed
that the infested areas accounted for about 14% and 18% of the
total field area in 2001 and 2011, respectively [25].
3. Prescription map creation

For site-specific management of cotton root rot, it is necessary
to delineate the infested areas within a field from an airborne or
satellite image. Most image-processing software packages such
as Erdas Imagine and ENVI can be used to classify the image and
then create the prescription map for use by a variable rate control
system. Moreover, other less expensive software products such as
Trimble Ag Software and AgLeader SMS, which have been used in
agriculture, can be used for this purpose. In addition, free image-
processing software such as QGIS is available for image processing
and prescription map creation.

For the cotton root rot project, numerous classification tech-
niques were evaluated to differentiate infested from non-infested
areas in airborne imagery. Two unsupervised and six supervised
classification classifiers were compared for identifying cotton root
rot from airborne imagery [29]. The evaluation results showed that
although all eight methods were equally accurate, the two unsu-
pervised methods were easy to use; these methods were therefore
recommended for cotton root rot identification. The two unsuper-
vised methods can be implemented by applying iterative self-
organizing data analysis to a multispectral image or to the
normalized difference vegetation index image derived from
the multispectral image. To consider the potential expansion of
the disease, a 3–10 m buffer can be added around the infested
areas as part of the treatment zone in the prescription map [26].



Fig. 1. Comparison of cotton root rot infestations in a 102 hm2 cotton field in south Texas between (a) 2001 and (b) 2011 [25].

Fig. 2. Process to create a prescription map from an airborne image for a 45 hm2 cotton field in south Texas. (a) Airborne image acquired on 30 July 2010; (b) classification
map, infested = 33%, noninfested = 67%; (c) prescription map, treated = 57%, nontreated = 43% [26].
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Fig. 2 [26] presents an airborne CIR image, the unsupervised
classification map, and the prescription map with a 5 m buffer
for a 45 hm2 cotton field near San Angelo, Texas. The classification
map effectively separates the cotton root rot-infested areas within
the field. Nevertheless, some non-infested areas such as the linear
feature and the bare soil exposure toward the lower right portion
of the field were classified as infested areas; these areas were then
removed before the buffer was added. The classification map indi-
cated that about one-third of the field was infested, while the pre-
scription map with a 5 m buffer showed that 57% of the field
needed to be treated.

4. Variable rate application

Variable rate technology allows farming inputs (i.e., fertilizers,
herbicides, and fungicides) to be applied to address the specific
needs for each area of the field. Extensive publications are available
that document research and commercial activities in this technol-
ogy and in other precision agriculture technologies around the
world [30–32]. Variable rate application does not change the basic
functionality of existing applicators, but it does require the addi-
tion of a control system that can read a prescription map to adjust
the application rate automatically. Different control systems are
available for variable rate application, but flow-based control sys-
tems are simple and commonly used; these systems deliver the
desired rate across the boom or swath with an electronic
controller.
Two flow-based control systems—a John Deere controller and a
Trimble controller—were selected for our research. The John Deere
control system consisted of a controller, a servo valve, a flowmeter,
and a shutoff valve and was added to a John Deere tractor owned
by a farmer near Edroy, Texas. The Trimble system, with similar
components, was adapted to a John Deere tractor owned by a pro-
ducer in San Angelo, Texas. Both tractors were already equipped
with the StarFire real time kinematic global positioning system
receiver. The John Deere system required a John Deere GreenStar
display and the Trimble control system required a Trimble FMX
display. Both displays were already integrated on the respective
tractors for automatic guidance and other field operations. The pre-
scription maps were uploaded to the displays and each system was
calibrated for the desired rates prior to fungicide application over
multiple fields in 2015–2017.
5. Evaluation of application performance and treatment
efficacy

Both as-applied maps and post-application aerial imagery along
with ground observations can be used to assess the performance of
variable rate application. The actual rate and target rate for each
small area are generally recorded in the as-applied maps during
field application. Aerial imagery taken during the growing season
will be able to detect any root rot from the treated fields. Fig. 3
[26] shows a pre-treatment CIR image taken in 2010, the



Fig. 3. Comparison of (a) a no-treatment airborne image acquired in 30 July 2010 with natural infestation, (b) the as-applied map, and (c) an airborne image acquired in 5
August 2015 after the site-specific treatment of Topguard Terra fungicide for a 45 ha cotton field in south Texas [26].
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as-applied map overlaid on the CIR image, and a post-treatment
CIR image for the 45 hm2 cotton field. Overall, the John Deere con-
trol system used for this field accurately applied the product to the
prescribed areas. Spatial analysis showed that the actual treatment
area was only 1.5% smaller than the target treatment area, while
the actual application rate was 4.1% higher than the desired rate
for the field [26].

Obviously, site-specific treatment effectively controlled the
cotton root rot in the treatment areas, as can be seen from the
post-treatment CIR image. However, root rot showed up in a
few small, non-treated areas near the center of the field. As the
image that was used to create the prescription map was taken
in 2010, root rot may have expanded since then. The prescription
map can be modified with the addition of the new infestations for
the coming years. It should be noted that the rectangular area
along the west border of the field was not treated, and almost
all the plants in that area died during the flowering stage in the
season.

The fungicide used to treat cotton root rot, Topguard Terra, is
very expensive. The cost at full application rate is 50 USD�acre�1

(1 acre = 4046.9 m2) or 124 USD�hm�2. For example, if the
whole 45 hm2 field had been treated uniformly at full rate, the
fungicide cost for the field would have been 5580 USD
(45 hm2 � 124 USD�hm�2). As only 57% of the field needed treat-
ment, the amount saved on fungicide, in comparison with uniform
treatment, was 2400 USD, or 43%. The cost to adapt a variable rate
control system to the existing tractor or planter was about
4000–5000 USD. This initial investment can easily be recovered,
as long as site-specific treatment can reduce the treatment area
by 32–40 hm2 in a single season. Our aerial surveys indicate that
most fields with a history of cotton root rot infestations contain
20%–40% infested areas, although infested areas within fields
can reach 75%. Clearly, the potential for savings on fungicide is
tremendous with site-specific application.
6. Challenges and research needs

This brief review uses the successful cotton root rot story as an
example to illustrate how remote sensing and variable rate tech-
nology can be used for disease detection and site-specific manage-
ment. Diseases with distinct spectral signatures can be easily
distinguished, as in the case of cotton root rot, but some diseases
are difficult to detect, especially when multiple biotic and abiotic
conditions with similar spectral characteristics exist within the
same field. With advances in imaging sensor technology and
image-processing techniques, it is necessary to evaluate advanced
imaging sensors and analytical methodologies for differentiating
diseases from other confounding factors.

Although many crop diseases, as discussed in the introduction
section, can be successfully detected and mapped using airborne
or satellite imagery, the understanding of how to convert remote
sensing data to practical prescription maps is still lacking. More
research is needed to develop operational procedures for trans-
forming image classification maps to applications maps. Each
disease has its own characteristics and requires different proce-
dures for detection and management, although the cotton root
rot project presented in this article should provide some guidance.
For diseases that tend to recur year after year in similar areas,
historical imagery can be used to document the spatial and tempo-
ral consistency and dynamics of the infestations, which will be use-
ful for the creation of prescription maps.

Variable rate fungicide application has great potential to reduce
fungicide use and increase profitability, as demonstrated by the
cotton root rot project, but many technologies are necessary for
the implementation of site-specific application. This can present
a great challenge, as not many farmers have the knowledge and
skills required to integrate all the technologies into a disease-
management system. Farmers with some experience with image
processing may be able to create their own prescription maps. If
this is not practical, farmers can always use a commercial image-
processing service to create prescription maps. At present, many
agricultural dealerships provide services for image acquisition,
prescription map creation, and variable rate application. Neverthe-
less, not all diseases are suitable for site-specific application, and
uniform rate application is still effective for many crop diseases.
More research should also be devoted to the identification of dis-
eases that are more suitable for variable rate application.
Disclaimer

Mention of trade names or commercial products in this article is
solely for the purpose of providing specific information and does
not imply recommendation or endorsement by the US Department
of Agriculture. The USDA is an equal-opportunity provider and
employer.
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