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In a recent paper [1], I discussed the concept of the ‘‘ocean of
data,” in a response to ever-increasing computing power and large
numbers of online data repositories. These settings call for a new
paradigm of computational framework that connects various data
repositories, incorporates machine learning, reuses existing data,
and guides new computation and experimental efforts to create a
‘‘sustainable ecosystem” of data and tools. It is my hope that some
recently available open-source codes can promote the develop-
ment of pathways with lower barriers between individual data
repositories and the ocean of data, and can add value to data pro-
cessing in individual data repositories by communicating with the
ocean of data, as schematically shown in Fig. 1 [1].

Thermodynamics is a science that concerns the state of a sys-
tem—whether stable, metastable, or unstable—when interacting
with the surroundings. The combination of the first and second
laws of thermodynamics proposed by Gibbs [2,3] integrates the
external and internal parts of a system. Even though Gibbs focused
on the equilibrium of heterogeneous substances [2,4], the com-
bined first and second laws of thermodynamics include both the
equilibrium and non-equilibrium states of a system [5,6].

Thermodynamic modeling based on the calculation of phase
diagram (CALPHAD) approach [6–9] establishes the Gibbs energy
of individual phases across the complete space of the external
and internal variables of the system, covering the stable, meta-
stable, and unstable regions of each phase. In fact, the definition
of the energy difference between the stable and non-stable struc-
tures of pure elements is the foundation of CALPHAD modeling,
and was termed ‘‘lattice stability” by Kaufman, who pioneered
the CALPHAD approach and coined the name [10,11]. The concept
of lattice stability and the common acceptance of a set of lattice
stability values have enabled the development of multicomponent
databases with over 20 elements that have become the foundation
of integrated computational materials engineering (ICME) [12] and
the Materials Genome Initiative [13].

Before 2000, CALPHAD modeling relied almost exclusively on
experimental information and some theoretical estimations, and
its integration with the results from first-principles calculations
based on density functional theory (DFT) [14] was rather limited
[15]. The continued development of computation methods and
software tools, particularly Vienna ab-initio simulation package
(VASP) [16–18], has fueled the utilization of energetics from DFT-
based first-principles calculations in CALPHAD modeling, and
enabled the multidisciplinary information technology research
(ITR) project ‘‘Computational Tools for Multicomponent Materials
Design” in 2002, which was supported by the US National Science
Foundation (NSF). This ITR project integrated the DFT and
CALPHAD approaches with phase-field simulations and finite-
element methods [19]. The convergence of the DFT and CALPHAD
methods along with the inspiration of the Human Genome Project
[20] and the NSF-supported education program titled ‘‘An
Integrated Education Program on Computational Thermodynamics,
Kinetics, and Materials Design” [21] prompted me to coin the term
‘‘materials genome” in 2002 [22,23].

In 2009, I reviewed the first-principles calculations and
CALPHAD modeling of thermodynamics [24]. My team established
the extensible, self-optimizing phase equilibrium infrastructure
(ESPEI) concept [25–27] that begins CALPHAD modeling using
the thermochemical data of individual phases from first-principles
calculations and refines model parameters using experimental
phase equilibrium data. The significance of the ESPEI concept is
threefold: ① First-principles calculations provide energetics as a
function of internal degrees of freedom—that is, internally non-
equilibrium configurations of each individual phase, which cannot
be directly obtained from experiments because experimental data
are usually for equilibrium states that are mixtures of many
configurations [28–32]; ② ESPEI establishes a mechanism to
efficiently evaluate model parameters, their statistic uncertainties,
and uncertainty propagation in calculated properties [27,33]; and
③ the ESPEI data infrastructure integrates proto data and
processed data from CALPHAD modeling and enables the efficient
reuse of proto data and the effective updating and maintenance
of processed data. With more and more publications on first-
principles calculations, ubiquitous higher performance computing
facilities, and large-scale online databases such as the Materials
Project [34], open quantummaterials database [35], and automatic
flow for materials discovery [36] in the United States alone, I
believe that the thermochemical data from DFT-based first-
principles calculations will play an increasingly critical role in
the CALPHAD modeling of a wide range of materials, particularly
in the discovery and design of new materials.

Materials design based on CALPHAD databases, thermodynamic
calculations, and kinetic simulations has been systemized by Olson
for developing new materials and improving existing materials
[37,38]. This materials design approach connects controllable
parameters in processing with measurable quantities in properties
using microstructure attributes. The key foundational variable
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Fig. 1. Schematic diagram of a ‘‘sustainable ecosystem” of data showing various data repositories (lakes), interconnections (flows), private data (percolation), processing
(evaporation), collection (ocean), and reuse (condensation and precipitation) [1]. ESPEI: extensible, self-optimizing phase equilibrium infrastructure.
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among a plethora of microstructure attributes is the phases that
are formed; this is in accordance with the modeling of individual
phases in the CALPHAD approach, which has been extended to a
range of other properties. Some examples by my research group
are shown in Table 1 [28–32,39–69]. It may also be mentioned that
the second derivatives of energy with respect to its natural vari-
ables represent many physical properties, as shown in Figs. 2 and 3
[6,13,70], in which some temporary terms are assigned to the
derivatives last column and last row in Fig. 2 and last column plus
the compress heat in Fig. 3.

Materials design is the first step of the life-cycle of materials.
After design, materials are manufactured and put into service, both
of which generate new proto data that enrich or contrast the exist-
ing proto and processed data. Furthermore, materials recycling is
becoming critical for both environmental concerns and materials
expenses. As recycling often involves several materials, the
Table 1
Examples of computed and modeled properties.

Properties Examples

Thermal properties Free energy [39,40], enthalpy, entropy, heat capa-
city, thermal expansion, and contraction [28–32]

Transport properties Diffusion coefficient [41–43], Seebeck coefficient
[44,45], and heat of transport [46,47]

Interfacial properties Stacking fault energy [48–51], anti-phase boundary
energy [52–54], grain boundary [48,55,56], and
interfacial energy [57,58]

Elastic moduli Refs. [59–61]
Dislocation properties Refs. [62–64]
Magnetic properties Refs. [28,29,65–67]
Relative creep rate Ref. [43]
Other properties under

development
Hardness, plasticity of single crystal [68,69]
chemistry of recycled materials can become more complex in
comparison with the chemistry of the proto and processed data
that were used to design each of the materials. These new proto
data may thus necessitate additional first-principles calculations
and the revision and expansion of processed data [71]. This is a
critical connection for a sustainable data ecosystem, as shown in
Fig. 4 [25–27,72–74], and it is a not trivial task, as current
thermodynamic databases often contain more than 20 elements,
albeit with limited proto data in the multidimensional space of
external and internal variables [75–77]. It is my hope that our
efforts in developing open-source software packages, DFTTK [78],
pycalphad [72,73], and ESPEI [25–27,74] can inspire the
community to develop new tools to further promote the materials
research paradigm driven by science and computation [79].

Additional challenges are related to multiscale complexity in
materials in terms of both length and time scales, and how infor-
mation passes between scales to produce microscopic and macro-
scopic behaviors [19]. We have recently shown that the following
entropy equations hold promise for multiscale integrations of
materials’ properties and information through entropy [80]:

S ¼
Xm

k¼1

pk Sk � kB ln pk
� �

ð1Þ

dS ¼ dQ
T

þ
X

SjdNj þ dIPS ð2Þ

dIPS ¼ dIPQ
T

�
X

Snj dN
n
j þ

X
Swl dN

w
l � dIPI ð3Þ

Eq. (1) represents the total entropy of a system, S, calculated
from the configurations at the scale k, with pk being the probability

of configuration k 2 1; :::;mf g of the system and
Pm

k¼1p
k ¼ 1, Sk

being the entropy of each configuration in the scale k, and kB



Fig. 2. Physical quantities related to the second directives of internal energy with respect to its natural variables [6,13].

Fig. 3. Physical quantities related to the second directives of Gibbs energy with respect to its natural variables [70].

Fig. 4. Schematic chart of the data ecosystem including proto data (experiment,
first-principles calculations, and machine learning), processed data (modeling:
CALPHAD with pycalphad [72,73] and ESPEI [25–27,74]), materials manufacturing,
materials service, and materials recycling.
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representing the Boltzmann constant. It is important to note that
the entropy of the system consists of the configurational entropy
at the scale of consideration plus the entropy of each individual
configuration, and the probability of each configuration is related
to the free energies of all configurations. Each individual configura-

tion itself consists of another set of configurations, and Sk can thus
be expressed in the same form as Eq. (1) with its own configura-
tions. This division can continue until all important scales are
considered. In the domain of materials science and engineering,
where the focus is on the formation of phases, the atomic configu-
rations represent the dominant scale with subscales of electronic
and phonon density of states [39].

In Eq. (2), dS is the entropy change of the system, dQ is the
amount of heat that the system receives from the surroundings,
Sj is the partial molar entropy of component j in the surroundings
or the system, dNj is the amount of component j that the system
receives from (dNj > 0Þ or releases to the surroundings (dNj < 0Þ,
T is the temperature, and dIPS is the entropy production due to
independent internal processes (IP). The first term on the right-
hand side of the equation is often how the concept of entropy is
introduced in the thermodynamics of materials, while the second
term is not discussed very much and is often buried in the direct
introduction of chemical potential into the combined first and
second laws of thermodynamics. The details of the third term,
entropy production, are typically considered as part of kinetics
and are not addressed in thermodynamics due to the usual
consideration of equilibrium states only. It is worth noting
that the entropy in the combined first and second laws of thermo-
dynamics contains all three terms in Eq. (2) though often not
explicitly stated [80].

Eq. (3) shows that the entropy production due to an internal
process can be written in a similar form as Eq. (2) by defining
the internal process as an IP-system [80]. This IP-system may con-

sume some nutrients dNn
j

� �
with partial entropy of Snj , generate

some waste dNw
l

� �
with partial entropy of Swl , produce heat

dIPQð Þ, and reorganize its configurations to produce a certain
amount of information dIPIð Þ, which can be written as follows using
Eq. (1):

dIPI ¼ � Sf � Sið Þ ¼
Xmi

ki¼1

pki Ski � kB lnpki
� �

�
Xmf

kf¼1

pkf Skf � kB ln pkf
� �

ð4Þ

where the subscripts f and i represent the final and initial
configurations of the IP-system. For a spontaneous/irreversible
internal process, the entropy production represented by Eq. (3)
must be positive, based on the second law of thermodynamics;
however, the sign of dIPI can be either positive (generate informa-
tion) or negative (erase information). Various thought experiments
are discussed in Ref. [80]. It should be noted that the sign conven-
tions in Eqs. (2) and (3) are opposite, with a positive sign indicating
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that a system receives heat and mass from the surroundings in Eq.
(2), but indicating that an IP-system gives out heat and mass in Eq.
(3) as they increase the entropy.

CALPHAD modeling based on the properties of individual
phases has proven to be foundational for computational materials
science and engineering. To further enhance the predictive power
of the CALPHAD method, I suggest including configurations at
relevant scales as shown by Eq. (1), so properties at various scales
can be predicted, including the emergent behaviors that individual
configurations do not possess. Extreme emergent behavior is
observed in relation to the limit of the stability of a system when
the derivative of temperature to entropy approaches zero from a
positive value in its stable region [6]. Consequently, the derivative
of entropy to temperature becomes positive infinite because tem-
perature and entropy are conjugate variables in the combined law
of thermodynamics—that is, the entropy change diverges, resulting
from competition among the stable and metastable configurations
shown by Eq. (1). It should be noted that not only is this divergence
of the entropy of the system not a behavior that each individual
configuration possesses, but also all molar, extensive quantities
of the system diverge at the limit of stability. Furthermore, they
may diverge negatively, such as thermal expansion represented
by the derivative of volume to temperature, because volume and
temperature are not conjugate variables in the combined law of
thermodynamics [6]. This has been demonstrated by us for cerium,
with a positive divergence, and for Fe3Pt, with a negative diver-
gence, in terms of thermal expansion [28–30]. It should also be
noted that the derivative of volume to temperature is equal to
the negative derivative of entropy to pressure which is named as
‘‘compress heat,” due to the Maxwell relations [6] so the quantities
in Figs 2 and 3 in the present article are symmetrical.
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