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How to comprehensively consider the power flow constraints and various stability constraints in a series
of power system optimization problems without affecting the calculation speed is always a problem. The
computational burden of probabilistic security assessment is even more unimaginable. In order to solve
such problems, a security region (SR) methodology is proposed, which is a brand-new methodology
developed on the basis of the classical point-wise method. Tianjin University has been studying the SR
methodology since the 1980s, and has achieved a series of original breakthroughs that are described in
this paper. The integrated SR introduced in this paper is mainly defined in the power injection space,
and includes SRs to ensure steady-state security, transient stability, static voltage stability, and small-
disturbance stability. These SRs are uniquely determined for a given network topology (as well as location
and clearing process for transient faults) and given system component parameters, and are irrelevant to
operation states. This paper presents 11 facts and related remarks to introduce the basic concepts, com-
position, dynamics nature, and topological and geometric characteristics of SRs. It also provides a prac-
tical mathematical description of SR boundaries and fast calculation methods to determine them in a
concise and systematic way. Thus, this article provides support for the systematic understanding, future
research, and applications of SRs. The most critical finding on the topological and geometric characteris-
tics of SRs is that, within the scope of engineering concern, the practical boundaries of SRs in the power
injection space can be approximated by one or a few hyperplanes. Based on this finding, the calculation
time for power system probabilistic security assessment (i.e., risk analysis) and power system optimiza-
tion with security constraints can be decreased by orders of magnitude.

� 2020 THE AUTHORS. Published by Elsevier LTD on behalf of Chinese Academy of Engineering and
Higher Education Press Limited Company. This is an open access article under the CC BY-NC-ND license

(http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

For a long time, the classical method used to analyze the secu-
rity and stability of power transmission and distribution systems
[1,2] is the point-wise method, i.e., the conclusion that a system
is secure/unsecure or stable/unstable is drawn by simulation calcu-
lation in one or more fault modes of a specific scenario (operation
mode; i.e., operation point). This method still plays an important
role in power system analysis. However, it is difficult to use this
method to quickly and directly obtain an overall evaluation of
power system operation states, such as how far the current opera-
tion point is from the stability boundary, how large the stability
margin is, and so on. How to comprehensively consider power flow
constraints and various stability constraints in a series of power
system optimization problems without affecting the decision-
making speed is always a difficult issue. The computational burden
of power system probabilistic security assessment is even more
unimaginable.

Wu et al. [3] introduced the concept of probabilistic security
assessment and Refs. [4–6] put forward the concept of steady-
state security region (SSSR) and dynamic security region (DSR) in
the injection space. Security region (SR) methodology is a new
methodology developed on the basis of the point-wise method. It
addresses problems from the perspective of region and describes
a region in which a power system can operate securely as a whole
(the green area in Fig. 1 [7] is the SR). The relative relation between
system operation points and SR boundary can provide information
on the security margin and optimal control direction, which will
enable power system operators to perform online real-time secu-
rity monitoring, assessment, and control in a more scientific and
efficient manner. The SRs introduced in this paper are mainly
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Fig. 1. Schematic diagram of a SR [7].
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defined in the power injection space (or decision space). They are
uniquely determined for a given network topology and given sys-
tem component parameters (as well as location and clearing pro-
cess of faults for DSR), and do not vary with operation states.
Therefore, it is only necessary to calculate the SR boundaries (i.e.,
hyperplane (HP) coefficients, etc.) once and store them in a data-
base for use in future analysis and calculation, without adding cal-
culation burden to online application. In view of this advantage,
this paper only introduces the SRs that are irrelevant to the
operation states and does not cover the method of determining
SR boundaries based on operation states obtained through
real-time measurement.

The mathematical description [3] of power system security and
stability problem not only includes electromechanical dynamics,
but also has ultrahigh dimensional and nonlinear properties, which
cause difficulties in imagining and grasping the topological and
geometric characteristics of the SRs.

Regarding the study of the topological nature of SRs, many
properties have been clearly understood through previous exten-
sive and in-depth research on the power flow stability region (with
the boundary of saddle-node bifurcation (SNB)) [8] and the small-
disturbance stability region (of the system expressed by differen-
tial algebraic equations) [9] defined in the state space. For example,
each of the stability regions is not necessarily connected; within a
restricted domain of interest (compact set), the number of non-
connected parts in the stability region is finite; and there are some
sufficient conditions to ensure that the power flow solution of the
power system is unique under normal conditions, and is stable
within the power flow stability region. Here, the so-called state
space is composed of node voltage magnitudes and relative angles
between node voltages. In order to facilitate engineering applica-
tion, it is preferable to give SRs the following characteristics: They
are defined in the power injection space (decision space); for a
given network topology (as well as location and clearing process
for transient faults) and given system component parameters, each
SR is connected and uniquely determined, and the SRs are irrele-
vant to operation states; there is no void inside them; and the
SRs’ boundary surfaces are piecewise smooth.

Early representative research on the geometric characteristics
of SRs has been presented in Refs. [6,8–10]. These works propose
the use of an internal truncated super-cuboid of the static SR in
order to approximate the static SR. The internal truncated super-
cuboid approximation presented in Refs. [6,8–10] is very conve-
nient to use, but is very conservative. Often, they cannot include
some of the secure operation points of interest. Therefore, it is
necessary to develop an SR expression with higher precision and
more convenient for power system security analysis, assessment,
and control.
At the same time, there is a lack of systematic research on the
application methodologies of SRs, especially in the areas of proba-
bilistic security assessment (risk analysis) and the optimization of
power systems with security constraints.

Tianjin University has been studying SR methodology since the
1980s [7,11–14], and has made systematic research progress,
including: insight into the dynamics nature and topological and
geometric characteristics of SRs; an approximate HP description
approach of SR boundaries and corresponding fast calculation
methods; and encouraging applications of SRs in practical large-
scale power systems. The research has been supported by the
National Natural Science Foundation of China, the Research Fund
for the Doctoral Program of Higher Education of China, and the
US Electric Power Research Institute project. Some achievements
have been extensively cited by Ref. [15]. The purpose of the present
paper is to provide a concise and systematic introduction of these
achievements and offer their original sources.

This paper is organized as follows: Section 2 takes the steady-
state operation of the grid as an example, and then explains what
the so-called SR method is, in comparison with the classical point-
wise method. It further defines the mathematical description space
of SRs. This paper mainly uses the injection space [3] (although it
sometimes also uses the decision space) as the mathematical
description space of SRs, where each point (each vector) is com-
posed of all independent variables in the system under certain
assumptions. Defining the mathematical description space of the
SR is one of the most important conditions to ensure that the SR
under study is uniquely determined and connected. At the same
time, the so-called critical cut-set space that dispatchers usually
care about (although in such a case, the SR is not uniquely deter-
mined) is also discussed.

Section 3 introduces the composition of an integrated SR (IGSR)
and its dynamics nature. Two basic assumptions (Hypothesis 1 and
Hypothesis 2) are given and will be used later, and two facts (Fact 1
and Fact 2) are further given, based on the two assumptions; these
are the basis for ensuring that the various SRs described in this
paper are uniquely determined and connected. The IGSR of the
power system in this paper is further defined as the intersection
set of the following four SRs: the SSSR to ensure power flow secu-
rity; the DSR to ensure transient stability; the SR to ensure static
voltage stability (SVSR); and the SR to ensure small-disturbance
stability (SDSR). These SRs are defined one by one, and some
dynamics theories related to SR research are briefly introduced.
Fact 3 is derived from Refs. [16–18], while Facts 4–7 are new dis-
coveries to meet the needs of SR research. Facts 3–7 construct a
theoretical foundation for subsequent research on the topological
and geometric characteristics of SRs.

Section 4 is the core of this paper. Four important facts (Facts 8–
11) are proposed in this section, which are used to describe the
topological properties (e.g., the SR is uniquely determined and con-
nected; the SR does not change with operating states; there is no
void inside the SR; the SR boundary consists of a finite number
of smooth sub-planes) and the geometric characteristics (e.g., the
composition of the SR or its boundary, and the property that the
boundary of the SR can be approximated by one or a few HPs in
the power injection space, within the acceptable range of the engi-
neering application) of the SRs—namely, the SSSR, DSR, SVSR, and
SDSR—in practical power systems. These facts are concluded from
the research results obtained by our research group over a period
of many years. The details of and references for the four facts are
provided in the remarks, which also involve fast calculation meth-
ods for practical SR boundaries.

Based on the HP boundary of the SRs, new methods to address
the power system optimization problem and probabilistic security
analysis are systematically established in Section 5. By formulating
all the security constraints as the linearly combined inequalities of
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decision variables (i.e., node power injections) in the objective
functions, these methods have two major benefits: ① A large class
of power system optimization problems with security constraints,
which used to be difficult to be solved, are greatly simplified; and
② the n-fold integration problem of the probability density func-
tion of n-dimension variables in the probabilistic security assess-
ment problem can be mathematically converted into the
threshold comparison problem of a one-dimensional (1D) proba-
bility distribution function. Thus, the online computational speed
of these two types of problems can be greatly improved by orders
of magnitude. In order to provide readers with the concepts of the
computational burden of the SR itself and the computational bur-
den that can be saved in practical application, an application exam-
ple is given in this section. This section also demonstrates that it is
easy to realize the visualization of an SR and quickly determine the
security margins based on HP boundaries of an SR, providing a
powerful tool for the situation awareness of power systems. The
paper is concluded in Section 6.
2. What is the SR methodology?

The SR methodology will be explained by taking the steady-
state operation of power systems as an example. For this purpose,
the point-wise method [7] needs to be presented first.
2.1. The point-wise method

Let a power system be composed of n + 1 nodes and nb
branches, with 0 to ng representing generator nodes, 0 representing
the reference node, and ng + 1 to n representing load nodes. Let
G , f0;1;2; . . . ;ngg represent the set of generator nodes,
L , fng þ 1; . . . ;ng represent the set of load nodes,
N , f0;1;2; . . . ;ng represent the set of all nodes,
B , f1;2; . . . ;nbg represent the set of all branches, and black ital-
ics represent vectors. Hence, the power flow equations for a power
system are as follows:

Pi � Vi

X
j2i

V jðGijcoshij þ BijsinhijÞ ¼ 0; 8i 2 N ð1aÞ
Qi � Vi

X
j2i

V jðGijsinhij � BijcoshijÞ ¼ 0; 8i 2 N ð1bÞ

where Pi and Qi denote the active and reactive power injections of
node i, respectively; Vi and Vj are the voltage magnitudes of node
i and node j; hi and hj are the voltage phase angles of node i and node
j; hij is the branch angle, which can be calculated by hij = hi – hj; and
Gij and Bij represent the real part and the imaginary part of the com-
ponent at the ith row and jth column of the node admittance
matrix. Each node has four variables: Pi, Qi, Vi, and hi. Therefore,
the power flow equations involve 4n + 4 variables; but only
2n + 2 equations can be formulated according to Eqs. (1a) and
(1b). To make the power flow equations solvable, in general, two
variables are specified for each node, and the other two variables
are to be calculated. For example, for a load node i, Pi and Qi are usu-
ally given, while Vi and hi are to be calculated. Considering that only
the branch angle hij is involved in the power flow equations, there
are only 2n + 1 independent variables in Eqs. (1a) and (1b): That
is, the voltage phase angle of one node in the system can be speci-
fied arbitrarily, and if and only if one of the voltage phase angles of
nodes is specified (e.g., the voltage phase angle of the reference
node is specified as h0 = 0), the others of the voltage phase angles
of nodes can be determined.

In power transmission systems, the branch admittance Gij � 0
and branch angle hij are very small, making sinhij � hij and
coshij � 1. Eqs. (1a) and (1b) can be simplified as decoupled power
flow equations, shown as follows:

Pi=Vi �
X
j2i

V jBijhij ¼ 0; 8i 2 N ð2aÞ

Qi=Vi þ
X
j2i

V jBij ¼ 0; 8i 2 N ð2bÞ

Under normal operation conditions, as the voltage magnitudes
of the nodes in per-unit value are very close to 1 (i.e.,
Vi � 1;8i 2 N), Eq. (2a) may be further transformed into the follow-
ing direct current (DC) power flow equation:

Pi �
X
j2i

Bijhij ¼ 0; 8i 2 N ð2cÞ

Eq. (2c) clearly indicates the linear relationship between node
active power injection Pi and branch angle hij;8i; j 2 N. Eqs. (1a),
(1b), (2a), and (2b) can be expressed as equality constraints, as
shown in Eq. (2d):

FðxÞ ¼ 0 ð2dÞ
In addition, there are some operational constraints, such as the

voltage magnitude of each node, the current of each branch, the
active power and reactive power of generators and loads, and the
branch angle of each branch, which should be within certain limits,
as shown in Eqs. (3a)–(3c):

Vm
i � Vi � VM

i ; 8i 2 N

�IMi � Ii � IMi ; 8i 2 B

)
ð3aÞ

Pm
i � Pi � PM

i ; 8i 2 G

Qm
i � Qi � QM

i ; 8i 2 G

)
ð3bÞ

�hMij � hij � hMij ; 8i; j 2 N ð3cÞ

In a general way, these equations can be written as follows:

xm � x � xM or GðxÞ � 0 ð3dÞ

where Pm
i and PM

i represent the lower and upper limits of the active
power output of generator i or the lower and upper limits of the
active power injection (into the network) of load node i, respec-
tively; Qm

i and QM
i denote the lower and upper limits of the reactive

power output of generator i or the lower and upper limits of the
reactive power injection of load node i, respectively; Vm

i and VM
i rep-

resent the lower and upper limits of the voltage magnitude of node
i; IMi is the maximum current allowed to be transmitted on branch i;
hMij is the upper limit of branch angle hij; and xm and xM represent
the lower and upper limits of x, respectively.

The constrained power flow problem is to find solutions satisfy-
ing the equality constraint FðxÞ ¼ 0 and the inequality constraint
GðxÞ � 0. Figs. 2(a) and (b) [7] are schematic diagrams showing fea-
sible solutions and no feasible solutions, respectively, in a simple
two-dimensional (2D) case of x = (x1,x2)T. In either diagram, the
curve is the solution of F(x) ¼ F(x1,x2) ¼ 0, and the rectangle shows
the bounding range of xm1 � x1 � xM1 and x2

m � x2 � x2
M that corre-

sponds to G(x) � 0.
To deal with this kind of problem, the traditional variable

separation method may be used, which includes the following four
steps:

Step 1: Divide the state variables into x ¼ xT
a; x

T
b

� �T
.

Step 2: Specify xb meeting xmb � xb � xM
b .



Fig. 2. Schematic diagrams of constrained power flow problems: (a) with a solution satisfying the security constraints; (b) without a solution satisfying the security
constraints [7].
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Step 3: Solve FðxÞ ¼ 0 and obtain xa.
Step 4: Check whether xa meets xma � xa � xMa . If yes, xa is a fea-

sible solution to the constrained power flow problem, and xb is
identified as being steady-state secure.

Specifically, the constrained power flow calculation consists of
the following four steps:

Step 1: Separate the variables into x ¼ ðxTa; xT
bÞ

T ¼
ðxTa1 ; xTa2 ; xT

a3 ; x
T
bÞT, where

xb , ðh0;V0; P1; . . . ; Pn;Qngþ1; . . . ;Qn;V1; . . . ;Vng ÞT 2 R2nþ2 ð4aÞ

xa1 , ðh1; . . . ; hn;Vngþ1; . . . ;VnÞT 2 R2n�ng ð4bÞ

xa2 , ðP0;Q0;Q1; . . . ;Qng ÞT 2 Rngþ2 ð4cÞ

xa3 , ð I1j j; . . . ; Inb
�� ��ÞT 2 Rnb ð4dÞ

where R is the set of all real numbers, xb is the given variable vector
of the power flow equations, xa1 is the solution of the power flow
equations, and xa2 is the vector of the variables that can be calcu-
lated directly by xb and xa1 based on the power flow equations.
xa3 is also the vector of the variables that can be calculated by xb
and xa1 . However, those variables are not included in the power
flow equations, and xa3 may be calculated by Eq. (5):

Ikj j ¼ DVkykj j 8k 2 B ð5Þ
where Ik, DVk, and yk represent the current, voltage drop, and
branch admittance of branch k, respectively.

Step 2: Specify xb meeting xmb � xb � xMb .
Step 3: Solve the following power flow equations simultan-

eously:

Pi ¼ Vi

X
j2i

V jðGijcoshij þ BijsinhijÞ; 8i 2 f1;2; . . . ;ng ð6aÞ

Qi ¼ Vi

X
j2i

V jðGijsinhij � BijcoshijÞ; 8i 2 fng þ 1; . . . ; ng ð6bÞ

Obtain xa1 . Then calculate P0 and Q0; . . . ;Qng through Eqs. (6a)
and (6b), respectively, to obtain xa2 . Then calculate xa3 through
Eq. (5).

Step 4: Check whether xa1 , xa2 , and xa3 respectively meet the
following three constraints:

xma1 � xa1 � xMa1 ð7aÞ
xma2 � xa2 � xM
a2 ð7bÞ

xma3 � xa3 � xM
a3 ð7cÞ

If Eqs. (7a)–(7c) can be met, the given xb (point a in Fig. 3 [7]) is
identified as being steady-state secure; in contrast, if any con-
straint of Eqs. (7a)–(7c) is not met, the given xb (point b in Fig. 3
[7]) is identified as being steady-state unsecure. Since the given
xb is only a point in the space where it is located, this kind of
analysis method is called the point-wise method. This method is
widely used in the steady-state security analysis of power systems.

2.2. The concept of SR

An SR [7] describes a region in the space of xb, as shown by the
shaded part in Fig. 3 [7]. An xb corresponding to any point inside
this region (e.g., point a) is secure when verified by the point-
wise method. An xb corresponding to any point outside this region
(e.g., point b) is unsecure when verified by the point-wise method.

2.3. The SR definition space

In the abovementioned power flow calculation, the space
defined in Eq. (4a), where xb is located, is called the decision space.
As the decision space is identical to the given variable space of the
power flow calculation, it is usually used in power system situation
awareness and in dispatchers’ decision-making. The power injec-
tion space, which is usually used in SR research, is the space where
the following vector is located:

xb , ðPT;Q TÞT , ðP0; P1; . . . ; Pn;Q0;Q1; . . . ;QnÞT 2 R2nþ2 ð8aÞ
where P and Q are the vector of the active and reactive power injec-
tions, respectively.

The current injection space, which is also used to define the SR
in some research, is the space where the following vector is
located:

xb , ðITP ; ITQ Þ
T , ðIP0 ; IP1 ; . . . ; IPn ; IQ0 ; IQ1 ; . . . ; IQnÞT 2 R2nþ2 ð8bÞ

where IP is the vector of the node’s active current injections; IQ is
the vector of the node’s reactive current injections; IPi and IQi

are
the active and reactive injection currents of node i, respectively,
corresponding to the scenario of Vi � 1;8i 2 N. In power system
operation optimization, the SR defined in the power injection space
shown in Eq. (8a) is often more convenient than that defined in the



Fig. 3. Schematic diagram of an SSSR [7].
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decision space, shown in Eq. (4a). The current injection space
defined in Eq. (8b) is only used for qualitative research.

In the following paragraphs, the spaces defined by Eqs. (4a) and
(8a) are further explained in combination with practical engineer-
ing application requirements:

(1) When the complex voltage ðV0; h0Þ of the reference node is
specified to be constant—as is often done in power flow calcula-
tion—the power injection space and the decision space can be
expressed with the following two vectors, respectively:

xb , ðPT
G;P

T
L ;Q

T
G;Q

T
L Þ

T , ðP1; . . . ; Pn;Q1; . . . ;QnÞT 2 R2n ð8cÞ

xb , ðPT
G;P

T
L ;V

T
G;Q

T
L Þ

T , ðP1; . . . ;Pn;V1; . . . ;Vng ;Qngþ1; . . . ;QnÞT 2 R2n

ð8dÞ
where PG is the vector of the generator’s active power injections; QG

is the vector of the generator’s reactive power injections; PL is the
vector of the load’s active power injections; QL is the vector of the
load’s reactive power injections; VG is the vector of the generator
buses’ voltage magnitudes.

In the following paragraphs of this paper, the spaces defined by
Eqs. (8c) and (8d) are mainly used to define SRs. It should be noted
that ðV0; h0Þ has been specified for them.

(2) If more variables are specified to be constants, the dimen-
sion of the SR definition space may be further reduced, which
can facilitate the calculation, analysis, and visualization of SRs.
However, it should also be noted that these SRs are under specified
conditions. For example, for a high voltage alternating current
(HVAC) power system, it can be assumed that the reactive power
is locally balanced; thus, a change in the active power will have lit-
tle effect on the voltage magnitude, and only the SR defined in the
active power injection space needs to be studied. Then, as the

transmission loss is very small and
Pn
i¼0

Pi � 0, only n active power

injections in the grid are independent of each other. Hence, the
injection space shown in Eq. (8c) can be transformed as follows:

xb , ðP1; . . . ; PnÞT 2 Rn ð8eÞ
Eq. (8e) is often used in SR research related to the transient

power angle stability problem of large-scale transmission systems.
It should be emphasized that the solution of power flow equa-

tions will be uniquely determined for a given injected power vector
only when the complex voltage of the reference node is specified
(e.g., V0 = 1, h0 = 0).

(3) Considering the physical characteristics of HVAC power sys-
tems and the characteristics of power flow equations—that is, that
the power flow equations can be decoupled based on the relation-
ship between the active power injections and the voltage phase
angles of the nodes, and based on the relationship between the
reactive power injections and the voltage magnitudes of the
nodes—Eq. (8c) is further divided into the active power injection
space and the reactive power injection space. Therefore, we can
study the SSSR in the reactive power injection space when the
active power injections or voltage phase angles of the nodes are
specified, and we can study the SSSR in the active power injection
space when the reactive power injections or voltage magnitudes of
the nodes are specified. In this way, not only can the space dimen-
sionality be reduced, but also some very clear physical concepts
can be obtained.

It should be noted that each x mentioned above refers to a vec-
tor composed of all independent variables in a system under cer-
tain assumptions, which is the basis for regarding the space
where they are located as the space for defining an SR. In this
paper, the spaces where the vectors shown in Eqs. (8a), (8c), and
(8e) and the vectors with further dimensionality reduction are
located will be collectively called the power injection space, while
the space corresponding to Eq. (8d) will be called the decision
space.

Furthermore, as power system dispatchers are also often con-
cerned about the power transmission limits of certain critical sec-
tions (cut-sets) of power systems, in addition to the decision space
and the power injection space, this paper also adopts the critical
cut-set space as needed. The so-called ‘‘cut-set” refers to the
minimum branch set for cutting a connected graph into two sub-
graphs. In subsequent paragraphs, there will be two typical critical
cut-sets, as follows: ① the critical cut-set in transient power angle
stability research, which refers to the critical cut-set of a pre-fault
system consisting of the critical cut-set of the post-fault network
(i.e., the system power angle splitting cut-set) and the branch that
is cut due to protective action (on the premise that these two parts
can form a cut-set); and ② the critical cut-set for describing an SR
to ensure static voltage stability in the cut-set power space (CVSR),
which refers to a complete cut-set in a system that splits the sys-
tem into two disconnected parts, i.e. the part with voltage stability
weak nodes and the part without voltage stability weak nodes, as
shown in Fig. 4 [7]. In transient stability research, Region 1
indicates a non-critical node group and Region 2 indicates a critical
node group. In static voltage stability research, Region 1 indicates a
non-weak node group of system and Region 2 indicates a weak
node group of system. It should be noted that there might be mul-
tiple critical cut-sets in a large-scale power system.

Since the definition variables of an SR in a power injection space
and those of an SR in a decision space are controllable, such regions
will bring great convenience to power system optimization,
probabilistic security analysis, and risk assessment (as described
below). However, from the perspective of power system monitor-
ing and dispatching, the dispatchers of interconnected systems
are particularly likely to monitor the transmission power on
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several sections (cut-sets) of a system, because the dimension of
those cut-sets is very low and it is clear at a glance.
3. Composition and dynamics nature of SRs

The following hypotheses will be adopted in the subsequent
paragraphs of this paper:

Hypothesis 1. The voltage magnitude and phase angle of the
reference node are specified; that is, V0 � 1; h0 ¼ 0.

Hypothesis 2. During research on SRs in the space where the
abovementioned xb is located, only consider the region enclosed
by the SR boundaries encountered for the first time during a slow
outward continuous extension from the initial normal operation
point xo

b in a quasi-static form.
Fact 1. Under Hypothesis 1, there is a one-to-one correspon-

dence between the system steady operation states ðxa1; xa2 Þ and xb.
Fact 2. Under Hypothesis 2, in the space of xb, the boundary of

the SR is uniquely determined and connected for a given network
topology and given system component parameters.

As shown in Fig. 5 [18], the IGSR (symbolized by X) of a power
system is the intersection set of the SSSR (symbolized by XSS) to
ensure power flow security, the SVSR (symbolized by XSV)
to ensure static voltage stability, the SDSR (symbolized by XSD)
to ensure small-disturbance stability, and the DSR (symbolized
by Xd) to ensure transient stability; that is

X , XSS \ XSV \ XSD \ Xd ð9Þ
Fact 3. If, and only if, the operation point xb is withinX, the sys-

tem is secure [17,18].

3.1. SSSR (XSS) to ensure power flow security

For a given network topology and given system component
parameters, XSS is the set of all xb that can satisfy the power flow
equation FðxÞ ¼ 0 and the constraint G xð Þ � 0 in the power injec-
tion space or the decision space. It is expressed as follows:
Fig. 5. Schematic diagram of the IGSR (dotted grid region) [18].

Fig. 4. Schematic diagram of a critical cut-set [7].
Xss , xb 2 R2n
���8x ¼ ðxa; xbÞ satisfy FðxÞ ¼ 0 and GðxÞ � 0 ð9aÞ

or

XSS , fðPT
G;P

T
L ;Q

T
G;Q

T
L Þ

T 2 R2n V 2 RV ; ðPT
G;P

T
LÞ

T 2 RP;
��� ð9bÞ

ðQT
G;Q

T
L Þ

T 2 RQ ; Il 2 Rl; FðxÞ ¼ 0g
or

XSS , fðPT
G;P

T
L ;V

T
G;Q

T
LÞ

T 2 R2n V 2 RV ; ðPT
G;P

T
LÞ

T 2 RP;
��� ð9cÞ

ðQT
G;Q

T
L Þ

T 2 RQ ; Il 2 Rl; FðxÞ ¼ 0g
where xb is defined by Eqs. (8a)–(8d) under Hypothesis 1; that is,
the voltage of the reference node is specified, and the definitions
of RV ;Rl;RP , and RQ are as follows:

RV , fV 2 Rn Vm
i � Vi � VM

i ;8i 2 N
��� g

Rl , fIl 2 Rnb Il;i
�� �� � IMl;i

��� ���;8i 2 B
��� g

RP , fP 2 Rn Pm
i � Pi � PM

i

��� ;8i 2 Ng

RQ , fQ 2 Rn Qm
i � Qi � QM

i

��� ;8i 2 Ng

ð9dÞ

It is clear that Eqs. (9b) and (9c) can be further decomposed into
the following:

XSS , XT \XV \ fP 2 RPg \ fQ 2 RQg ð9eÞ
where the constraints of the upper and lower limits of the node
active and reactive power injections (RP and RQ in Eq. (9e)) are
given hypercubes, which requires no further study;

XT , fðPT
G;P

T
L ;Q

T
G;Q

T
L Þ

T 2 R2n Il 2 Rl; FðxÞ ¼ 0j g ð9fÞ
It represents the SR to ensure thermal stability of lines in the

power injection space defined by Eq. (9b) when V 2 RV ;

XV , fðPT
G;P

T
L ;Q

T
G;Q

T
L Þ

T 2 R2n V 2 RV ; FðxÞ ¼ 0j g ð9gÞ
It represents the SR to ensure steady-state voltage security in

the power injection space defined by Eq. (9b) when Il 2 Rl;

XT , fðPT
G;P

T
L ;V

T
G;Q

T
L Þ

T 2 R2n I l 2 Rl; FðxÞ ¼ 0j g ð9hÞ
It represents the SR to ensure thermal stability of lines in the

decision space defined by Eq. (9c) when V 2 RV ; and

XV , fðPT
G;P

T
L ;V

T
G;Q

T
L Þ

T 2 R2n V 2 RV ; FðxÞ ¼ 0j g ð9iÞ
It represents the SR to ensure steady-state voltage security in

the decision space defined by Eq. (9c) when Il 2 Rl.

3.2. SDSR (XSD) to ensure small-disturbance stability

For a given network topology and given system component
parameters, the SDSR is the set of all operation points defined in
the power injection space, each of which can ensure the small-
disturbance stability of the power system.

Power system dynamic models can be generally represented by
the following differential-algebra equations (DAEs) [7,19–21]:

_x ¼ f xs; xa; xb
� �

0 ¼ g xs; xa; xb
� �

(
ð10Þ

where xs 2 Rmstate is the state variable vector; xa 2 Rlalge is the alge-

braic variable vector; and xb :¼ ðPT
G;Q

T
G;P

T
L ;Q

T
L Þ

T 2 R2n is the control
variable vector (as given in Eq. (8c)). For a given xb, the set of sys-
tem equilibrium points (EPs)—that is, EPsðxbÞ—can be defined as
follows:
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EPsðxbÞ ¼ ðxs; xaÞ f xs; xa; xb
� � ¼ 0

��� ð10aÞ
and g xs; xa; xb

� � ¼ 0; for a given xb
�

The small-disturbance stability is defined for the EPs of a power
system. Let ðxs0 ; xa0 Þ 2 EPs, then the system shown in Eq. (10) can
be linearized near ðxs0 ; xa0 Þ, as shown in the equations below.

D _xs ¼ f xs
��

xs0 ;xa0ð ÞDxs þ f xa
��

xs0 ;xa0ð ÞDxa

0 ¼ gxs

��
xs0 ;xa0ð ÞDxs þ gxa

��
xs0 ;xa0ð ÞDxa

8<
: ð10bÞ

where f xs ; f xa ; gxs , and gxa respectively represent @f =@xs; @f =@xa;

@g=@xs, and @g=@xa. Define AðxbÞ , f xs
��

xs0 ;xa0ð Þ;BðxbÞ , f xa
��

xs0 ;xa0ð Þ;
CðxbÞ , gxs

��
xs0 ;xa0ð Þ, and DðxbÞ , gxa

��
xs0 ;xa0ð Þ. Thus, the system shown

in Eq. (10b) can be expressed as follows:

D _xs ¼ AðxbÞDxs þ BðxbÞDxa
0 ¼ CðxbÞDxs þ DðxbÞDxa

	
ð10cÞ

When matrix DðxbÞ is non-singular, Dxa can be eliminated;
Eq. (10c) can then be simplified as follows:

D _xs ¼ A
�

xb
� �

Dxs;A
�

xb
� � ¼ A xb

� � � B xb
� �

D xb
� �
 ��1C xb

� � ð10dÞ
Note 1: Based on Eq. (10d) and nonlinear system theory, we can

have the following important concepts:
(1) For the system defined by Eq. (10), when matrix D(xb) is

non-singular, if and only if all eigenvalues of matrix A
�
ðxbÞ have

negative real parts, the system is small-disturbance stable at
ðxs0 ; xa0 Þ; when matrix DðxbÞ is non-singular and the eigenvalues

of A
�
ðxbÞ vary continuously with xb, if any real eigenvalue k of

A
�
ðxbÞ is changed from negative to positive, the point x0

b corre-
sponding to k ¼ 0 is called a SNB of the system and, after this point,
the system will lose stability in a monotonic mode when there are
some small disturbances.

(2) If the real parts of a pair of conjugate eigenvalues
k ¼ a� jb ðb – 0Þ of DðxbÞ change from negative to positive, the
point x0b corresponding to k ¼ �jb is called a Hopf bifurcation
(HB) of the system defined by Eq. (10) and, after this point, the sys-
tem will lose stability in a continuous oscillation mode with
increasing magnitude when there are some small disturbances.

(3) The matrix DðxbÞ is not always non-singular, and may be sin-
gular in some cases. If DðxbÞ is singular, it will be impossible to
eliminate Dxa from Eq. (10c); thus, it will be impossible to obtain
Eq. (10d). In this case, the point x0b that makes DðxbÞ singular is
called as singularity-induced bifurcation (SIB) of the system
defined by Eq. (10). At this point, DðxbÞ has a real eigenvalue l,
which changes its sign at the SIB. When l crosses the zero point,

A
�
ðxbÞwill have an eigenvalue k that changes its sign suddenly from

infinity at one end to infinity at the other end (i.e., +1?�1 or

�1?+1). If matrix A
�
ðxbÞ has an eigenvalue k that changes sud-

denly from �1 to +1, the system will lose stability in a monotonic
mode when there are some small disturbances.

Hence, in the power injection space (i.e., parameter space) R2n,
the SR to ensure the small-disturbance stability of the system
defined by Eq. (10) is defined as follows:

XSD , fxb 2 R2n
���All eigenvalues of matrix A

�
ðxbÞ ð11Þ

have negative real partsg
The research on the boundary of XSD (denoted by @XSD) also

involves the chaos phenomenon [19–22] in addition to the SNB,
HB, and SIB. About the boundary of SDSR and chaos in power sys-
tems, Fact 4 was found.
Fact 4. Chaos occurs outside the bifurcation boundaries of the
SDSR.

Remark: According to Ref. [21], the chaos phenomenon in
power systems is formed by further development of single-
period bifurcation, and is likely to be an intermediate stage of
large-disturbance instability. Several ways of instability and col-
lapse induced by chaos are shown in Fig. 6. If (based on Hypothesis
2) the boundary of the SDSR is the boundary that is first encoun-
tered during outward extension (i.e., the gradual increase of the
system load) from the normal operation point in the power injec-
tion space, the chaos phenomenon will occur only outside the HB
boundary of the SDSR in power systems (i.e., chaos will not occur
in advance of HB). Since HB is not allowed in the secure and stable
operation of power systems, there is no need for further research
on chaos. Then, if non-periodic instability caused by SNB or SIB cor-
responds to the boundary that is first encountered during outward
extension from the normal operation point in the power injection
space, and if no single-period oscillation of HB occurs, no chaos will
occur. Therefore, chaos does not need to be investigated too much
in SDSR research, thus greatly reducing the search range of XSD.

After excluding the consideration of chaos, it is also noted that
the definition shown in Eq. (11) does not assume that DðxbÞ is not
singular, so the boundary ofXSD can be formulated as follows [23]:

@XSD ¼ @XSD \ fSNBsg [ @XSD \ fHBsg [ @XSD \ fSIBsg ð12Þ

where @XSD \ fHBsg is the closure of @XSD \ fHBsg, and SIB only
occurs under special load.

In addition to the abovementioned SNB points defined by the
dynamic equations shown in Eq. (10), the SR boundary
@XSD \ fSNBsg consisting of SNBs also includes the singular point
of the power flow Jacobian matrix. In practical engineering analy-
sis, singular points are usually found using the continuous power
flow (CPF) method with a single parameter variation, and are cus-
tomarily called fold bifurcation points, while the corresponding
boundary is called the boundary of power flow feasible region.
The boundary of the SR to ensure static voltage stability (see Note
2) is of particular concern in power systems and it belongs to this
kind of boundary. As mentioned earlier, the SR to ensure static
voltage stability in the power injection space is abbreviated to
SVSR and the SR to ensure static voltage stability in the corre-
sponding cut-set power space is abbreviated to CVSR.

Note 2: In recent years, static voltage stability has been of great
concern in power systems. There are two definitions of voltage sta-
bility. One definition is given by the Conseil International des
Grands Réseaux Électriques (CIGRE) working group on voltage sta-
bility. This definition is based on the small-disturbance stability
bifurcation theory, and thus belongs to the category of the above-
mentioned small-disturbance stability SR. The other definition,
which is also commonly used, is given by the Institute of Electrical
and Electronics Engineers (IEEE). Voltage stability is defined as the
capability of a system to maintain its voltage. When the load
admittance increases, the load power increases accordingly, and
both the power and the voltage are controllable. As shown in
Fig. 7 [7], for general ZIP static load models (where Z stands for
constant impedance, I stands for constant current, and P stands
for constant power), the SNB (i.e., singular point of the power flow
equation’s Jacobian matrix) of the system is located at the lower
half branch of the P–V curve. An increase in load admittance will
lead to a decrease in load power in the lower half branch of the
P–V curve. According to the IEEE’s definition of voltage stability,
the lower half branch belongs to the unstable region. Therefore,
only the upper half branch of the P–V curve is considered, and
the nose tip of the P–V curve (i.e., fold bifurcation) is taken as the
critical point of the static voltage stability. This nose tip is also
the system SNB point obtained in the constant power load model.



Fig. 6. Several ways of instability and collapse induced by chaos. Q1d: the reactive power load; KA: proportion coefficient of the excitation system; TA: time constant of the
excitation system.

Fig. 7. Singular point on the P–V curve [7]. ① System P–V curve; ② characteristic
curve of ZIP load model; ③ characteristic curve of constant power load model.
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Therefore, only the constant power load model needs to be consid-
ered in the calculation of the static voltage stability SR.

In regard to @XSD \ fSNBsg and @XSD \ fHBsg, the following two
facts are found:

Fact 5. Not all SNB points are on the SDSR boundary
@XSD \ fSNBsg.

Remark: Through bifurcation analysis and the two-step analy-
sis method, the following conclusions are given in Ref. [24]:

(1) Considering the recoverable dynamic load while ignoring
the dynamics of other components such as generators, the system
voltage stability limit point obtained from small-disturbance anal-
ysis—that is, the SNB point—is the same as the fold bifurcation
point obtained based on the CPF of the static constant power load
model (the nose tip of the P–V curve). That is to say, the boundary
of the power flow feasible region coincides with the SNB boundary
of the SDSR. When the specific dynamic load and the dynamics of
the generator and its regulating systems are considered, it is proba-
ble that the SNB point will occur in advance of fold bifurcation. In
other words, the SNB points of DAEs might still exist in the power
flow feasible region, i.e., the SR to ensure the existence of EPs.

(2) These SNB points will not necessarily cause voltage collapse
in power systems. Not all SNB points are on the boundary of the
SDSR. The nature of SNB points needs to be analyzed according
to the specific conditions of the system. When induction motors
(IMs) account for a large proportion of the load, it is essential to
judge the nature of SNB points by means of a time-domain simula-
tion when determining the boundaries of the SDSR.

Fact 6. The presence of IMs in the load might lead to no occur-
rence of HB in power systems before the increase of power injec-
tions causes voltage instability of the SNB type.

Remark: In theoretical research, HB generally occurs in advance
of the SNB point. However, this type of voltage oscillation
instability phenomenon is seldom discovered in the actual record-
ing of voltage instability events. The voltage instability of actual
power systems is often in a collapse mode with a monotonic volt-
age drop, which is closely related to SNB. In the opinion of some
scholars, the occurrence of monotonic voltage collapse before
reaching the HB of an unconstrained system might be caused by
the operation limits in power systems. This is called limit-
induced bifurcation (LIB); thus, no HB occurs on the SDSR bound-
ary. However, in reality, many voltage instability events are not
necessarily caused by the operation limits of the system. According
to Ref. [24], the presence of IMs might lead to no occurrence of HB,
and the voltage oscillation phenomenon resulting from HB before
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SNB-type voltage instability is caused by the increase of power
injections. Therefore, when there is a high proportion of IM load
in the system, SNB can be prioritized instead of HB.

Fig. 8 provides the voltage stability limit and the relationship
between instability modes and the proportion of IMs in the load.
On the one hand, the figure shows the particularity of the IM load
model in voltage stability limit calculation, such that HB will not
occur due to the increase in the proportion of IMs in the load. On
the other hand, the figure indicates that there is a big difference
between the result of CPF based on static models (fold bifurcation)
and the more accurate result of small-disturbance voltage stability
analysis based on dynamic models (SNB point) and the SNB points
of the DAE system are still likely to exist in the power flow feasible
region (i.e., the SR to ensure the existence of EPs).
3.3. DSR (Xd) to ensure transient stability

The DSR [7,13] of a power system in power injection space is
defined as follows:

Xdðid; jd; FdÞ , fxbjxsðxbÞ 2 SðxbÞg ð13Þ

where Fd is a given fault; id and jd are the pre-fault and post-fault
network topology, respectively; xsðxbÞ represents the system state
at the instant of fault clearing s; and SðxbÞ represents the stable
region encircled by EPs xs in the post-fault injection space. Both
SðxbÞ and xs are determined by xb. It should be noted that Xd deter-
mines a set of all points in the pre-fault power injection space that
can ensure the transient stability of the power system.
Fig. 8. (a) Voltage stability limit and (b) the relationship betwe

Fig. 9. Correlation between the DSR and
In research on transient stability with direct methods, one
injected power vector xb (an operation point) will correspond to
a transient stability region SðxbÞ [19,20]. Fig. 9 [18] shows the dis-
tinction and correlation between the DSR Xd and the transient sta-
bility region SðxbÞ.

After the fault is cleared, if in the group of generators with
relative accelerations that are equal to zero in the generator rotor
swing equations and phase angles that are greater than p/2, there
are some generators with a relative speed of changes in the phase
angles that is still greater than zero, such generators will be out of
synchronization with the others, and the power system will not be
able to recover to synchronous operation. In general, the set of gen-
erators with phase angles greater than p/2 is called an unstable
generator group, while the set of other generators is called a
non-unstable generator group. The different classifications of the
unstable generator group and the non-unstable generator group
are called different instability modes in this paper.

It is well-known that the transient power angle instability
mode of a power system is closely related to the controlling
unstable EP (CUEP). The post-fault trajectory of the system
evolves along the unstable manifold of the CUEP. Considering that
the power system’s loss of transient power angle stability is
always accompanied by a sharp and excessive increase of the
branch angle in certain or some critical cut-sets of the power sys-
tem, it has been realized that the critical cut-set (see Note 3) in
the power system is equivalent to the unstable EP (UEP) of the
system, and the cut-set stability criterion has been put forward.
To enable researchers to correctly apply the stability criterion
related to the critical cut-set, the following fact has been proved
theoretically in Ref. [25]:
en instability modes and the proportion of IMs in the load.

the transient stability region [18].
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Fact 7. If the CUEP of transient power angle stability is k-type,
there will be k corresponding critical cut-sets in the network.

Note 3: If there is a cut-set in a network and the absolute values
of all branch angles (radian) in this cut-set are greater than p/2,
this cut-set is called a critical cut-set and the branches comprising
it are called saturated branches. An individual critical cut-set
divides the whole network into two connected sub-graphs, which
correspond to two node groups, respectively. Of these groups, the
one in which the voltage phase angle of the nodes is obviously lar-
ger is defined as a critical node group, and the other one is called a
non-critical node group [25]. So, a critical node group contains—
and only contains—generators in the unstable generator group.

Remarks: The correspondence is as follows:
(1) Most of the UEPs in a system are 1-type. If the CUEP of a

system is a 1-type hyperbola (see Note 4), there must be a unique
critical cut-set in the network that will separate the system into
two parts: a critical node group and a non-critical node group,
which correspond to the unstable generator group and the
non-unstable generator group, respectively.

(2) If the CUEP in a system is an k-type hyperbola, there must be
k critical cut-sets in the network corresponding to it. These critical
cut-sets separate the system into k critical node groups (i.e., k
unstable generator groups) and one non-critical node group (i.e.,
one non-unstable generator group). The CUEP corresponds to k
instability modes.

Fig. 10 gives an example of the relationship between the tran-
sient instability mode and the critical cut-set in a system of four
generators and 11 nodes. In the case of a fault on branch 6–9
(which refers to the branch between bus 6 and bus 9 in
Fig. 10(a)), instability among three groups will occur in the system.
The CUEP of this instability mode is 2-type and, in the correspond-
ing system, there are two branches (i.e., branch 10–8 and branch
7–5) whose angle differences are sharply changed in separate
direction to form two critical cut-sets.

Through Fact 7, the pure mathematical concept of the CUEP is
linked with the physical properties of a network, thus providing
useful information for the analysis of complex instability modes
of power systems from the perspective of network topology. Based
on this fact, the cut-set stability criterion can be easily extended to
the multiple generator group instability. A modified cut-set
stability criterion has been established to eliminate the conser-
vatism of the original cut-set stability criterion [14].

Note 4: The basic types of EPs can be identified by the local
linearized expression of the dynamic system near these points.
That is, the stability type of an EP can be decided by the eigen-
values of its linearized dynamic matrix. If there is no eigenvalue
whose real part is zero, the number of eigenvalues with positive
real parts will be regarded as the exponent of this EP. If this expo-
Fig. 10. Diagram of (a) a four-generator 11-node system a
nent is equal to zero, this EP is stable in linear approximation and is
generally referred to as a stable EP (SEP). If this exponent is equal
to i, this EP is called an k-type UEP (UEP-k). In general, an EP can be
called a hyperbolic equilibrium point only when all the eigenvalues
of the local linearization of the dynamic system have no zero real
parts [7].
4. Topological and geometric characteristics of SRs and
methods to determine SR practical boundaries

As mentioned above, the most basic issues for power system
security and stability identification include power flow stability,
transient stability, static voltage stability, and low-frequency oscil-
lation stability. Therefore, this section will introduce the topologi-
cal and geometric characteristics of SRs and methods to determine
their practical boundaries.

Based on Hypothesis 1 and Hypothesis 2, four important facts
about the boundaries of the above SRs in real power systems have
been found through a great deal of simulation research and theo-
retical analysis.

Fact 8. The SSSR, XSS, which is defined in the power injection
space and the decision space to ensure the power flow security
of transmission and distribution networks, is the intersection of
XT (the thermal stability SR to ensure the thermal stability con-
straints (THSR)), XV (the steady-state voltage SR to ensure the
node voltage magnitude constraints), and the region constrained
by the equipment capacity limits. For a given network topology
and system component parameter is, the SSSR XSS (is) is uniquely
determined, connected, and void-free, and does not change with
operation states. From an engineering perspective, both XT and
XV can be described approximately by a hyper-polyhedron, and
their boundaries can be described as pairs of HPs. The region
between each pair of HPs respectively corresponds to the thermal
stability SR of a given line or the steady-state voltage SR of a given
node. Such an SSSR is called a practical SSSR (PSSR) in this paper.

Remarks:
(1) In 1989, the thermal stability SR was studied in active cur-

rent injection spaces based on the decoupled power flow model
[11], in which the affine relationships between node voltage angles
and branch angles (i.e., the difference of voltage phase angles at
both ends of the branch) are used, and the maximum allowable
value of line angles is used to approximate the maximum line cur-
rent magnitude. Meanwhile, all node voltage magnitudes of the
system should be known in order to generate the mathematical
expression of the SR. In the three-node system shown in Fig. 11(a)
[11], node 0 is the reference node and its complex voltage is
V0\0. With the given node voltage magnitudes V = (V1, V2)T, the
nd (b) the angle difference curve after a contingency.



Fig. 11. Affine transformation diagram. (a) The three-node system; (b) the thermal stability SR in the voltage angle space; (c) the thermal stability SR in the active current
injection space. TB: tree branch. The expressions C1ðVÞ 2 Rn	n and DðVÞ 2 Rn	n are given in Ref. [11].
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angle differences between the two endpoint nodes (h1–h0, h2–h0,
h1–h2) is proportional to the active power of lines 1–0, 2–0, and
1–2, respectively. On this basis, an affine transformation relation
can be established between (h1, h2) and the node active current
injections (Ip1 ; Ip2 ) (which are proportional to the node active
power injections). For the affine transformation shown in Fig. 11
[11], the preimage is the rectangle and the image becomes the
parallelogram. Here, the image is the thermal stability SR in active
current injection spaces, each pair of edges in the parallelogram
corresponds to the thermal stability boundaries for the line cur-
rents in the forward and reverse directions, and the region
between two parallel edges is the thermal stability SR for the line
current.

Then, the affine transformation shows the following characteris-
tics [11]: ① The image and the preimage are in one-to-one corre-
spondence, including the vertex, side, edge, and internal point;
② the images of parallel edges are still parallel edges; and ③ the
images of parallel planes are still parallel planes. When the above
conclusions are applied to a system with n1 nodes (excluding the
reference node), if the node voltages in the decoupled power flow
model Eq. (2a) are specified, it can be seen that the thermal
stability SR of power systems can be approximately expressed as
the convex hyper-polyhedron enclosed by nb parallel HPs in n1-
dimensional Euclidean space, each pair of HPs corresponds to the
thermal stability boundaries for a line current in the forward and
reverse flow directions, and the region between two HPs is the
thermal stability SR of the line current. These features make the
form of the SSSR boundaries concise. Even when studying the SR
based on the AC power flow, these features are beneficial for
understanding the entire SR. In addition, based on the ideology
of affine transformation, Ref. [12] has studied the steady-state volt-
age SR in reactive current injection spaces.

However, because the above method simplifies the power flow
model and line current constraints, and does not consider the rela-
tionship between the active and reactive line currents, there is an
obvious error between the generated HP boundary and the real SR
boundary.

For convenience in the description, the AC power flow equation
Eq. (2d) F(x) = F(xa, xb) = 0 is rewritten as F

0
(xa) = xb in the follow-

ing. Obviously, F
0
(xa) is continuous nonlinear mapping, and the

preimage (i.e., the definition space of xa) is a hypercube defined
by Eqs. (7a)–(7c). Under this mapping, ① the image of the vertex
of the hypercube is a vertex;② the image of the edge (straight line)
of the hypercube is an edge, but not a straight line; ③ the image of
the boundary of the hypercube is a continuous (smooth) curved
surface, but not a HP; and ④ the images of the hypercube that is
internally free of void are still free of void. Therefore, it can be con-
cluded that, strictly speaking, the SSSR defined by the AC power
flow equations is a polyhedron enclosed by several smooth hyper-
surfaces and is internally free of void.

(2) Ref. [26] examines the calculation method for the thermal
stability SR in decision spaces. Based on the AC power flow model
and the sensitivity method, the proposed method successively
generates the mathematical expression of the corresponding ther-
mal stability SR boundaries @X�

T;i for each line i 2 B. The boundaries
are pairs of HPs, and each HP corresponds to the critical current
limit in one direction. The method to determine HPs is also pro-
vided in Ref. [26]. This method involves searching for a reference
critical point on the boundary, which is the first encountered point
on the SR boundary when continuously extending outwards from
the initial normal operation point xo

b. It can be seen that this
method satisfies Hypothesis 2. Then, the thermal stability SR of
the entire power system is the intersection of the thermal stability
SR of all lines:

XT ,
\
8i2B

X�
T;i � R2n ð14Þ

It should be noted that the HPs in pairs are no longer strict
parallel planes, as described in the affine transformation in
Remark (1).

XT in Eq. (14) is a hyper-polyhedron surrounded by nb pairs of
HPs in a 2n-dimensional decision space, and has a very complex
shape. However, because the number of overload lines (which
belong to a set B0 � B) in the real power grid is limited within a cer-
tain period, and the overload current direction can be known, we
can only focus on the corresponding thermal stability SR
XT , \

8i2B0
X�

T;i in some given current directions.

The method described in Ref. [26] can also apply to fast calcula-
tion of the steady-state voltage SR XV, which ensures the node
voltage constraint in decision spaces. The steady-state voltage SR
of the entire power system XV is the intersection of all nodes
X�

V;ið8i 2 fng þ 1; . . . ;ngÞ:

XV ,
\

i2fngþ1;...;ng
X�

V;i � R2n ð15Þ

Each X�
V;i has a pair of HP boundaries that correspond to the

upper and lower limits of the voltage at node i, respectively. There-
fore, XV is the hyper-polyhedron surrounded by 2ðn� ngÞ HPs in
2n-dimensional decision spaces. The method to determine the
HPs of X�

V;i boundaries is given in Ref. [7].
Thus, the SSSR of the entire power system can be obtained by

the intersection of the thermal stability SR of all lines XT and the
steady-state voltage SR of all nodes XV:

XSS , XT \ XV ð16Þ
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Eq. (16) is expressed as many simultaneous linear inequalities,
and can be easily dealt with by computers.

(3) The above references mainly focus on the SSSR of transmis-
sion networks XSS. For a distribution network, since it uses the
same power flow model as that of transmission networks, they
likely have the same abovementioned characteristics. Indeed, in
Refs. [27,28], it is demonstrated that Eqs. (14)–(16) can also be
used to define the steady-state voltage SR and the thermal stability
SR in power injection spaces of the distribution network, and that a
pair of HPs can also be used to describe the corresponding SR
boundaries (such kind of characteristics are consistent with the
transmission network). The difference is that Refs. [27,28] propose
simple generation methods for the SSSR based only on the radial
topology of distribution networks, and HP coefficients can be
directly generated by using the network topology and line impe-
dances. The simulations show that the proposed methods are fast
enough to meet the needs of a distribution network with frequent
changing topologies. By combining these generation methods of
SRs in distribution networks with the abovementioned generation
method of SRs in transmission networks, coordinated optimization
of transmission and distribution networks can be executed effec-
tively. Considering that the loads, distributed generations, and
energy storages can be expressed as power injections, this research
can be used in the monitoring, optimization, and security assess-
ment of smart grids. (Specific application examples are given in
Section 5.) Ref. [29] examines the thermal SR of distribution sys-
tems. Under the assumption that the node voltages are specified,
SRs are used to describe the relationship of the power flows in
radiant distribution networks and are applied to evaluate the dis-
tribution network security.

(4) Because the XSS(i) defined in this paper satisfies Hypothesis
1 and Hypothesis 2, the boundary ofXSS(is) is uniquely determined
and connected for a given network topology and given system
component parameters in the space defined by xb. Furthermore,
XSS(is) is internally void free due to the continuity of the region
restrained by Eqs. (7a)–(7c) and the power flow mapping F(x) = 0.

(5) Each HP of the SSSR in the form of a hyper-polyhedron can
be described by the following equation:

Xn
i¼1

aj;iPi þ
Xn
i¼0

bj;iQ i � 1; 8j 2 f1; . . . ;msg ð17Þ

where aj,i and bj,i are constant coefficients, and ms is the total num-
ber of SR boundary surfaces. Because the SSSR is connected and
uniquely determined for a given network topology and given sys-
tem component parameters, and is irrelevant with the system opera-
tion states, all HP coefficients can be calculated offline and stored
for online security monitoring, assessment, and optimization.

Fact 9. For a given network topology, system component
parameters, pre-fault graph id, post-fault graph jd, and fault Fd,
the DSR Xd(id, jd, Fd) defined in power injection spaces is uniquely
determined and connected, and does not change with the opera-
tion states. Also, it is internally void free, and its boundaries
Xd(id, jd, Fd) may consist of a finite number of smooth sub-
surfaces, each of which corresponds to a specific instability mode.
Each sub-surface can be approximately described by an HP within
the scope of practical engineering. The DSR described in such way
is called the practical DSR (PDSR) in this paper.

Fig. 12 shows the diagram of the New England 10-machine 39-
node system and the cross-sections of its PDSR in three 2D spaces.
The PDSR corresponds to the three-phase grounding short-circuit
fault on bus 26 of lines 26–29. The duration of the fault is
s ¼ 0:1 s, and the fault is cleared by disconnecting lines 26–29.

Remark:
(1) In 1990, by fitting a large number of transient stability

critical points obtained by simulation, the authors of Ref. [13] first
discovered that the PDSR boundary in the power injection space of
the pre-fault system, which is shown in Eq. (8e), can be approxi-
mately described by a critical HP around the ‘‘basic operation
point” in the scope of practical engineering application. The critical
HP can be expressed as follows:

Xn
i¼1

aiPi ¼ 1 ð18Þ

where ai is the constant coefficient of the HP expression and
ðP1; . . . ; PnÞ is the critical active power vector in the power injection
space of the pre-fault system, which ensures the transient power

angle stability. Customarily, if
Pn
i¼1

aiPi < 1, the system is considered

to be transient stable, while
Pn
i¼1

aiPi > 1 means that the system is

transient unstable.
The absolute value of the HP coefficient represents the influence

of the corresponding node power injection on the system stability.
The positive or negative value of the HP coefficient represents the
influence trend of the corresponding node power injection on the
system stability; that is, an increase of the node power injection
with a positive coefficient will deteriorate the system stability,
while an increase of the node power injection with a negative coef-
ficient will improve the system stability.

The discovery of these characteristics is of great significance
because the linear combination constraint in the power injection
space, which is shown in Eq. (18), is of great advantage in mathe-
matical processing for power system assessment, operation, and
control.

In Ref. [13], the potential energy boundary surface (PEBS)
method [7] is used to find the critical injection vector, and then
the HP coefficient ai in Eq. (18) is determined by the least-
squares fitting method. Ref. [13] recommends the use of the
quasi-orthogonal method to select possible searching directions
in order to achieve uniform distribution of critical points, which
can reduce the number of required critical points and ensure
accuracy.

(2) In Ref. [30], the 984-node system of the Central China Power
Grid is used to validate the proposed method, considering the dual-
axis reaction of the generators, the excitation system and the speed
governing system, features of the IMs, and the static var compen-
sator (SVC). Using transient stability simulation tools, a great num-
ber of critical points on the DSR boundaries are searched through
numerical simulations. The authors further prove that the DSR
boundary for transient power angle stability can be approximately
described by an HP via least-squares fitting. Each critical point is
the SR boundary point that is first encountered by continuous out-
ward expansion from the initial normal operation point x0

b along
different ray directions in the active power injection space, as
shown in Eq. (8e).

(3) The least-squares fitting method requires approximately 2n
suitably distributed critical points. It can only be calculated offline
and then used online due to the great amount of calculation
required, although highly accurate SR boundary coefficients can
be obtained. To solve this problem, the analytical expressions of
the HPs of the PDSR boundary are derived in Refs. [31,32] based
on the structure-preserving model of a power system, as well as
the sensitivity of the initial operation state, the operation state at
fault-clearing time, and the energy function to the node power
injections. Based on the fact that the Gramian matrix of the power
system dynamic model at the short-circuit fault-clearing time
remains almost unchanged compared with the Gramian matrix
of the power system dynamic model near the initial operation
point, Ref. [33] proposes a method, that combines coherency iden-
tification based on k-medoids method with the initial acceleration,



Fig. 12. The diagram of the New England 10-machine 39-node system and the cross-sections of its PDSR in three 2D spaces. (a) The diagram of the New England 10-machine
39-node system; (b) PDSR in the active power injection space of G8 and G9; (c) PDSR in the active power injection space of G9 and L29; (d) PDSR in the active power injection
space of G8 and L28. The line from M to N is the transversal of the critical HP of the PDSR in the 2D space. The active power limits of generators are shown as dotted-lines.
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to rapidly identify the transient instability mode (and thus to iden-
tify the critical cut-set) near the initial operation point.

(4) In order to provide a theoretical basis for the application of
the DSR, Ref. [34] has proved the following characteristics of the
DSR based on the differential topology theory for the structure-
preserving model of power system transient stability analysis
[20] of a power system: ① The DSR determined by the CUEP
method is internally void free, that is, showing density; ② @Xd(id,
jd, Fd), the boundary of the DSR, will not knot—that is, it is not tor-
sional or expansive—and the local surface corresponding to the
same instability mode kd is continuous; and ③ the boundary of
the DSR is compact—that is, it can be expressed by the union set
of a finite number of sub-surfaces, and each critical sub-surface
corresponds to a different instability mode.

(5) According to Fact 7, when the CUEP of the system is an
i-type hyperbola, there must be i critical cut-sets in the
corresponding network, that is, there must be i instability modes
in the system corresponding to the CUEP. Therefore, the corre-
sponding @Xd(id, jd, Fd) must have i sub-surfaces, each of which
corresponds to an instability mode.

(6) Furthermore, the cut-set power space can be used to sim-
plify the description of the DSR. However, the SR in the cut-set
power space is not unique, as it is not defined in the xb-defined
space (see Fact 2). As indicated by studies on the DSR in a cut-set
power space (CDSR) in Refs. [35,36], for a given network topology
and given system component parameters, the total transfer
capacity (TTC) in the critical cut-set of the system is relevant to
the operation states (power injection vector), that is, the CDSR is
not uniquely determined. For this reason, it is necessary to seek
the maximum value of the TTC, by which the HP of the PDSR in
the power injection space can greatly reduce the computational
burden. However, the boundary of the CDSR may vary in a small
range and can be used approximately in a few practical scenarios.

(7) A large number of simulation studies in Ref. [37] show that,
for a large number of different (id, jd, Fd), all @Xd(id, jd, Fd) can be
approximately expressed by the following HP in a complex power
injection space defined by Eq. (8c) [7]:

Xn
i¼1

ðaiPi þ biQ iÞ ¼ 1 ð19Þ

If the changes in both the node active power injections and the
node reactive power injections are considered, especially when
involving the transient voltage stability, Eq. (19) will have a better
accuracy. According to Ref. [37], the boundary of the PDSR in the
pre-fault power injection space has the approximate translation
property in the case of a change in the proportion of the IMs in
the load. Therefore, the interpolation method can be used to deter-
mine the DSR boundary under different proportions of IMs in the
load.
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For the load that consists of both constant impedance loads and
IMs, transient stability simulations show that the critical fault-
clearing time of the transient stability is closely relevant to the pro-
portion of motors in the load, and the increase of the proportion of
motors in the load will result in the decline of the critical fault-
clearing time. In addition, the system transient instability mode
mainly manifests as transient voltage instability when the propor-
tion of motors is high and as transient power angle instability
when the proportion is low, as shown in Fig. 13.

(8) Ref. [38] shows that, for an alternation current (AC)–DC
hybrid transmission system, the critical HP description of the PDSR
in the decision space still has good accuracy. The boundary equa-
tion of the PDSR corresponding to a certain instability mode can
be expressed as follows:X
8i2G

ðaiPi þ biV iÞ þ
X
8j2L

ðgjPj þ kjQ jÞ þ lPd ¼ 1 ð20Þ

where G and L are the set of generator nodes (except equilibrium
nodes) and the set of load nodes, respectively; Vi is the voltage of
generator node i; and ai, bi, gj, kj, and l are the critical HP coeffi-
cients of the PDSR. l ¼ arb � asb, where sb and rb are the number
of AC nodes at the sending end and the receiving end of the DC line,
respectively. Therefore, the DC power Pd can be regarded as an
active power variable of the critical HP equation. Under the same
failure mode, instability mode, and DC control mode, all the critical
HPs corresponding to different DC power have approximate
parallelism, and the spatial geometric distance between them is
approximately proportional to the change in DC power.
Fig. 13. Relationship between the transient instability mode and the proportion of
IMs in the load.

Fig. 14. Local diagram of a real power system and boundary of the CVSR on critical cut-s
CVSR in a 3D power injection space.
(9) Ref. [39] examines the DSR of a power system with doubly-
feed induction generators (DFIGs). The accuracy of its boundary is
verified through time-domain simulation. The DSR of a power sys-
tem with photovoltaic (PV) generation is calculated in Ref. [40].
According to Refs. [39,40] and within the engineering perspective,
the boundaries of the PDSR in the power injection space can still be
approximately described by HPs for a power system with DFIG or
PV generation. Ref. [39] also analyzes the influence of the integra-
tion of DFIGs on the DSR, and finds that the integration of DFIGs
would cause external expansion of the DSR in a power system.

Fact 10. For a given network topology and given system compo-
nent parameters, the SVSR in the power injection space corre-
sponding to fold bifurcation is uniquely determined, connected,
internally void free, and does not change with the operation states.
Furthermore, its boundaries are smooth. When the load node
power injections are specified, the boundary of the SVSR in the
generation power injection space can be approximately expressed
by an HP in the practical engineering range. When there is only one
critical cut-set in the system, CVSR can be approximately described
by an HP within the practical engineering range (as shown in
Fig. 14). When several critical cut-sets should be considered in
the system, the boundary of the CVSR corresponding to each criti-
cal cut-set can be approximately described by an HP within the
practical engineering range. In addition, the union set of the
boundaries of the CVSR of all cut-sets is the boundary of the CVSR
under a given network topology and given system component
parameters.

Remarks:
(1) In Ref. [41], since the voltage stability problem has strong

local characteristics, the voltage stability boundary can be
approximately described by the injected power of the nodes with
weak voltage stability in the system. Its relatively complex bound-
aries can be visualized by an artificial neural network. In Ref. [42], a
quadratic polynomial is used as an approximate analytical expres-
sion for the large-scale boundaries of the SVSR in active and reac-
tive power injection spaces. Meanwhile, in order to reduce the
dimension of the power injection space, the key nodes of the sys-
tem are selected by using modal analysis. A large number of simu-
lation results show that this method has satisfactory engineering
accuracy. In Ref. [43], an approximate analytical expression of
the SVSR boundary is constructed by the eigenvalue sensitivity
and eigenvector sensitivity of Jacobian matrix. Although the preci-
sion of this method is higher than that of the HP-based linear
approximate expressions, it is far less convenient than the HP
method when applied in optimization and risk analysis.

(2) Ref. [44] is based on the power flow feasible solution region.
It takes whether the power flow equation has a solution or not as
et marked by dotted lines. (a) The diagram of a real power grid; (b) the boundary of
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the decisive factor of the SSSR by using a new ‘‘hybrid method” for
feasible region boundary computation, proposed by the authors in
Ref. [45]. With a prediction–correction ideology and optimization
technique, this hybrid method takes into account the limit of the
system equipment while tracking the boundary of the power flow
feasible region composed of singular points of the Jacobian matrix
of the power flow equation (fold bifurcation) and LIB. In Ref. [44],
the power injection space is divided into the load injection space
and the power generation injection space. By fitting a large number
of critical points obtained by static voltage stability simulations, it
can be found that the boundaries of the power flow feasible region
in the above two sub-spaces have distinct geometric characteris-
tics. In the power generation injection space with a specified direc-
tion of load growth, a part or the majority of the boundary of the
power flow feasible region can be well approximated by an HP in
the practical operation range, as shown in Fig. 15 [24]. Another
new algorithm is put forward in Ref. [44] to track the farthest (L1
norm) boundary point of the power flow feasible region in the
high-dimensional power generation injection space, which avoids
the frequent start of CPF calculation. The multi-solution of the
results is also used to further verify that the boundary of the power
flow feasible region can be approximated by an HP.

Note 5: Because the vector of power generation has a very high
dimension, an SR as whole is difficult to visually represent. There-
fore, the above figures show only the transects of the SR of concern
in a 2D power generation space. All transects are obtained by sup-
posing that the variables other than the given coordinate variables
remain unchanged. If the edge lines of the transects all appear as
straight lines in a large range of actual engineering concerns, then
it can be inferred that, in a high-dimensional space, the boundary
surface of SRs can be approximated by an HP in a large range of
engineering concerns.

(3) Ref. [46] provides a local visualization method for the
steady-state voltage stability region in the cut-set power space
based on the ideology of the power flow feasible region. Refs.
[47,48] clearly propose that the practical boundary of the CVSR
can be approximately described by Eq. (21) with an HP expression:

X
8i2C

ðaiPL;i þ biQ L;iÞ ¼ 1 ð21Þ
Fig. 15. View of 2D transects (see Note 5) of the power flow feasible regio
where C indicates the critical cut-set, PL;i is the active power flow of
line i in the critical cut-set, and Q L;i is the reactive power flow at the
sending end of line i in the critical cut-set. Conventionally,
if
P
8i2C

ðaiPL;i þ biQ L;iÞ < 1, the system is considered to satisfy the

steady-state voltage stability constraint, while ifP
8i2C

ðaiPL;i þ biQ L;iÞ > 1, the system is considered to be steady-state

voltage unstable, as shown in Fig. 14.
In Fig. 16, a method to quickly determine the HP of the CVSR

boundary is presented. First, the CPF is used to find a SNB point
of the system. Then, the tangent plane of the SVSR boundary at
the SNB is represented by the eigenvector at the critical point.
Finally, the critical boundary of the CVSR with an HP expression
is obtained by the transformation from the power injection space
to the cut-set power space.

(4) When there is a large error, some power injections of nodes
with weak voltage stability at the receiving end of the system can
be used as additional variables of Eq. (21) to improve the fitting
accuracy.

(5) Considering that the number of lines in the critical cut-set is
very limited, the HP coefficients ai and bi can be obtained by the
least-squares fitting method after finding about 4nc (where nc is
the total number of lines in the critical cut-sets) appropriately dis-
tributed critical points through simulation. Based on this method, a
software to determine the CVSR has been developed and the
results show that the software can meet real-time online needs
in practice [48].

(6) In some systems or cases, the weak nodes of the systemmay
be distributed in different areas, which requires multiple critical
cut-sets [46]. Therefore, all the operation points that ensure static
voltage stability are in the region defined below:

XSV,
"X
8i2C1

ða1
i PL;iþb1

i Q L;iÞ�1

#
\


\

" X
8i2CmSV

ðamSV
i PL;iþbmSV

i Q L;iÞ�1

#

ð22Þ
where C1; . . . ;CmSV are the msv critical cut-sets that need to be con-
sidered, and msv is generally a small integer.

(7) The statistical analysis in Refs. [48,49] shows that, under the
actual possible load growth mode, the weak node sets in the
n of IEEE 118-bus system in a power generation injection space [24].



Fig. 16. A method to determine the HP of the CVSR boundary. Pg: a critical point on the boundary of the SVSR.

Fig. 17. Piecewise fitting under multiple dominant modes (New England 10-
machine 39-node system) [50].
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system are concentrated in several areas and most of them are
distributed at the terminals of long transmission lines without
reactive power support. The graph model corresponding to the grid
structure can be established according to the connection relation-
ship and the degree of closeness between nodes. The spectral clus-
tering algorithm can be used to determine the voltage stability
area (the node set with weak voltage stability in the power system)
and the critical cut-set (the potential critical cut-set) of the power
system.

(8) Static voltage instability is based on the absence of power
flow solutions, and the SR defined in this paper complies with
Hypothesis 2; that is, the SVSR boundary is the first static voltage
instability boundary encountered by continuous outward exten-
sion from the initial operation point. Then, along with the continui-
ty of power flow functions F(x) = 0, it can be concluded that the
SVSR is uniquely determined, connected, and internally void free.
Its surfaces are smooth in xb-defined space. The mapping of this
region to the low-dimensional cut-set power space, that is, the
CVSR, can retain these properties. Therefore, the CVSR in Fact 10
is also internally void free.

Fact 11. For a given network topology and given system compo-
nent parameters, the SDSR, XSD in the power injection space is
bounded by SNB boundary (@XSD(SNB)) and/or HB boundary
(@XSD(H)). It is uniquely determined, connected, and internally
void free, and does not change with operation states. @XSD, the
boundary of XSD, is composed of several smooth surfaces, and
the sudden change occurs at the junction between @XSD(SNB)
and @XSD(H), or on @XSD(H) when its dominant oscillation mode
changes. Each smooth surface can be approximated by an HP in a
large range (as shown in Fig. 17 [50]), which can meet the practical
engineering requirements. In this paper, the SR described in such a
way is called a practical SR to ensure small-disturbance stability
(PSDSR).

Remarks:
(1) In the investigation of small-disturbance stability [21], the

detailed evolution process from HB to chaos is demonstrated by
an illustrative power system, and the law of increasing energy is
revealed. It is also found that the boundary of the SDSR relevant
to oscillatory instability can be described by the HB boundary
@XSD(H), and that there is no need to account for more complex
chaos.

(2) Ref. [50] shows that @XSD(H) in the active power injection
space is composed of several smooth curved surfaces, each of
which can be approximately described by Eq. (23), where the reac-
tive power is assumed to be locally balanced:

Xn
i¼1

aiPi ¼ 1 ð23Þ
where Pi is the injected active power at node i, ai is the HP coeffi-
cient of node i, and n is the total number of other nodes in the net-
work without the reference node.

(3) @XSD(H) may be composed of one or several smooth sur-
faces, and the reason why the sudden change occurs at the junction
among surfaces is that those surfaces have different dominant
oscillation modes. Based on the above knowledge, Ref. [50] applies
the following piecewise fitting strategy to obtain the approximate
HP for @XSD(H). Eigenvalue analysis is first conducted for each
critical point to determine its dominant oscillation mode. Then
all the critical points are divided according to their dominant oscil-
lation modes, and those with the same dominant mode are clus-
tered into the same set. The critical points in each set can be
fitted by an HP, and the union set of the fitting boundaries corre-
sponding to all dominant oscillation modes constitutes @XSD(H)
in the power injection space (as shown in Fig. 17 [50]).

(4) The influence of DFIGs on power system electromechanical
oscillation is examined in Ref. [51], and it is found that the SDSR
boundary of a power system with DFIGs is composed of several
smooth surfaces, including @XSD(SNB) and @XSD(H) under different
dominant oscillation modes. Fig. 18 [51] shows the 2D cross-
section of a SDSR boundary in the active power injection space of
two generators. When the active power output constraints are
not considered, the boundary is composed of several smooth
curves. Boundaries 1 and 3 correspond to HB, and boundary 2 cor-
responds to SNB. There are sudden changes at the junction
between boundaries 1 and 2 and at the junction between
boundaries 2 and 3. When the active power limits (shown as the
rectangle in Fig. 18 [51]) of the generators are considered, the



Fig. 18. 2D section of an SDSR boundary [51].
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actual SDSR of concern is the shaded area. The appearance of SNB
on boundary 2 is due to the fact that the excitation system of gen-
erator G4 reaches its limit, which is the LIB problem in Fact 5.
Therefore, it is necessary to determine the boundary of an SDSR
through time-domain simulation, as is described in Fact 10.

(5) The uniqueness, connectivity, and the void-free characteris-
tics of SDSRs can be proved in a similar way to those of Remark (8)
in Fact 9, which will not be repeated here.

5. Methodology of SR with its boundaries expressed by HPs for
power system analysis

5.1. Application of SR methodology in power system optimization

The power system optimization problem with security and sta-
bility constraints can be described by the following general model.
Let xopt be the optimization variable vector, which usually refers to
the active/reactive output of generators or the active/reactive
power of loads. fopt(xopt) is the optimization objective. Security-
constrained optimization problems of power systems can be
described by the following general model, as Eqs. (25)–(30) show.
The model will change with the specific scenarios of applications.
For example, in security-constrained optimal power flow, the
objective function usually considers the minimum power genera-
tion cost or loss, while in the security-constrained optimal control
of power systems, the objective function usually considers the
minimum control costs, such as the load shedding cost and so
forth. hopt(xopt) is the equality constraint function, which mainly
includes the power flow equations. gopt(xopt) is the inequality con-
straint function, including the generator output limit, the node
load constraint, and so forth. Eqs. (27), (28), (29), and (30) repre-
sent the node voltage constraint, power flow security constraint,
small-disturbance stability constraint, and transient stability con-
straint, respectively.

Vi represents the voltage magnitude of node i; Ii represents the
current of branch i; ki represents the ith eigenvalue of the system
operation state; CTS represents the set of contingencies for the
transient stability test; dkijðtÞ represents the difference of power
angle between generator i and generator j at t in case of contin-
gency k; and dmax represents the maximum allowable power angle
difference between the generators.

min f optðxoptÞ ð24Þ

s:t: hoptðxoptÞ ¼ 0 ð25Þ

gmin � goptðxoptÞ � gmax ð26Þ
Vm
i � Vi � VM

i ; 8i 2 N ð27Þ

Iij j � IMi ;8i 2 B ð28Þ

ReðkiÞ � 0 8i ð29Þ

dkijðtÞ
��� ��� � dmax;8i; j 2 G; k 2 CTS ð30Þ

The decision variable (x) is usually the active/reactive output of
the generators, that is, PG ¼ ðP0; P1; . . . ; Png ÞT and

QG ¼ ðQ0;Q1; . . . ;Qng ÞT. As shown in Eqs. (27)–(30), the inequality

constraints also involve other variables, that is, Vi, Ii, ki, and dkijðtÞ,
which are not included in the objective function. In particular, Vi

and Ii are coupled to PG and QG in the objective function via power
flow equations, while ki and dkijðtÞ are coupled to PG and QG via
power flow equations and differential equations. It is necessary
to repeatedly solve power flow equations to verify whether the
constraints shown in Eqs. (27) and (28) follow, repeatedly calculate
eigenvalues of the system at the point corresponding to the power
flow solution to verify whether the constraints shown in Eq. (29)
follow, repeatedly solve a set of large-scale DAE (in a real power
system, the dimension of the DAE may be several thousands and
even tens of thousands), and simulate dynamic trajectories of the
system during the optimization process to verify whether the con-
straints shown in Eq. (30) follow, which undoubtedly require an
enormous calculation burden. As a result, the consideration of
complicated security constraints such as transient stability con-
straint in the optimal power flow is always a difficult problem.

Based on SR methodology, those security constraints may be
formulated as follows:

EjðPG;QGÞ � Constj; j 2 f1; . . . ;mssg
FkðPG;QGÞ � Constk; k 2 f1; . . . ;msdg
HrðPG;QGÞ � Constr; r 2 f1; . . . ;mdg

8><
>: ð31Þ

where EjðPG;QGÞ � Constj; F
kðPG;QGÞ � Constk, and HrðPG;QGÞ �

Constr represent the constraints of the jth boundary of XSS \ XSV,
the kth boundary of XSD, and the rth boundary of Xd, respectively;
and mss;msd, and md represent the numbers of @ðXSS \ XSVÞ; @XSD,
and @Xd, respectively. The problem can be solved with quadratic
programming (QP), which can save a considerable amount of
calculation.

In particular, Eq. (31) can be further replaced by the following
equations, when the SR boundaries are approximated by HPs:

Pn
i¼1

ðass
i;jPi þ bss

i;jQ iÞ � 1; j 2 f1; . . . ;mssg
Pn
i¼1

ðasd
i;kPi þ bsd

i;kQiÞ � 1; k 2 f1; . . . ;msdg
Pn
i¼1

ðad
i;rPi þ bd

i;rQ iÞ � 1; r 2 f1; . . . ;mdg

8>>>>>>><
>>>>>>>:

ð32Þ

In this equation, ass
i;j ; b

ss
i;j ;asd

i;k; b
sd
i;k;ad

i;r , and bd
i;r are constant coeffi-

cients. The injected powers ðPngþ1; . . . ; Pn;Qngþ1; . . . ;QnÞ 2 R2ðn�ngÞ

of the load nodes are specified, while the
ðP0;Q0Þ ¼ FðP1; . . . ; Pn;Q1; . . . ;QnÞ 2 R2 corresponding to each point
ðP1; . . . ; Pn;Q1; . . . ;QnÞ 2 R2n on the boundary is determined by the
power flow equation. In this case, iterative calculations related to
power flow may be needed. However, considering the low dimen-
sion of ðP0;Q0Þ, the iterative calculation is much less.

Therefore, based on the fact that the boundaries of SRs in the
power injection space can be approximated by HPs, system secu-
rity constraints such as the power flow constraint, small-
disturbance stability constraint, and transient stability constraint
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can be formulated as explicit linear inequality functions of decision
variables (i.e., node power injection), so that it will be extremely
convenient to take into account various types of security con-
straints in power system optimization, and the calculation effi-
ciency will be significantly improved.

Up to now, SR methodology has been widely applied to various
power systemoptimization problems. For example, an optimization
model of power system security cost in the electricity market is
proposed in Ref. [52]. The transient stability constraint, fault
probability, and system instability loss are considered by means of
PDSR, through which optimal preventive control can significantly
improve the economic efficiency of the power system. Ref. [53]
reports on experiential laws about the parallelism and superposi-
tion of the critical surface of the extended PDSR. Based on this, it
provides an optimal transient stability-constrained emergency-
control method, and quantifies the control measures as cost indica-
tors, which solves the problem of the difficulty quantifying the
effectiveness of emergency-control measures. In Ref. [54], optimal
active and reactive coordination of a power transmission system
is realized considering security constraints based on SRs. By means
of the SSSR, SVSR, and DSR, the power flow constraint, static voltage
stability constraint, and transient stability constraint are considered
comprehensively. Through the affine relationship between the
active power and the branch angle of the power system and the
affine relationship between the reactive power and the node voltage
magnitude, an algorithm for solving the optimal power flow
through QP is established, which significantly improves the calcula-
tion efficiency. In Ref. [55], the power flow constraint, steady-state
voltage stability constraint, and transient stability constraint are, for
the first time, simultaneously taken into account in the day-ahead
dispatching of power systems, providing an important approach
to solve the contradiction between security and economy in power
system operation. In Ref. [56], models for the pricing of active and
reactive power as well as corresponding solution algorithms are
proposed, which systematically consider many complicated con-
straints, including quantification of transient stability in node pric-
ing for the first time. In the proposed model, the static voltage
stability constraint and the transient stability constraint are consid-
ered through the CVSR and PDSR, respectively, and a decoupled
optimization and iterationmethod for active power production cost
and reactive power production cost is suggested. Based on the mar-
ginal cost theory and Karush–Kuhn–Tucker (KKT) optimality condi-
tion, active power and reactive power are priced, respectively, and
the component prices related to various security constraints are
derived. In the proposed method, not only is it convenient to con-
sider the contingency set, but this is also done with more concise
expressions and clear physical meaning. In Ref. [57], SR methodol-
ogy is adopted to establish static security and dynamic security
value-based power system extension planning. In Refs. [27,28],
the SR ideology is introduced into the reactive optimization of a
power distribution network for the first time, providing a critical
decision-making tool for the reactive voltage control of a smart
power distribution network. An example of SR application with
HP boundaries in the coordinated optimal power flow of a power
system is provided here, as follows.

Example: SR application with HP boundaries in the coordinated
optimal power flow of a power system with a given topology.

With increasing penetration of intermittent, fluctuating, and
uncertain renewable distributed energy in smart distribution grids,
transmission and distribution grids can affect the tie-line power by
changing their own operation states. This means that it is neces-
sary to consider the impact of tie-line power changes on each
other’s operation state in both the transmission grid and the distri-
bution grid. Hence, it is necessary to comprehensively consider the
power generation resources in the entire grid for coordinated
optimal power flow.
Nowadays, the methods for solving this coordinated problem
can be mainly divided into two types. One type is the centralized
optimization method [58]. Although this method can yield opti-
mization results, it is necessary to collect and process the entire
grid data during the application, and the difficulty of data mainte-
nance and computation burden are very large. The other type is the
distributed optimization method, which decomposes the coordi-
nated optimal power flow problem of the entire transmission
and distribution grids into several sub-problems for optimization.
The solution speed of the latter method is faster than that of the
centralized method [59]. However, the constraints in each sub-
problem include capacity constraint inequalities for devices, node
voltage constraint inequalities, line current constraint inequalities,
and AC power flow equations (similar to Eqs. (25)–(28)), and the
decision variables in the objective function are power generation
injections, which are nonlinearly related to node voltages and line
currents based on power flow equations; thus, the determination
process for each sub-problem and for the KKT conditions is still
complicated.

In order to solve the problems in the existing methods, Ref. [60]
applied the SSSR with HP boundaries to the optimal power flow
problem of the entire transmission and distribution grids for the
first time, and established a coordinated optimization method for
the transmission and distribution grids. The characteristics of this
method are as follows:

(1) The approximate HP expressions for the SSSR boundaries are
generated based on the respective topological structure and
boundary information of the transmission grid and the distribution
grids in their power supply area. Considering that the SSSR is
uniquely determined by the given grid topology and is irrelevant
to operation states, for a transmission grid whose topology is rela-
tively stable, the HP expression coefficients can be calculated off-
line and recalled online. For a radial distribution network, the HP
expression coefficients can be generated online, which requires a
small computation burden and can be fully adapted to the require-
ments of frequent changes in topology.

(2) In order to minimize the overall power supply cost of the
transmission and distribution grids, SSSRs in the transmission
and distribution grids are applied to describe the steady-state
security constraints (as shown in Eq. (32)), and to establish the dis-
tributed optimizationmodel for coordinated optimal power flow in
the transmission and distribution grids; the boundary variables are
shown in Fig. 19. During the execution of the proposed method, the
transmission grid and distribution grids can complete the opti-
mization only according to the boundary node voltage, the tie-
line power and the clearing prices (determined by KKT conditions)
exchanged between the grids. Since the constraints become linear
combination inequalities of decision variables, and the objective
function is consistent with the variables in the constraints, the
optimization process of each transmission grid and distribution
grid and the determination of the KKT conditions become extre-
mely simple.

In order to verify the effectiveness of the proposed method, Ref.
[60] first compares the proposed method with the centralized opti-
mization method [58]. In the optimization process, the centralized
method establishes a nonlinear optimizationmodel based on an AC
power flow model. The overall supply cost/calculation time
obtained by the two methods is shown in Table 1. The optimization
results obtained by the two methods are basically the same, but
there are great differences in the calculation time.

Note 6:
(1) In order to briefly show the advantages of the practical SR

boundary with HP expression in power system optimization, only
the SSSR is considered in this example. If other security constraints
are taken into account, the advantages of the SR methodology will
be even more prominent.



Fig. 19. Equivalent model of transmission and distribution grids. (a) Equivalent model of the entire grid; (b) equivalent model of transmission and distribution grids;
(c) equivalent model of distribution grid k.

Table 1
Comparison of daily overall supply cost and calculation time (see Note 6).

Type of method Case 1 Case 2 Case 3

Daily overall supply cost
(USD)

Calculation time
(s)

Daily overall supply cost
(USD)

Calculation time
(s)

Daily overall supply cost
(USD)

Calculation time
(s)

Centralized
method

8.937 	 105 260 6.072 	 106 734 3.48 	 107 3300

Proposed
method

8.937 	 105 1.8 6.072 	 106 5.7 3.48 	 107 6.6
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(2) Case 1 is a modified IEEE 24-bus grid with nine distribution
grids. Case 2 is a modified IEEE 118 with 20 distribution grids.
Case 3 is a modified IEEE 300 with 40 distribution grids.

(3) Since the SSSR boundaries of the transmission grid are
uniquely determined by the grid topology, they are independent
of operation states, and the topology does not change frequently.
Therefore, the coefficients of the SSSR boundaries can be calculated
offline, stored in the database, and recalled according to the
topology when used online. However, the coefficients of the SSSR
in distribution grids need to be calculated in real time. Therefore,
for the statistics of optimization time burden, the generation time
of the SSSR in the distribution grid is included, and the generation
time of the SSSR in the transmission grid is not.

The proposed method is then compared with the alternating
direction method of multipliers method (ADMMM) [61] and the
optimality condition decomposition (OCD) method [62], which
are commonly used. The average optimization time consumed by
the three methods in each iteration is shown in Table 2. It can be
seen that since the proposed method is based on the SR method
to establish the optimization models in the transmission and dis-
tribution grids, the variables in the objective function and the con-
straints are identical, and the constraints are linear combination
inequalities of node power injections, so that the optimization
speed of each sub-problem is fast.

Furthermore, the average number of iterations required to com-
plete a coordinated optimal power flow by the three methods is
Table 2
Comparison of average optimization time in each iteration.

Type of coordinated optimization methods Type of grid

ADMMM Transmission grid
Distribution grid

OCD Transmission grid
Distribution grid

Proposed method Transmission grid
Distribution grid
shown in Table 3. Since the Lagrangian multiplier corresponding
to each constraint is needed in the process of determining the
KKT condition, and considering that the constraints used in the
optimization model of the ADMMM method and the OCD method
are nonlinear and the constraints (i.e., the boundary HPs of SSSR)
used in the proposed method are linear, the number of iterations
varies greatly.

In summary, the total time required to complete the coordi-
nated optimization of the entire transmission and distribution grid
is mainly determined by the average optimization time consumed
by each iteration of the transmission grid multiplied by the average
iteration times to complete a coordinated optimal power flow. The
proposed method has obvious advantages in both of the above fac-
tors, so that the average total time burden for coordinated opti-
mization can be decreased by several orders of magnitude (as
shown in Table 4).

This example shows that the SR application with HP boundaries
presented in this paper can successfully solve the problem of the
security and stability constraints being difficult to deal with in a
large class of power system optimization problems.

It should be noted that the average time consumed by the pro-
posed method to generate the SSSR in the transmission grid is 1.67,
6.3, and 45.1 s for Cases 1, 2, and 3, respectively, showing that even
if the average time for generating the SSSR of the transmission grid
is included in the optimization time statistics, the superiority will
not be affected when compared with the existing methods.
Average optimization time in each iteration (s)

Case 1 Case 2 Case 3

4.5
1.4

33.2
2.1

189.4
2.8

4.2
1.1

31.5
1.9

186.4
2.2

0.6
0.5

1.1
0.7

1.4
0.8



Table 4
Average total time for coordinated optimization.

Type of coordinated optimization methods Average total time (s)

Case 1 Case 2 Case 3

ADMMM 76.5 1 328.0 14 394.4
OCD 50.4 913.5 11 370.4
Proposed method 1.8 5.7 6.6

Table 3
Average iteration times to complete a coordinated optimal power flow.

Type of coordinated optimization methods Average iteration time

Case 1 Case 2 Case 3

ADMMM 17 40 76
OCD 12 29 61
Proposed method 3 3 3
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5.2. Application of SR methodology in power system probabilistic
security assessment

Power systems often suffer from various disturbances, such as
fluctuations of the node injected power, incidents, and component
outages. The system is considered to be secure if it is capable of bear-
ing any disturbance possibly occurring at the nextmoment. Consid-
ering the inherent uncertainty in the fluctuations of node injected
power, incidents, and so forth, especially after the integration of
large amounts of wind and PV power, probabilistic security assess-
ment becomes even more important. Born at the right moment,
probabilistic security assessment aims to obtain the security proba-
bility for a system to satisfy the security constraints or the probabili-
ty distribution of key state variables considering the uncertainties of
node injection power, incidents, and so forth, in order to indicate the
system security level in the sense of probability for the near term
(e.g., for every half hour or even shorter time interval in the coming
24 h).

Probabilistic security assessment is usually conducted with the
simulation method or the analytical method. The simulation
method is based on the Monte–Carlo (MC) simulation approach.
First, a large number of operation points are randomly generated.
Next, the stability of each operation point is judged one by one,
that is, one simulation computation will be carried out separately
for each operation point to determine whether it is stable. Finally,
a probability will be obtained based on the law of great numbers.
This method can easily consider various uncertainty factors, but
its calculation error is inversely proportional to the square root
of the test times. Thus, more calculation time is required to reduce
the error, which leads to a considerable calculation burden in
probabilistic security assessment. In the analytical method, a
model is set up to evaluate the probabilistic security indicators,
or an analytic expression is established for probabilistic security
indicators. For example, in Ref. [3], the probability distribution of
the time to insecure is obtained via the two-layer Markov model,
while in Ref. [63], an analytical expression for system dynamic
security probability is established based on the condition
probability theory. In comparison with the simulation method,
the analytical method has a relatively complete theory. However,
considering the uncertainty of the node injection power—
especially the simultaneous consideration of the transient stability
constraint for the given fault—the solution process will be extre-
mely complex. In case of the evaluation of the system probability
satisfying the transient stability constraint in a certain fault
considering the uncertainty in the node injection power, i.e. the
probability for the vector of injection power y to be located within
Xd can be expressed as follows:
ZZ

 
 


Z
y2Xd

f ðy1; y2; . . . ; ynÞdy1dy2 
 
 
dyn ð33Þ

where f is the probability density function of y ¼ ðy1; y2; . . . ; ynÞT.
Without a simple mathematical description of Xd, Eq. (33) is an

extremely complicated n-degree integration in an n-dimension
injection space, for which the calculation burdens are very heavy.
An HP-based PDSR provides a powerful tool for solving this com-
plexity, and Eq. (33) can be converted to the solution of the follow-
ing equation:

Prfy 2 Xdðid; jd;FdÞg ¼ Pr
	Xn

i

aiPi � 1
�
¼

Z
ye<0

gðyeÞdye ¼ 1�GðyeÞ

ð34Þ

where y 2 X � Rn () Pn
i¼1

aiyi < 1; ye ¼ Pn
i¼1

aiyi � 1, g is the probabili-

ty density function of ye, and G is the probability distribution
function of ye.

The calculation process is thus significantly simplified. The key
to solving Eq. (34) is to calculate the probability density function of
ye, that is, g(ye). Whether the node injection power is relevant or
not, valid methods such as point estimation and the combination
of semi invariants with series can be applied to realize a fast solu-
tion with the desired calculation accuracy.

The research results herein have provided the following advan-
tages compared with the simulation method:

(1) Application of the PDSR improves the calculation efficiency
of Eq. (33) by 1 	 104 times (the New England system is calculated
on an individual computer [64]).

(2) As Eq. (33) is the most basic computational unit in the
two-layer Markov model, considering the curse of dimensionality
due to varied states, application of the PDSR and the typical
characteristics of the HP coefficients (offline calculation and online
application) improve the calculation efficiency by 1 	 106 times
(the New England system is calculated on an individual computer,
enumerated to N-3) [65].

With the rapid development of high-performance computing,
there will be unlimited possibilities for the SR method to signifi-
cantly improve the calculation efficiency of probabilistic security
assessment. Meanwhile, with the integration of enormous quanti-
ties of distributed energy sources, the probabilistic analysis
method is playing an increasingly important role. Since uncer-
tainty of the node injection power needs to be considered in vari-
ous security-constrained optimizations of power systems, the SR
with its boundaries expressed by HPs undoubtedly has a broad
application space.

5.3. SR application on the visualization of power system security
monitoring

Based on the research results of the PDSR in the power injection
space and the CVSR in the cut-set power space, an SR visualization
system for the power system has been successfully developed [48].
Since the visualization can only be implemented in 3D or 2D space,
the system uses the SR to display transient stability and voltage
stability boundaries in the 3D or 2D power injection subspace to
improve the observability of the power system, and to help dis-
patchers or operation planners to identify important contingency
power transfer levels defined by voltage and power angle stability
constraints and system security margins. Figs. 20(a) and (b) pro-
vides visualization examples of the cross-sections of the CVSR
and PDSR in the 3D power injection subspace, respectively. The
transparent section in Fig. 20(a) corresponds to the CVSR HP
boundary, and the transparent section in Fig. 20(b) corresponds
to the PDSR HP boundary (where each transparent section



Fig. 20. SR visualization in the 3D power injection subspace. (a) The CVSR of a specific network; (b) intersection of the PDSR under two contingencies.
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corresponds to a contingency, and the intersection of the two parts
they surround is the SR under two contingencies). These visual
images can strengthen an operator’s insight into critical situations
(e.g., the situation of voltage instability, transient instability, or the
danger of a cascading outage), which enhances the ability of
situation awareness assisting operators to respond immediately
to prevent the consequence of a blackout.
6. Conclusions

This research initiates and significantly promotes SR methodolo-
gy (distinct from the traditional point-wise method). The main
original research achievements are as follows:

(1) In terms of the composition and dynamics nature of SRs, we
have found that:

� Chaos occurs outside the boundary of the SDSR that corre-
sponds to HB. Several types of instability and collapse
induced by chaos have also been discovered. Chaos can be
ignored in the study of the IGSR since the secure operation
of power systems does not allow HB to occur.

� There are some rules for the impact of models and parame-
ters on the SR boundary. For example, the presence of IMs
in the load might lead to no occurrence of HB in power sys-
tems before the increase of power injections causes voltage
instability of the SNB type; not all SNB points are on the
boundary of the SDSR @XSD \ fSNBsg, and thus it is essential
to determine the property of the SNB points by means of
time-domain simulation in order to finally determine the
boundaries of the SDSR when IMs account for a large propor-
tion of the load.

� There is a quantitative relationship between the type of UEP
of transient stability and the number of critical cut-sets of
transient power angle stability. If the UEP of the system is
k-type hyperbolic, there must be k corresponding critical
cut-sets in the network, and these critical cut-sets divide
the system into k critical node groups (i.e., k unstable gener-
ator groups) and one non-critical node group (i.e., one non-
unstable generator group), corresponding to k unstable
modes.

(2) In regard to the topological and geometric characteristics of
SRs, the critical finding is that for a given network topology (and its
evolution process) and given system component parameters,
within the practical engineering scope of concern, the SSSR that
ensures the power flow security in the power injection space and
the decision space, the DSR that ensures the transient stability in
the power injection space, the SVSR that ensures the static voltage
stability (composed of SNB points) in the generation power
injection space, and the SDSR that ensures the small-disturbance
stability (composed of HB points) in the power injection space
have the following characteristics:

� The SR defined in the power injection space and the decision
space is connected, uniquely determined, and irrelevant to
operation states when only the range, surrounded by the SR
boundary first encountered by a slow outward continuous
extension from the initial normal operation point in the form
of a quasi-steady state, is considered.

� There is no void inside the SR, which means that the SR is
only confined by the boundaries.

� The boundaries are piecewise smooth. The occurrence of sud-
den changes at the junction between the smooth surfaces is
caused by the fact that each smooth curved surface has a dif-
ferent instability mode (critical cut-set) for the DSR boundary
and a different bifurcation type or different dominant oscilla-
tion mode for the SDSR boundary.

� The SR can be approximated by one or a few HPs. The math-
ematical description of the corresponding security con-
straints is a set of linearly combined inequalities of the
power injection variables. Since the SR is irrelevant to opera-
tion states, the HP coefficients of SRs can be calculated and
stored offline for online use.

(3) Based on the facts that the boundaries of the practical SR in
the power injection space can be approximated by HPs and that
this SR is irrelevant to the operation states, great advantages of
the SR method for the security monitoring, probabilistic security
(risk) assessment, and optimization of power systems have been
discovered, as follows:

� All security constraints can be formulated as the linear
combination inequalities of decision variables (i.e., node
power injection) in the optimization problem, such that it is
very easy to simultaneously consider the security and stabil-
ity constraints in power system optimization. This greatly
simplifies the optimization algorithm and improves the
online computation speed by orders of magnitude. Conse-
quently, a successful solution to the difficulties of addressing
security and stability constraints in power system optimiza-
tion problems has been achieved, and is applicable in areas
such as coordinated optimization in transmission and distri-
bution networks, security cost optimization (optimal security
control), emergency control, and security-constrained unit
commitment.

� Based on the SR boundary with HP expression, the n-fold
integration problem of the probability density function with
n-dimensional variables in probabilistic security assessment
has been mathematically transformed into a threshold
comparison problem of a 1D probability distribution
function. In this way, the computational burden of the online
probabilistic security assessment of power systems can be
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reduced by several orders of magnitude. In the future, SR
methodology will be a powerful tool for the security analysis
of smart grids with the integration of massive uncertain
distributed generations.

� SR methodology is also a powerful tool for situation aware-
ness, since it can make visualization easier to implement
and can enable rapid determination of the security margin.

(4) Analytical methods for the fast calculation of the HP boun-
daries of the practical SSSR (for both transmission and distribution
systems), the DSR, the SVSR, and the CVSR have been invented.
These methods greatly improve the computational speed and can
achieve the required accuracy for practical engineering application,
in comparison with the fitting method, which requires a large
number of simulations to search out a large number of critical
points.

� For transmission and distribution networks, the HP coeffi-
cients of SSSR boundaries have been given by the sensitivity
matrix of AC power flow; moreover, a fast searching method
for a
reference critical point on the boundary has been proposed.
In particular, the HP coefficients of SSSR boundaries for the
distribution network with a tree topology can be directly gen-
erated based on the network topology and line impedance.
The proposed algorithm is very simple and fast and can meet
the requirements of the online real-time analysis of smart
distribution grids, the topology of that changes frequently.
Moreover, as the HP expressions are derived from the AC
power flow model, the HP coefficients, that reflect the influ-
ence of active and reactive power injections of the nodes on
the node voltage and line current, are more suitable for distri-
bution networks with active and reactive power coupling
characteristics.

� The HP analytical expression of the PDSR boundary has been
derived, and a method for quickly searching for a reference
critical point in the PDSR direct method has been provided.

� A hybrid method for calculating the SVSR boundary has been
established. On this basis, a new algorithm has been put
forward to track the farthest (L1 norm) boundary point of
the power flow feasible region in a high-dimensional power
generation injection space. This algorithm avoids the fre-
quent start of CPF calculation, and the multi-solution of its
results is also used to further verify the characteristics of
the power flow feasible region.

� Based on the fact that the Gramian matrix of the power sys-
tem dynamic model at the short-circuit fault-clearing time
remains almost unchanged compared with the Gramian
matrix of the power system dynamic model near the initial
operation point, a method, that combines coherency identifi-
cation based on
k-medoids method with the initial acceleration, is proposed
to rapidly identify the transient instability mode (and thus
to identify the critical cut-set) near the initial operation point.

� A graph model corresponding to the grid structure has been
established. The spectral clustering algorithm has been used
to determine network partitioning in coherent areas of static
voltage stability (the non-weak node set and the weak node
set; i.e., the critical cut-set), and thus to determine the CVSR
of great concern.
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Nomenclature

SR security region
DSR, Xd dynamic security region
IGSR, X integrated security region
SSSR, XSS steady-state security region
PSSR practical steady-state security region
SVSR, XSV security region to ensure static voltage stability
THSR, XT security region to ensure thermal stability of the lines
CVSR security region to ensure static voltage stability in cut-set

power space
SDSR, XSD security region to ensure small-disturbance stability
PSDSR practical SR to ensure small-disturbance stability
PDSR practical dynamic security region
CDSR DSR in cut-set power space
AC alternating current
HVAC high voltage alternating current
DC direct current
EP equilibrium point
X�

T;i SR corresponding to the thermal stability of branch i
XV SR to ensure steady-state voltage security
X�

V;i SR corresponding to the upper and lower limits of the volt-
age of node i

@XSD boundary of SDSR
@XSD(SNB) SNB boundary of SDSR
@XSD(H) Hopf boundary of SDSR
@Xd boundary of DSR
HP hyperplane
HB Hopf bifurcation
SNB saddle-node bifurcation
SIB singularity-induced bifurcation
LIB limit-induced bifurcation
PEBS potential energy boundary surface
SEP stable equilibrium point
UEP unstable equilibrium point
CUEP controlling unstable equilibrium point
TTC total transfer capacity
CPF continuous power flow
DAE differential-algebra equation
IM induction motor
SVC static var compensator
DFIG doubly- feed induction generator
PV photovoltaic
QP quadratic programming
KKT Karush–Kuhn–Tucker
OCD optimality condition decomposition
nb total number of branches
ng total number of generator nodes
G , f0;1;2; . . . ;ngg set of generator nodes
L , fng þ 1; . . . ;ng set of load nodes
N , f0;1;2; . . . ;ng set of all nodes
B , f1;2; . . . ;nbg set of all branches
Pi active power injection of node i
Q i reactive power injection of node i
Vi voltage magnitude of node i
Vj voltage magnitude of node j
hi voltage phase angle of node i
hj voltage phase angle of node j
hij branch angle
PL;i active power flow of line i in a critical cut-set
Q L;i reactive power flow at the sending end of line i in a critical

cut-set
Gij real part of the component at the ith row and jth column of

the node admittance matrix
Bij imaginary part of the component at the ith row and jth col-

umn of the node admittance matrix
Pm
i lower limit of the active power injection of node i
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PM
i upper limit of the active power injection of node i

Qm
i lower limit of the reactive power injection of node i

QM
i upper limit of the reactive power injection of node i

Vm
i lower limit of the voltage magnitude of node i

VM
i upper limit of the voltage magnitude of node i

IMi maximum current allowed to be transmitted on branch i
hMij upper limit of branch angle hij
xm lower limit of x
xM upper limit of x
dmax maximum allowable power angle difference between gen-

erators
IPi active injection current of node i, corresponding to the sce-

nario of Vi � 1;8i 2 N
IQi

reactive injection current of node i, corresponding to the
scenario of Vi � 1;8i 2 N

R set of all real numbers
Ik current of branch k
DVk voltage drop of branch k
yk branch admittance of branch k
dkijðtÞ difference in power angle between generator i and gener-

ator j at t in case of contingency k
P vector of active power injections
Q vector of reactive power injections
PG vector of the generator’s active power injections
QG vector of the generator’s reactive power injections
PL vector of the load’s active power injections
QL vector of the load’s reactive power injections
VG vector of the generator nodes’ voltage magnitudes
IP vector of the node’s active current injections
IQ vector of the node’s reactive current injections
HP matrix of the quadratic term coefficient of active power

production cost
HQ matrix of the quadratic term coefficient of reactive power

production cost
fP vector of the primary term coefficient of active power pro-

duction cost
fQ vector of the primary term coefficient of reactive power

production cost
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