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In the quest for ever faster and more efficient computing,
researchers and manufacturers are busy exploring novel process-
ing architectures. Among these, neuromorphic computing—the
emulation of brain function inside computer chips—is showing
particular promise for applications involving deep learning, an
increasingly common form of artificial intelligence (AI) that uses
neural networks inspired by brains to uncover patterns in large
datasets.

In traditional machine learning based on conventional com-
puter hardware, the memory and processing nodes are physi-
cally separated. In contrast, neuromorphic computer hardware
mimics neurons and places both functions in the same spot.
By eliminating the need to transfer data back and forth between
processing and storage sites, this architecture can substantially
reduce computing time and power requirements for certain
specific learning tasks such as pattern recognition and
classification.

While the concept of neuromorphic computing originated in the
late 1980s, its trajectory has been hampered by the slow pace of
algorithm development, the need for novel materials with which
to build the joint memory/processing nodes, and challenges in
scaling up. Early neuromorphic neural networks had no ‘‘plastici-
ty,” said Thomas Cleland, a professor of psychology at Cornell
University in Ithaca, NY, USA; once they were set up and trained
to do a particular task, that was it—to do something different they
needed to be rebuilt and retrained. That constraint was ‘‘extremely
limiting,” said Cleland.

Technical advances have now largely overcome this constraint.
‘‘One of the fundamental advances in AI over the last decade is
coming up with faster and better ways to do learning,” said Gabriel
Kreiman, a professor of ophthalmology and associate director of
the Center for Brains, Minds and Machines at Harvard Medical
School in Cambridge, MA, USA. ‘‘Implanting plasticity directly on
the hardware so it can be retrained without starting from scratch
can be quite transformative.”

Two new applications of neuromorphic computing showcase
the potential of this kind of design to efficiently solve a wide
array of problems with great speed and minimal power expendi-
ture: an electronic nose that can learn the scent of a chemical
after just one exposure [1] and a machine-vision device with
an image sensor that doubles as an artificial neural network
and can process images thousands of times faster than conven-
tional technology [2,3].

The electronic nose is a ‘‘one-shot learning” olfaction system
Cleland built with Nabil Imam, an engineer at Intel’s Neuromorphic
Computing Laboratory in Santa Clara, CA, USA. The system is
powered by Intel’s fifth-generation neuromorphic chip (Fig. 1
[1]), Loihi, which contains 128 core processing units, each with a
built-in learning module, and more than 130 000 computational
‘‘neurons” linked to thousands of their neighbors [4].

Cleland and Imam evaluated their system by pitting it against a
traditional neural network in a smell test of ten odors wafting
through a wind tunnel outfitted with 72 metal oxide gas sensors
(data derived from a publicly available dataset [5]). Training for
the neuromorphic system involved a single exposure to each odor,
while hundreds of trials went into training the traditional AI. Every
learned smell comprised only 20%–80% of the overall tested aroma,
reflecting real-world conditions where numerous odors often
blend in with one another. The neuromorphic AI identified the tar-
get odor 92% of the time, compared to 52% of the time for the tra-
ditional AI [1].

‘‘We can train our algorithm once on a clean odor, like orange or
amyl acetate [a banana-like scent], and present that odor against
many different backgrounds,” Cleland said. ‘‘You could test it in a
bakery, a garbage dump, or a swamp, and it would be able to
recognize that odor.”

Training of standard AI, in addition to being time-consuming
and power-hungry, has to start from scratch every time a new
smell is added. The neuromorphic AI, on the other hand, can keep
learning new scents simply by adding new ‘‘neurons” to the
network. Cleland is now trying to adapt the system to work in
autonomous robots. ‘‘We would like to be able to train it within
seconds, and have it accurately detect odors, even if they are
deeply obscured by uncontrolled contaminants,” he said. ‘‘We do
not want to have to say, ‘Oh yeah, it does not work when things
are acidic or when it is too humid or whatever.’”

Potential applications for the system include air quality moni-
toring, toxic waste identification, land mine detection, trace drug
detection, and medical diagnoses. However, the algorithm is not
limited to chemosensation, Cleland said. He and his team have
used it to classify ground cover types from hyperspectral satellite
images and differentiate frog calls in South America jungles [6].
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Fig. 1. Cornell University and Intel researchers built an electronic nose that can
learn the scent of a chemical after just one exposure on top of Loihi, Intel’s fifth-
generation research chip for neuromorphic computing [1]. The chip, shown here,
places memory and processing nodes within individual modules to enable super-
efficient detection of odors and other patterned stimuli [4]. Credit: Tim Herman/
Intel Corporation.
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‘‘We can work with anything where we have a sufficient number of
sensors,” he said. ‘‘The one caveat is the sensors need to be good
enough to detect the things you want to detect.”

While Cleland and Imam leveraged Intel’s Loihi chip, researchers
at Vienna University of Technology (TU Wien) have designed their
own neuromorphic chip that enables incredibly fast image pro-
cessing (Fig. 2 [2,3]). Machine vision technology typically involves
cameras scanning image pixels row by row, converting video
frames to digital signals, then transmitting the data to off-board
computers for analysis—all of which cause significant delays. The
TU Wien group sought to speed up this process by developing an
image sensor that itself functions as an artificial neural network
capable of simultaneously acquiring and analyzing images.
‘‘Combining sensing with computing in one step really opens up
a whole new direction for image interpretation,” said Lukas
Fig. 2. (a) The image sensor chip developed by TUWien researchers doubles as an artifici
techniques [2,3]. (b) The artificial neural network auto-encodes noise-free images projec
code and finally reconstructed into an image by the decoder [2,3]. Once trained the auto-e
with permission.
Mennel, a graduate student at the TU Wien Photonics Institute in
Austria.

The new sensor consists of a three-by-three array of pixels that
each represents a neuron [2]. The pixels in turn consist of three
photodiodes that each represents a synapse. Each photodiode
is made from three-atom-thick sheets of tungsten diselenide, a
semiconductor with a tunable response to light. Such tunability
allows the photodiodes to remember and respond to light in a pro-
grammable way.

To test their system, the TU Wien researchers used lasers to
project the letters ‘‘n,” ‘‘v,” and ‘‘z” onto the neural network image
sensor [3]. The sensor was able to correctly process the image of
the letter at the equivalent of 20 million frames per second (fps).
In contrast, conventional machine vision technology would be capable
of processing the images at no more than about 1000 fps.

Mennel said the sensor’s speed is limited only by the speed of
the electrons in the circuits and that, theoretically, the sys-
tem could operate a few orders of magnitude faster than what they
have reported. In addition to the ultra-fast processing, the image
sensor does not consume any electrical power when in operation.
Rather, the sensed photons themselves provide the necessary elec-
tric current to power the sensor.

The TU Wien image sensor technology has a variety of high-
speed applications, including fracture mechanics—determining
which direction cracks propagate from—and particle detection—
figuring out which of several possible particles has just passed
by. While in theory the system could handle complex tasks such
as guiding autonomous vehicles, it would need to be scaled up sig-
nificantly, Mennel said. ‘‘So, the obvious next step is scaling up,
which should be fairly easy since people are now able to build sen-
sors with millions of pixels.”

Based on these results, it looks like neuromorphic computing
could become an important part of the digital future. ‘‘The amount
of power consumed by current machine-learning approaches is
enormous, often prohibitively so,” Kreiman said. ‘‘Neuromorphic
computing shows potential to revolutionize the way we think
about computation, in terms of enabling certain approaches that
are currently not feasible, and at a fraction of the cost.”
al neural network that processes images thousands of times faster than conventional
ted onto the sensor into a current code which is converted into a binary activation
ncoder can take noisy inputs and reconstruct the projected images. Credit: TUWien,
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